BBS College of Engineering & Technology, Prayagraj Lecture Plan

Department:	Mechanical Engineering
Program / Session / Year / Semester:	B. Tech. /2024-25 / 2 nd / 4 th .
Course Name:	Applied Thermodynamic
Course Code:	BME-401
Name of Faculty:	Dr. Atiqur Rehman
Department of Faculty:	Department of Mechanical Engineering
Type of Course:	Theory
Number of Lecture Proposed:	58

Students should have interest in learning basics of Air Standard Cycle and Its Importance in mechanical engineering.

Pre-requisites for the
CourseImportance in incentation origination of gineering.Student should have interest in learning about Vapour Power Cycle, Steam
Turbine, Gas turbine, and also learning how the Fuel, Boiler, Condenser,
Nozzle works and its importance.

Course Outcomes (COs)

At the end of this course students will demonstrate the ability to:

- CO1 To learn about Air Standard Cycle.
- **CO2** To learn about of I law for reacting systems and heating value of fuels.
- CO3 To learn about gas and vapor cycles
- **CO4** To learn about gas dynamics of air flow and steam through nozzles.
- **CO5** To analyze the performance of steam turbines

Unit	Topic & sub–topic (as per University Syllabus)	Topics Covered	COs		No of Lecture delivered	Date	No. of student's present
	Unit -1: Introduction to Air Standa	rd Cycle					
	Otto Cycle		CO1	1			
	Diesel cycle		CO1	2			
	Dual cycles and Analysis		CO1	2			
	Introduction to Turbocharger & Supercharger.		CO1	3			
	Tentative no of Lectures Required to co	o of Lectures Required to complete the Unit-1					
	Unit-2: Vapour Power Cycles & F	uels and Combu	istion				
	Vapor power cycles, Rankine cycle with superheat, reheat and regeneration, exergy analysis.		CO2	2			
	Rankine cycle, effect of pressure and temperature on Rankine cycle,		CO2	2			
	Reheat cycle, Regenerative cycle, Feed water heaters.		CO2	2			
2	Binary vapour cycle, Combined cycles, Cogeneration.		CO2	2			
	Fuels and Combustion: Combustion analysis, heating values.		CO2	1			
	Air requirement, Air/Fuel ratio, standard heat of reaction and effect of temperature on standard heat of reaction,		CO2	2			
	Heat of formation, Adiabatic flame temperature.		CO2	1			
	Tentative no of Lectures Required to	o complete the U	nit-2	12			

	Unit-3: Boiler & Condenser						
	Boilers: Classifications and						
			CO 2				
	working of boilers, boiler mountings		CO3	2			
	and accessories,		<i>a</i>				
	Draught and its calculations.		CO3	2			
	Air pre-heater, feed water heater, super		CO3	2			
3	heater.						
	Boiler efficiency, Equivalent		CO3	2			
	evaporation.		CO 2	2			
	Boiler trial and heat balance.		CO3	2			
	Condenser: Classification of condenser,		CO3	1			
	Air leakage, condenser performance		CO3	2			
	parameters	aomnloto the Unit	2	13			
	Tentative no of Lectures Required to Unit-4: Steam and Gas Nozzles	complete the Omt	-3	15			
	Steam and Gas Nozzles: Flow through						
	Convergent and convergent-divergent						
	nozzles, variation of velocity, area and		CO4	3			
	specific volume, choked flow, throat		04	5			
	area, Nozzle efficiency.						
	Off design operation of nozzle, Shock						
	waves stationary normal shock waves,		G A A				
	Effect of friction on nozzle, Super		CO4	3			
	saturated flow.						
4	Steam Turbines: Classification of steam		004	1			
	turbine, Impulse and Reaction turbines,		CO4	1			
4	Staging, Stage and Overall efficiency,		CO4	2			
	reheat factor, Bleeding.		CO4	2			
	Velocity diagram of simple and						
	compound multistage impulse and						
	reaction turbines and related		CO4	2			
	calculations, work done, efficiencies of						
	reaction.						
	Impulse reaction turbines, state point						
	locus, Losses in steam turbines,		CO4	2			
	Governing of turbines, Comparison with						
	steam engine.			13			
	Tentative no of Lectures Required to	[-4	15				
	Unit-5: Gas Turbine and Jet Propulsion						
	Gas Turbine: Gas turbine		007	_			
	classification, Brayton cycle,		CO5	2			
	Principles of gas turbine,						
	Gas turbine cycles with intercooling,		a a a				
	reheat and regeneration and		CO5	3			
	their combinations,						
5	Stage efficiency, Polytropic efficiency.		COF	2			
5	Deviation of actual cycles from ideal cycles.		CO5	2			
	Jet Propulsion: Introduction to the						
	principles of jet propulsion,		CO5	1			
	Turbojet and turboprop engines and	<u> </u>					
	their processes,		CO5	2			
	Principle of rocket propulsion,	+ +					
	Introduction to Rocket Engine.		CO5	2			
	Tentative no of Lectures Required to	complete the Unit	t-5	12			
1		r-r-r-ine em	_				

	Text Books & References
1.	Basic and Applied Thermodynamics by P.K. Nag, Mcgraw hill India.
2.	2. Applied thermodynamics by Onkar Singh, New Age International.
3.	3. Applied Thermodynamics for Engineering Technologists by Eastop, Pearson Education.
	4. Applied Thermodynamics by Venkanna And Swati, PHI.
	5. Sonntag, R. E, Borgnakke, C. and Van Wylen, G. J., 2003, 6th Edition, Fundamentals of Thermodynamics, John Wiley
4.	6. Jones, J. B. and Duggan, R. E., 1996, Engineering Thermodynamics, Prentice-Hall of India
	8. Theory of Stream Turbine by WJ Kear

Signature of Faculty

Signature of HOD

Comments		