BBS College of Engineering and Technology Prayagraj Lecture Plan

Department	Mechanical Engineering Department			
Program/Year/Semester/Sec	B.Tech/2025/ 4th			
Course Name/ Course Title	B.Tech/ Engineering Mechanics and strength of Material			
Course Code	BME402			
Name of Faculty	Mr Saurabh Kumar			
Department of Faculty	Mechanical Engineering Dept.			

Type of Course	Theory/Lecture
Contact hours	60 hrs

Course Outcomes (COs)						
At the end of this course students will demonstrate the ability to:						
CO1	CO1 Understand the force systems and application of force equilibrium to various two-dimensional					
	problems.					
CO2	CO2 Understand the construction details and working of internal combustion engines, electric vehicle and					
	hybrid vehicles.					
CO3	CO3 Determine the principal stresses and strains in structural members					
CO4	CO4 Understand and determine the stresses, slope, and deflection of the transversely loaded members					
CO5	CO5 Apply the concepts of stresses and strain in solving problems related to springs, buckling of columns					
	and thin and thick cylinders					

Uni t	Topic & sub – topic	Topics Covered	COs	Lecture s propose d	Lecture delivered	Date	No. of students present (57)	Sign. of faculty
	Unit -1: Introduction							
	All Newton's law		CO1	1				
	Review of two-dimensional force systems		CO1	1				
	Free body diagram		CO1	1				
	Equilibrium of force systems		CO1	1				
	laws of friction		CO1	1				
	equilibrium analysis of simple systems involving friction.		CO1	1				
	Trusses -Introduction, simple truss and solution of a simple truss,		CO1	1				
	methods of joints,		CO1	2				
	methods of sections.		CO1	2				
	Beam Introduction, shear force and bending moment		CO1	2				
	different equations of equilibrium		CO1	1				
	shear force and bending moment diagram for statically determined beams.		CO1	2				
				16				
	Unit-2: Centroid and moment of inertia:							
	Centroid of plane, curve, area, volume and composite bodies,		CO2	1				
	moment of inertia of plane area,		CO2	1				
	parallel axis theorem, perpendicular axis theorem		CO2	2				
2	concept and importance of principal moment of inertia.		CO2	1				
	Compound stress and strains:		CO2	1				
	Introduction, normal stress and strain, shear stress and strain,		CO2	1				
	stress on inclines sections, state of plane stress,		CO2	1				
	principal stress and strain, maximum shear stress,		CO2	1				

	Mohr's circle for plane stress,	CO2	1		
	theories of failure, strain energy, impact loads and	000	1		
	stresses,	C02			
	thermal Stresses, introduction to three-dimensional		1		
	stresses.				
			12		
	Unit-3: Stresses in Beams:				
	: Pure Bending, normal stresses in beams	CO3	1		
	shear stresses in beams due to transverse and axial	CO3	2		
	loads	003	2		
	composite beams.	CO3	2		
	cantilever and simply supported beams	CO3	1		
3	Macaulay's method,	CO3	2		
		003	2		
	area moment method, fixed and continuous beams.	CO3	1		
	Torsion: Torsion, combined bending and torsion of	CO3	2		
	solid and hollow shafts	000	2		
	torsion of thin-walled tubes.		1		
			12		
	Unit-4: Helical and Leaf Springs:				
	: Deflection of springs, helical springs under axial				
	load and under axial twist (for circular cross	CO4	1		
	sections),				
	axial load and twisting moment acting	004			
	simultaneously both for open and closed coiled	CO4	1		
	springs	001	4		
	Columns and Struts:	CO4	2		
4	Buckling and stability	004	1		
	slenderness ratio combined bending and direct		1		
	stress middle third and middle quarter rules	CO4	2		
	struts with different end conditions. Euler's theory	201	•		
	for pin-ended columns	CO4	2		
	effect of end conditions on column buckling,	001	2		
	Ranking Gordon formulae.	004	2		
			12		
	Unit-5: Thin cylinders & spheres:		12		
	Unit-5: Thin cylinders & spheres: Introduction, difference between thin-walled		12		
	Unit-5: Thin cylinders & spheres: Introduction, difference between thin-walled and thick-walled pressure vessels, thin-walled	CO5	12		
	Unit-5: Thin cylinders & spheres: Introduction, difference between thin-walled and thick-walled pressure vessels, thin-walled spheres and cylinders,	CO5	12 2		
	Unit-5: Thin cylinders & spheres: Introduction, difference between thin-walled and thick-walled pressure vessels, thin-walled spheres and cylinders, hoop and axial stresses and strain, and	CO5	12 2		
	Unit-5: Thin cylinders & spheres: Introduction, difference between thin-walled and thick-walled pressure vessels, thin-walled spheres and cylinders, hoop and axial stresses and strain, and volumetric strain.	CO5 CO5	12 2 2		
	Unit-5: Thin cylinders & spheres: Introduction, difference between thin-walled and thick-walled pressure vessels, thin-walled spheres and cylinders, hoop and axial stresses and strain, and volumetric strain. Thick cylinders: Radial, axial and	CO5 CO5	12 2 2		
	Unit-5: Thin cylinders & spheres: Introduction, difference between thin-walled and thick-walled pressure vessels, thin-walled spheres and cylinders, hoop and axial stresses and strain, and volumetric strain. Thick cylinders: Radial, axial and circumferential stresses in thick cylinders	CO5 CO5	12 2 2		
5	Unit-5: Thin cylinders & spheres: Introduction, difference between thin-walled and thick-walled pressure vessels, thin-walled spheres and cylinders, hoop and axial stresses and strain, and volumetric strain. Thick cylinders: Radial, axial and circumferential stresses in thick cylinders subjected to internal or external pressures,	CO5 CO5 CO5	12 2 2 2		
5	Unit-5: Thin cylinders & spheres:Introduction, difference between thin-walledand thick-walled pressure vessels, thin-walledspheres and cylinders,hoop and axial stresses and strain, andvolumetric strain.Thick cylinders: Radial, axial andcircumferential stresses in thick cylinderssubjected to internal or external pressures,compound cylinders,	CO5 CO5 CO5	12 2 2 2		
5	Unit-5: Thin cylinders & spheres:Introduction, difference between thin-walledand thick-walled pressure vessels, thin-walledspheres and cylinders,hoop and axial stresses and strain, andvolumetric strain.Thick cylinders: Radial, axial andcircumferential stresses in thick cylinderssubjected to internal or external pressures,compound cylinders,stresses in rotating shafts and cylinders, stresses	CO5 CO5 CO5 CO5	12 2 2 2		
5	Unit-5: Thin cylinders & spheres:Introduction, difference between thin-walledand thick-walled pressure vessels, thin-walledspheres and cylinders,hoop and axial stresses and strain, andvolumetric strain.Thick cylinders: Radial, axial andcircumferential stresses in thick cylinderssubjected to internal or external pressures,compound cylinders,stresses in rotating shafts and cylinders, stressesdue to interference fits.	CO5 CO5 CO5 CO5 CO5	12 2 2 2 2 2		
5	Unit-5: Thin cylinders & spheres: Introduction, difference between thin-walled and thick-walled pressure vessels, thin-walled spheres and cylinders, hoop and axial stresses and strain, and volumetric strain. Thick cylinders: Radial, axial and circumferential stresses in thick cylinders subjected to internal or external pressures, compound cylinders, stresses in rotating shafts and cylinders, stresses due to interference fits.	CO5 CO5 CO5 CO5 CO5	12 2 2 2 2 2 8		
5	Unit-5: Thin cylinders & spheres:Introduction, difference between thin-walledand thick-walled pressure vessels, thin-walledspheres and cylinders,hoop and axial stresses and strain, andvolumetric strain.Thick cylinders: Radial, axial andcircumferential stresses in thick cylinderssubjected to internal or external pressures,compound cylinders,stresses in rotating shafts and cylinders, stressesdue to interference fits.	CO5 CO5 CO5 CO5 CO5	12 2 2 2 2 2 8		
5	Unit-5: Thin cylinders & spheres: Introduction, difference between thin-walled and thick-walled pressure vessels, thin-walled spheres and cylinders, hoop and axial stresses and strain, and volumetric strain. Thick cylinders: Radial, axial and circumferential stresses in thick cylinders subjected to internal or external pressures, compound cylinders, stresses in rotating shafts and cylinders, stresses due to interference fits.	CO5 CO5 CO5 CO5 CO5 CO5	12 2 2 2 2 2 8		
5	Unit-5: Thin cylinders & spheres: Introduction, difference between thin-walled and thick-walled pressure vessels, thin-walled spheres and cylinders, hoop and axial stresses and strain, and volumetric strain. Thick cylinders: Radial, axial and circumferential stresses in thick cylinders subjected to internal or external pressures, compound cylinders, stresses in rotating shafts and cylinders, stresses due to interference fits.	CO5 CO5 CO5 CO5 CO5	12 2 2 2 2 8		

Text Books & References				
	Engineering Mechanics by S.S Bhavikatti,			
	Engineering Mechanics by Dr D.S Kumar			
	Mechanics of solid by R.K Rajput			
	. Gere, Mechanics of Materials, Cengage learning.			
	Bere, Johnston, Mechanics of Materials, McGraw Hill.			

Comments		