
Work, Kinetic Energy, and Potential 
Energy 

 
The concepts of Work and Energy provide the basis for solving a 

variety of kinetics problems, and an alternative to the force, mass, and 

acceleration method presented in the previous chapter. Generally, this 

method is called the Principle of Work and Energy, and it can be 

boiled down to the idea that the work done to a body will be equal to the 

change in energy of that body. Dividing energy into kinetic and potential 

energy pieces as we often do in dynamics problems, we arrive at the 

following base equation for the conservation of energy. 

 

Before jumping into the application of this method though, it is important 

to first define the three terms used in the equation, the ideas 

of work, kinetic energy, and potential energy. 

Work: 
 
Work in general is a force exerted over a distance. If we imagine a 

single, constant force pushing a body in a single direction over some 

distance, the work done by that force would be equal to the magnitude 

of that force times the distance the body traveled. If we have a force 

that is opposing the travel (such as friction) it would be negative work. 

 



In instances with a constant force and a constant direction, the work done to a body will be 

equal to the magnitude of the force times the distance the body travels. For forces opposing the 

motion, the work will be negative. 

 

For instances where forces and the direction of travel do not match, the 

component of the force in the direction of travel is the only piece of the 

force that will do work. Following through with this logic, forces that are 

perpendicular to the direction of travel for a body will exert no work on 

a body because there is no component of the force in the direction of 

travel. 

 

Only the components of a force in the direction of travel exert work on a body. Forces perpendicular 

to the direction of travel will exert no work on the body. 

 



 

Finally, in the case of a force that does not have a constant magnitude, 

we will need to account for the changing magnitude of the force over 

the distance traveled. To do this we will simply integrate the force 

function over the distance traveled by the body. Just as before, only the 

component of the force in the direction of travel will count towards the 

work done and forces opposing travel will be negative work. 

 
With a non-constant magnitude force, we need to integrate the force function over the distance 

traveled. 

 

Kinetic Energy: 

Kinetic energy is the the energy of mass in motion, and for a particle or 

translational system (with no rotation) it will be equal to one half of the 

mass of the body times the velocity of the body squared. 



 

If we wish to determine the change in kinetic energy (as is used in the 

work and energy equation), we would simply take the final kinetic 

energy minus the initial kinetic energy. 

 

As a note, even though the velocity of a body has a direction, kinetic 

energy does not have a direction. 

Potential Energy 

Potential energy, unlike kinetic energy, is not really energy at all. 

Instead, it represents the work that a given force will potentially do 

between two instances in time. Potential energy can come in many 

forms, but the two we will discuss here are gravitational potential 

energy, and elastic potential energy. As the names imply, gravitational 

potential energy represents the potential work that the gravitational 

force will do, while elastic potential energy represents the potential work 

a spring force will do. We often use these potential energy terms in 

place of the work done by gravity or springs because it will simplify the 

math. It is important to note that when we include these potential energy 

terms, we should not also include the work done by gravity or spring 

forces as well, as this would double count those forces. 

 

 

 



Gravitational Potential Energy 
 

If we were to examine the work done by gravity as we lift the an object 

up by some change in height, we would see that it is equal to the 

negative of force times distance, because the gravity opposes the 

upwards displacement. In this case the magnitude of the force is equal 

to the mass times the acceleration due to gravity g (9.81 m/s2 or 32.2 

ft/s2 on the earth's surface) while the distance is the change in height. 

The work done by a gravity force as we lift up 

an object will be equal to negative mass times acceleration of gravity (g) times the change in 

height of the body. 

 

When changing this from a work term to an energy term, we will move 

the term from one side of the work and energy equation to the other. 

When we do this, we will wind up converting the negative work value 

into a positive energy value. Moving the body upwards represents a 

positive change in gravitational potential energy, while moving the body 

downwards represents a negative change in gravitational potential 

energy. In equation form, this is as follows. 



 
When finding the change in gravitational potential energy, we multiply the 
mass times g (giving us the weight of the object) and then multiply that by 
the change in the height of the object, regardless of the path taken. 

 

It is important to note that the change in height here is the not the total 

distance traveled, but only the vertical displacement between the 

starting and ending states. When working with US customary systems, 

it is also important to remember that the weight of an object is not equal 

to the mass. Instead the weight (in pounds) is the mass times g already. 

This means that the change in gravitational energy is equal to the 

weight time the change in height. 

Elastic Potential Energy 

Elastic potential energy represents the potential work done by a spring 

that is stretched or compressed as it returns to its natural, unstretched 

length. The force a spring exerts is linearly related to the amount of 

stretch itself by the spring constant k, where the spring force is equal to 

the spring constant (k) times the distance the spring is stretched or 

compressed (x) beyond its natural, unstretched length. The spring force 



will always push or pull the object back towards the unstretched length 

of the spring. 

 
The force exerted by a spring will be equal to the stiffness of the spring (k) 
times the distance the spring is stretched or compressed beyond its natural 
resting length (x). 

To find the work done by a spring as we compress it from its unstretched 

length (point A) to some other point (Point B), we simply need to 

integrate the spring force over this distance. As this is the integral of a 

simple linear relationship that opposes the displacement we wind up 

finding that the work done by the spring is equal to negative one half 

times the spring constant (k) times the amount of stretch (x) squared. 

 

Rather than leaving this as work, we will instead move it to the energy 

side of the work and energy equation. In doing so, we will drop the 

negative sign from our value. 

 



In the equation above, the stiffness of the spring (k) represents the 

amount of force the spring exerts per unit distance it is compressed. A 

stiffer spring, with a higher value of k, will be harder to stretch or 

compress, while a less stiff spring, with a lower value of k, will be easier 

to stretch or compress. Spring manufacturers may specify the k value, 

though this can also be determined experimentally by stretching or 

compressing a spring a set amount and measuring the force exerted by 

the spring at that set displacement. 

It's also important to remember that in the equation above, x is not the 

length of the spring but instead the distance the spring has been 

stretched or compressed beyond its unstretched length. For example, 

a spring that is naturally 10 cm long has no elastic potential energy 

when it is just sitting there unstretched at 10 cm long. 

To find the change in elastic potential energy (Delta PE), as is used in 

the work and energy equation, we simply take the final elastic potential 

energy minus the initial elastic potential energy. 

 
The change elastic potential energy will be equal to one half times the 
stiffness of the spring (k) times the distance the spring is stretched or 
compressed in its final state minus the same equation in its initial state. 

 



In this case, it is important to remember that the amount of stretch (x 

final or x initial) is always measured relative to the unstretched length 

of the spring. We cannot simply use a change in length of the spring, 

as this will give you invalid results. 

 

 

 


