
Photosynthesis

Schematic of photosynthesis in plants. The
carbohydrates produced are stored in or used by the
plant.
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Photosynthesis is a process used by
plants and other organisms to convert
light energy into chemical energy that can

Overall equation for the type of photosynthesis that
occurs in plants

Composite image showing the global distribution of
photosynthesis, including both oceanic phytoplankton
and terrestrial vegetation. Dark red and blue-green
indicate regions of high photosynthetic activity in the
ocean and on land, respectively.

https://en.m.wikipedia.org/wiki/Energy_transformation
https://en.m.wikipedia.org/wiki/Light_energy
https://en.m.wikipedia.org/wiki/Chemical_energy
https://en.m.wikipedia.org/wiki/File:Seawifs_global_biosphere.jpg
https://en.m.wikipedia.org/wiki/Phytoplankton
https://en.m.wikipedia.org/wiki/Vegetation


later be released to fuel the organisms'
activities. This chemical energy is stored
in carbohydrate molecules, such as
sugars, which are synthesized from carbon
dioxide and water – hence the name
photosynthesis, from the Greek phōs
(φῶς), "light", and sunthesis (σύνθεσις),
"putting together".[1][2][3] In most cases,
oxygen is also released as a waste
product. Most plants, most algae, and
cyanobacteria perform photosynthesis;
such organisms are called
photoautotrophs. Photosynthesis is largely
responsible for producing and maintaining
the oxygen content of the Earth's
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atmosphere, and supplies most of the
energy necessary for life on Earth.[4]

Although photosynthesis is performed
differently by different species, the
process always begins when energy from
light is absorbed by proteins called
reaction centres that contain green
chlorophyll pigments. In plants, these
proteins are held inside organelles called
chloroplasts, which are most abundant in
leaf cells, while in bacteria they are
embedded in the plasma membrane. In
these light-dependent reactions, some
energy is used to strip electrons from
suitable substances, such as water,
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producing oxygen gas. The hydrogen freed
by the splitting of water is used in the
creation of two further compounds that
serve as short-term stores of energy,
enabling its transfer to drive other
reactions: these compounds are reduced
nicotinamide adenine dinucleotide
phosphate (NADPH) and adenosine
triphosphate (ATP), the "energy currency"
of cells.

In plants, algae and cyanobacteria, long-
term energy storage in the form of sugars
is produced by a subsequent sequence of
light-independent reactions called the
Calvin cycle; some bacteria use different
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mechanisms, such as the reverse Krebs
cycle, to achieve the same end. In the
Calvin cycle, atmospheric carbon dioxide
is incorporated into already existing
organic carbon compounds, such as
ribulose bisphosphate (RuBP).[5] Using the
ATP and NADPH produced by the light-
dependent reactions, the resulting
compounds are then reduced and
removed to form further carbohydrates,
such as glucose.

The first photosynthetic organisms
probably evolved early in the evolutionary
history of life and most likely used
reducing agents such as hydrogen or
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hydrogen sulfide, rather than water, as
sources of electrons.[6] Cyanobacteria
appeared later; the excess oxygen they
produced contributed directly to the
oxygenation of the Earth,[7] which rendered
the evolution of complex life possible.
Today, the average rate of energy capture
by photosynthesis globally is
approximately 130 terawatts,[8][9][10] which
is about eight times the current power
consumption of human civilization.[11]

Photosynthetic organisms also convert
around 100–115 billion tons (91-104
petagrams) of carbon into biomass per
year.[12][13]
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Photosynthetic organisms are
photoautotrophs, which means that they
are able to synthesize food directly from
carbon dioxide and water using energy
from light. However, not all organisms use

Overview

Photosynthesis changes sunlight into chemical
energy, splits water to liberate O2, and fixes CO2 into
sugar.
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carbon dioxide as a source of carbon
atoms to carry out photosynthesis;
photoheterotrophs use organic
compounds, rather than carbon dioxide, as
a source of carbon.[4] In plants, algae, and
cyanobacteria, photosynthesis releases
oxygen. This is called oxygenic
photosynthesis and is by far the most
common type of photosynthesis used by
living organisms. Although there are some
differences between oxygenic
photosynthesis in plants, algae, and
cyanobacteria, the overall process is quite
similar in these organisms. There are also
many varieties of anoxygenic
photosynthesis, used mostly by certain

https://en.m.wikipedia.org/wiki/Photoheterotroph
https://en.m.wikipedia.org/wiki/Plants
https://en.m.wikipedia.org/wiki/Algae
https://en.m.wikipedia.org/wiki/Cyanobacteria
https://en.m.wikipedia.org/wiki/Anoxygenic_photosynthesis


types of bacteria, which consume carbon
dioxide but do not release oxygen.

Carbon dioxide is converted into sugars in
a process called carbon fixation;
photosynthesis captures energy from
sunlight to convert carbon dioxide into
carbohydrate. Carbon fixation is an
endothermic redox reaction. In general
outline, photosynthesis is the opposite of
cellular respiration: while photosynthesis
is a process of reduction of carbon dioxide
to carbohydrate, cellular respiration is the
oxidation of carbohydrate or other
nutrients to carbon dioxide. Nutrients used
in cellular respiration include
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carbohydrates, amino acids and fatty
acids. These nutrients are oxidized to
produce carbon dioxide and water, and to
release chemical energy to drive the
organism's metabolism. Photosynthesis
and cellular respiration are distinct
processes, as they take place through
different sequences of chemical reactions
and in different cellular compartments.

The general equation for photosynthesis
as first proposed by Cornelis van Niel is
therefore:[14]
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CO2  + 2H2A  + photons → 

[CH2O]  + 2A  + H2O

Since water is used as the electron donor
in oxygenic photosynthesis, the equation
for this process is:

CO2  + 2H2O + photons → [CH2O]  + 

O2  + H2O

This equation emphasizes that water is
both a reactant in the light-dependent
reaction and a product of the light-
independent reaction, but canceling n
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water molecules from each side gives the
net equation:

CO2  + H2O + photons → [CH2O]  + 

O2

Other processes substitute other
compounds (such as arsenite) for water in
the electron-supply role; for example some
microbes use sunlight to oxidize arsenite
to arsenate:[15] The equation for this
reaction is:

carbon 
dioxide

water light energy carbohydrate

oxygen
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CO2  + (AsO3− 
3 )  + photons → (AsO3− 

4 )  +

CO (used to build other compounds

in subsequent reactions)[16]

Photosynthesis occurs in two stages. In
the first stage, light-dependent reactions or
light reactions capture the energy of light
and use it to make the energy-storage
molecules ATP and NADPH. During the
second stage, the light-independent
reactions use these products to capture
and reduce carbon dioxide.

Most organisms that utilize oxygenic
photosynthesis use visible light for the
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light-dependent reactions, although at
least three use shortwave infrared or, more
specifically, far-red radiation.[17]

Some organisms employ even more
radical variants of photosynthesis. Some
archaea use a simpler method that
employs a pigment similar to those used
for vision in animals. The
bacteriorhodopsin changes its
configuration in response to sunlight,
acting as a proton pump. This produces a
proton gradient more directly, which is
then converted to chemical energy. The
process does not involve carbon dioxide
fixation and does not release oxygen, and
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seems to have evolved separately from the
more common types of
photosynthesis.[18][19]

Photosynthetic membranes
and organelles

Chloroplast ultrastructure: 
1. outer membrane 
2. intermembrane space 
3. inner membrane (1+2+3: envelope) 
4. stroma (aqueous fluid) 
5. thylakoid lumen (inside of thylakoid) 
6. thylakoid membrane 
7. granum (stack of thylakoids) 
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In photosynthetic bacteria, the proteins
that gather light for photosynthesis are
embedded in cell membranes. In its
simplest form, this involves the membrane
surrounding the cell itself.[20] However, the
membrane may be tightly folded into
cylindrical sheets called thylakoids,[21] or
bunched up into round vesicles called
intracytoplasmic membranes.[22] These
structures can fill most of the interior of a

8. thylakoid (lamella) 
9. starch 
10. ribosome 
11. plastidial DNA 
12. plastoglobule (drop of lipids)

https://en.m.wikipedia.org/wiki/Cell_membrane
https://en.m.wikipedia.org/wiki/Thylakoid
https://en.m.wikipedia.org/wiki/Vesicle_(biology)


cell, giving the membrane a very large
surface area and therefore increasing the
amount of light that the bacteria can
absorb.[21]

In plants and algae, photosynthesis takes
place in organelles called chloroplasts. A
typical plant cell contains about 10 to 100
chloroplasts. The chloroplast is enclosed
by a membrane. This membrane is
composed of a phospholipid inner
membrane, a phospholipid outer
membrane, and an intermembrane space.
Enclosed by the membrane is an aqueous
fluid called the stroma. Embedded within
the stroma are stacks of thylakoids
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(grana), which are the site of
photosynthesis. The thylakoids appear as
flattened disks. The thylakoid itself is
enclosed by the thylakoid membrane, and
within the enclosed volume is a lumen or
thylakoid space. Embedded in the
thylakoid membrane are integral and
peripheral membrane protein complexes
of the photosynthetic system.

Plants absorb light primarily using the
pigment chlorophyll. The green part of the
light spectrum is not absorbed but is
reflected which is the reason that most
plants have a green color. Besides
chlorophyll, plants also use pigments such
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as carotenes and xanthophylls.[23] Algae
also use chlorophyll, but various other
pigments are present, such as
phycocyanin, carotenes, and xanthophylls
in green algae, phycoerythrin in red algae
(rhodophytes) and fucoxanthin in brown
algae and diatoms resulting in a wide
variety of colors.

These pigments are embedded in plants
and algae in complexes called antenna
proteins. In such proteins, the pigments
are arranged to work together. Such a
combination of proteins is also called a
light-harvesting complex.[24]
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Although all cells in the green parts of a
plant have chloroplasts, the majority of
those are found in specially adapted
structures called leaves. Certain species
adapted to conditions of strong sunlight
and aridity, such as many Euphorbia and
cactus species, have their main
photosynthetic organs in their stems. The
cells in the interior tissues of a leaf, called
the mesophyll, can contain between
450,000 and 800,000 chloroplasts for
every square millimeter of leaf. The
surface of the leaf is coated with a water-
resistant waxy cuticle that protects the
leaf from excessive evaporation of water
and decreases the absorption of ultraviolet
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or blue light to reduce heating. The
transparent epidermis layer allows light to
pass through to the palisade mesophyll
cells where most of the photosynthesis
takes place.

Light-dependent reactions

Light-dependent reactions of photosynthesis at the
thylakoid membrane
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In the light-dependent reactions, one
molecule of the pigment chlorophyll
absorbs one photon and loses one
electron. This electron is passed to a
modified form of chlorophyll called
pheophytin, which passes the electron to a
quinone molecule, starting the flow of
electrons down an electron transport chain
that leads to the ultimate reduction of
NADP to NADPH. In addition, this creates
a proton gradient (energy gradient) across
the chloroplast membrane, which is used
by ATP synthase in the synthesis of ATP.
The chlorophyll molecule ultimately
regains the electron it lost when a water
molecule is split in a process called

https://en.m.wikipedia.org/wiki/Light-dependent_reactions
https://en.m.wikipedia.org/wiki/Pigment
https://en.m.wikipedia.org/wiki/Chlorophyll
https://en.m.wikipedia.org/wiki/Photon
https://en.m.wikipedia.org/wiki/Electron
https://en.m.wikipedia.org/wiki/Pheophytin
https://en.m.wikipedia.org/wiki/Quinone
https://en.m.wikipedia.org/wiki/Electron_transport_chain
https://en.m.wikipedia.org/wiki/Nicotinamide_adenine_dinucleotide_phosphate
https://en.m.wikipedia.org/wiki/Nicotinamide_adenine_dinucleotide_phosphate
https://en.m.wikipedia.org/wiki/Electrochemical_gradient
https://en.m.wikipedia.org/wiki/Chloroplast_membrane
https://en.m.wikipedia.org/wiki/ATP_synthase
https://en.m.wikipedia.org/wiki/Adenosine_triphosphate


photolysis, which releases a dioxygen (O2)
molecule as a waste product.

The overall equation for the light-
dependent reactions under the conditions
of non-cyclic electron flow in green plants
is:[25]

2 H2O + 2 NADP+ + 3 ADP + 3 Pi + light
→ 2 NADPH + 2 H+ + 3 ATP + O2

Not all wavelengths of light can support
photosynthesis. The photosynthetic action
spectrum depends on the type of
accessory pigments present. For example,
in green plants, the action spectrum
resembles the absorption spectrum for
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chlorophylls and carotenoids with
absorption peaks in violet-blue and red
light. In red algae, the action spectrum is
blue-green light, which allows these algae
to use the blue end of the spectrum to
grow in the deeper waters that filter out
the longer wavelengths (red light) used by
above ground green plants. The non-
absorbed part of the light spectrum is
what gives photosynthetic organisms their
color (e.g., green plants, red algae, purple
bacteria) and is the least effective for
photosynthesis in the respective
organisms.
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Z scheme

In plants, light-dependent reactions occur
in the thylakoid membranes of the
chloroplasts where they drive the
synthesis of ATP and NADPH. The light-
dependent reactions are of two forms:
cyclic and non-cyclic.

The "Z scheme"
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In the non-cyclic reaction, the photons are
captured in the light-harvesting antenna
complexes of photosystem II by
chlorophyll and other accessory pigments
(see diagram at right). The absorption of a
photon by the antenna complex frees an
electron by a process called photoinduced
charge separation. The antenna system is
at the core of the chlorophyll molecule of
the photosystem II reaction center. That
freed electron is transferred to the primary
electron-acceptor molecule, pheophytin.
As the electrons are shuttled through an
electron transport chain (the so-called Z-
scheme shown in the diagram), it initially
functions to generate a chemiosmotic
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potential by pumping proton cations (H+)
across the membrane and into the
thylakoid space. An ATP synthase enzyme
uses that chemiosmotic potential to make
ATP during photophosphorylation,
whereas NADPH is a product of the
terminal redox reaction in the Z-scheme.
The electron enters a chlorophyll molecule
in Photosystem I. There it is further
excited by the light absorbed by that
photosystem. The electron is then passed
along a chain of electron acceptors to
which it transfers some of its energy. The
energy delivered to the electron acceptors
is used to move hydrogen ions across the
thylakoid membrane into the lumen. The
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electron is eventually used to reduce the
co-enzyme NADP with a H+ to NADPH
(which has functions in the light-
independent reaction); at that point, the
path of that electron ends.

The cyclic reaction is similar to that of the
non-cyclic, but differs in that it generates
only ATP, and no reduced NADP (NADPH)
is created. The cyclic reaction takes place
only at photosystem I. Once the electron is
displaced from the photosystem, the
electron is passed down the electron
acceptor molecules and returns to
photosystem I, from where it was emitted,
hence the name cyclic reaction.



Water photolysis

Linear electron transport through a
photosystem will leave the reaction center
of that photosystem oxidized. Elevating
another electron will first require re-
reduction of the reaction center. The
excited electrons lost from the reaction
center (P700) of photosystem I are
replaced by transfer from plastocyanin,
whose electrons come from electron
transport through photosystem II.
Photosystem II, as the first step of the Z-
scheme, requires an external source of
electrons to reduce its oxidized chlorophyll
a reaction center, called P680. The source
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of electrons for photosynthesis in green
plants and cyanobacteria is water. Two
water molecules are oxidized by four
successive charge-separation reactions by
photosystem II to yield a molecule of
diatomic oxygen and four hydrogen ions.
The electrons yielded are transferred to a
redox-active tyrosine residue that then
reduces the oxidized P680. This resets the
ability of P680 to absorb another photon
and release another photo-dissociated
electron. The oxidation of water is
catalyzed in photosystem II by a redox-
active structure that contains four
manganese ions and a calcium ion; this
oxygen-evolving complex binds two water
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molecules and contains the four oxidizing
equivalents that are used to drive the
water-oxidizing reaction (Dolai's S-state
diagrams). Photosystem II is the only
known biological enzyme that carries out
this oxidation of water. The hydrogen ions
are released in the thylakoid lumen and
therefore contribute to the transmembrane
chemiosmotic potential that leads to ATP
synthesis. Oxygen is a waste product of
light-dependent reactions, but the majority
of organisms on Earth use oxygen for
cellular respiration, including
photosynthetic organisms.[26][27]

Light-independent reactions
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Calvin cycle

In the light-independent (or "dark")
reactions, the enzyme RuBisCO captures
CO2 from the atmosphere and, in a
process called the Calvin cycle, it uses the
newly formed NADPH and releases three-
carbon sugars, which are later combined
to form sucrose and starch. The overall
equation for the light-independent
reactions in green plants is[25]:128

3 CO2 + 9 ATP + 6 NADPH + 6 H+ →
C3H6O3-phosphate + 9 ADP + 8 Pi + 6
NADP+ + 3 H2O
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Carbon fixation produces the intermediate
three-carbon sugar product, which is then
converted into the final carbohydrate
products. The simple carbon sugars
produced by photosynthesis are then used
in the forming of other organic
compounds, such as the building material

Overview of the Calvin cycle and carbon fixation
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cellulose, the precursors for lipid and
amino acid biosynthesis, or as a fuel in
cellular respiration. The latter occurs not
only in plants but also in animals when the
energy from plants is passed through a
food chain.

The fixation or reduction of carbon dioxide
is a process in which carbon dioxide
combines with a five-carbon sugar,
ribulose 1,5-bisphosphate, to yield two
molecules of a three-carbon compound,
glycerate 3-phosphate, also known as 3-
phosphoglycerate. Glycerate 3-phosphate,
in the presence of ATP and NADPH
produced during the light-dependent
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stages, is reduced to glyceraldehyde 3-
phosphate. This product is also referred to
as 3-phosphoglyceraldehyde (PGAL) or,
more generically, as triose phosphate.
Most (5 out of 6 molecules) of the
glyceraldehyde 3-phosphate produced is
used to regenerate ribulose 1,5-
bisphosphate so the process can
continue. The triose phosphates not thus
"recycled" often condense to form hexose
phosphates, which ultimately yield
sucrose, starch and cellulose. The sugars
produced during carbon metabolism yield
carbon skeletons that can be used for
other metabolic reactions like the
production of amino acids and lipids.
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Carbon concentrating mechanisms

On land

Overview of C4 carbon fixation
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In hot and dry conditions, plants close
their stomata to prevent water loss. Under

these conditions, CO 
2 will decrease and

oxygen gas, produced by the light
reactions of photosynthesis, will increase,
causing an increase of photorespiration by
the oxygenase activity of ribulose-1,5-
bisphosphate carboxylase/oxygenase and
decrease in carbon fixation. Some plants
have evolved mechanisms to increase the

CO 
2 concentration in the leaves under

these conditions.[28]

Plants that use the C4 carbon fixation
process chemically fix carbon dioxide in
the cells of the mesophyll by adding it to
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the three-carbon molecule
phosphoenolpyruvate (PEP), a reaction
catalyzed by an enzyme called PEP
carboxylase, creating the four-carbon
organic acid oxaloacetic acid. Oxaloacetic
acid or malate synthesized by this process
is then translocated to specialized bundle
sheath cells where the enzyme RuBisCO
and other Calvin cycle enzymes are

located, and where CO 
2 released by

decarboxylation of the four-carbon acids is
then fixed by RuBisCO activity to the three-
carbon 3-phosphoglyceric acids. The
physical separation of RuBisCO from the
oxygen-generating light reactions reduces

photorespiration and increases CO 
2
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fixation and, thus, the photosynthetic
capacity of the leaf.[29] C4 plants can
produce more sugar than C3 plants in
conditions of high light and temperature.
Many important crop plants are C4 plants,
including maize, sorghum, sugarcane, and
millet. Plants that do not use PEP-
carboxylase in carbon fixation are called
C3 plants because the primary
carboxylation reaction, catalyzed by
RuBisCO, produces the three-carbon 3-
phosphoglyceric acids directly in the
Calvin-Benson cycle. Over 90% of plants
use C3 carbon fixation, compared to 3%
that use C4 carbon fixation;[30] however,
the evolution of C4 in over 60 plant

https://en.m.wikipedia.org/wiki/Photosynthetic_capacity
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lineages makes it a striking example of
convergent evolution.[28]

Xerophytes, such as cacti and most
succulents, also use PEP carboxylase to
capture carbon dioxide in a process called
Crassulacean acid metabolism (CAM). In
contrast to C4 metabolism, which spatially

separates the CO 
2 fixation to PEP from the

Calvin cycle, CAM temporally separates
these two processes. CAM plants have a
different leaf anatomy from C3 plants, and

fix the CO 
2 at night, when their stomata are

open. CAM plants store the CO 
2 mostly in

the form of malic acid via carboxylation of
phosphoenolpyruvate to oxaloacetate,
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which is then reduced to malate.
Decarboxylation of malate during the day

releases CO 
2 inside the leaves, thus

allowing carbon fixation to 3-
phosphoglycerate by RuBisCO. Sixteen
thousand species of plants use CAM.[31]

In water

Cyanobacteria possess carboxysomes,

which increase the concentration of CO 
2

around RuBisCO to increase the rate of
photosynthesis. An enzyme, carbonic
anhydrase, located within the
carboxysome releases CO2 from the

dissolved hydrocarbonate ions (HCO− 
3).
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Before the CO2 diffuses out it is quickly
sponged up by RuBisCO, which is
concentrated within the carboxysomes.

HCO− 
3 ions are made from CO2 outside the

cell by another carbonic anhydrase and are
actively pumped into the cell by a
membrane protein. They cannot cross the
membrane as they are charged, and within
the cytosol they turn back into CO2 very
slowly without the help of carbonic

anhydrase. This causes the HCO− 
3 ions to

accumulate within the cell from where
they diffuse into the carboxysomes.[32]

Pyrenoids in algae and hornworts also act

to concentrate CO 
2 around RuBisCO.[33]
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The overall process of photosynthesis
takes place in four stages:[13]

Stage Description Time scale

1 Energy transfer in antenna chlorophyll (thylakoid membranes)
femtosecond to
picosecond

2
Transfer of electrons in photochemical reactions (thylakoid
membranes)

picosecond to
nanosecond

3
Electron transport chain and ATP synthesis (thylakoid
membranes)

microsecond to
millisecond

4 Carbon fixation and export of stable products millisecond to second

Plants usually convert light into chemical
energy with a photosynthetic efficiency of
3–6%.[34] Absorbed light that is
unconverted is dissipated primarily as
heat, with a small fraction (1–2%)[35] re-

Order and kinetics

Efficiency
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emitted as chlorophyll fluorescence at
longer (redder) wavelengths. This fact
allows measurement of the light reaction
of photosynthesis by using chlorophyll
fluorometers.[35]

Actual plants' photosynthetic efficiency
varies with the frequency of the light being
converted, light intensity, temperature and
proportion of carbon dioxide in the
atmosphere, and can vary from 0.1% to
8%.[36] By comparison, solar panels
convert light into electric energy at an
efficiency of approximately 6–20% for
mass-produced panels, and above 40% in
laboratory devices.
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The efficiency of both light and dark
reactions can be measured but the
relationship between the two can be
complex.[37] For example, the ATP and
NADPH energy molecules, created by the
light reaction, can be used for carbon
fixation or for photorespiration in C3

plants.[37] Electrons may also flow to other
electron sinks.[38][39][40] For this reason, it
is not uncommon for authors to
differentiate between work done under
non-photorespiratory conditions and under
photorespiratory conditions.[41][42][43]

Chlorophyll fluorescence of photosystem II
can measure the light reaction, and



Infrared gas analyzers can measure the
dark reaction.[44] It is also possible to
investigate both at the same time using an
integrated chlorophyll fluorometer and gas
exchange system, or by using two
separate systems together.[45] Infrared gas
analyzers and some moisture sensors are
sensitive enough to measure the
photosynthetic assimilation of CO2, and of
ΔH2O using reliable methods[46] CO2 is
commonly measured in μmols/(m2/s),
parts per million or volume per million and
H2O is commonly measured in
mmol/(m2/s) or in mbars.[46] By measuring
CO2 assimilation, ΔH2O, leaf temperature,
barometric pressure, leaf area, and



photosynthetically active radiation or PAR,
it becomes possible to estimate, "A" or
carbon assimilation, "E" or transpiration,
"gs" or stomatal conductance, and Ci or
intracellular CO2.[46] However, it is more
common to used chlorophyll fluorescence
for plant stress measurement, where
appropriate, because the most commonly
used measuring parameters FV/FM and
Y(II) or F/FM' can be made in a few
seconds, allowing the measurement of
larger plant populations.[43]

Gas exchange systems that offer control
of CO2 levels, above and below ambient,
allow the common practice of



measurement of A/Ci curves, at different
CO2 levels, to characterize a plant's
photosynthetic response.[46]

Integrated chlorophyll fluorometer – gas
exchange systems allow a more precise
measure of photosynthetic response and
mechanisms.[44][45] While standard gas
exchange photosynthesis systems can
measure Ci, or substomatal CO2 levels, the
addition of integrated chlorophyll
fluorescence measurements allows a
more precise measurement of CC to
replace Ci.[45][47] The estimation of CO2 at
the site of carboxylation in the chloroplast,
or CC, becomes possible with the



measurement of mesophyll conductance
or gm using an integrated system.[44][45][48]

Photosynthesis measurement systems are
not designed to directly measure the
amount of light absorbed by the leaf. But
analysis of chlorophyll-fluorescence, P700-
and P515-absorbance and gas exchange
measurements reveal detailed information
about e.g. the photosystems, quantum
efficiency and the CO2 assimilation rates.
With some instruments even wavelength-
dependency of the photosynthetic
efficiency can be analyzed.[49]



A phenomenon known as quantum walk
increases the efficiency of the energy
transport of light significantly. In the
photosynthetic cell of an algae, bacterium,
or plant, there are light-sensitive molecules
called chromophores arranged in an
antenna-shaped structure named a
photocomplex. When a photon is
absorbed by a chromophore, it is
converted into a quasiparticle referred to
as an exciton, which jumps from
chromophore to chromophore towards the
reaction center of the photocomplex, a
collection of molecules that traps its
energy in a chemical form that makes it
accessible for the cell's metabolism. The
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exciton's wave properties enable it to cover
a wider area and try out several possible
paths simultaneously, allowing it to
instantaneously "choose" the most
efficient route, where it will have the
highest probability of arriving at its
destination in the minimum possible time.
Because that quantum walking takes place
at temperatures far higher than quantum
phenomena usually occur, it is only
possible over very short distances, due to
obstacles in the form of destructive
interference that come into play. These
obstacles cause the particle to lose its
wave properties for an instant before it
regains them once again after it is freed



Life timeline

from its locked position through a classic
"hop". The movement of the electron
towards the photo center is therefore
covered in a series of conventional hops
and quantum walks.[50][51][52]
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Clickablemillion years ago)  

Early photosynthetic systems, such as
those in green and purple sulfur and green
and purple nonsulfur bacteria, are thought
to have been anoxygenic, and used various
other molecules than water as electron
donors. Green and purple sulfur bacteria
are thought to have used hydrogen and
sulfur as electron donors. Green nonsulfur
bacteria used various amino and other
organic acids as an electron donor. Purple
nonsulfur bacteria used a variety of
nonspecific organic molecules. The use of
these molecules is consistent with the
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geological evidence that Earth's early
atmosphere was highly reducing at that
time.[53]

Fossils of what are thought to be
filamentous photosynthetic organisms
have been dated at 3.4 billion years
old.[54][55] More recent studies, reported in
March 2018, also suggest that
photosynthesis may have begun about 3.4
billion years ago.[56][57]

The main source of oxygen in the Earth's
atmosphere derives from oxygenic
photosynthesis, and its first appearance is
sometimes referred to as the oxygen
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catastrophe. Geological evidence
suggests that oxygenic photosynthesis,
such as that in cyanobacteria, became
important during the Paleoproterozoic era
around 2 billion years ago. Modern
photosynthesis in plants and most
photosynthetic prokaryotes is oxygenic.
Oxygenic photosynthesis uses water as an
electron donor, which is oxidized to
molecular oxygen (O 

2) in the
photosynthetic reaction center.

Symbiosis and the origin of
chloroplasts
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Several groups of animals have formed
symbiotic relationships with
photosynthetic algae. These are most
common in corals, sponges and sea
anemones. It is presumed that this is due
to the particularly simple body plans and
large surface areas of these animals
compared to their volumes.[58] In addition,
a few marine mollusks Elysia viridis and
Elysia chlorotica also maintain a symbiotic

Plant cells with visible chloroplasts (from a moss,
Plagiomnium affine)
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relationship with chloroplasts they capture
from the algae in their diet and then store
in their bodies (see Kleptoplasty). This
allows the mollusks to survive solely by
photosynthesis for several months at a
time.[59][60] Some of the genes from the
plant cell nucleus have even been
transferred to the slugs, so that the
chloroplasts can be supplied with proteins
that they need to survive.[61]

An even closer form of symbiosis may
explain the origin of chloroplasts.
Chloroplasts have many similarities with
photosynthetic bacteria, including a
circular chromosome, prokaryotic-type
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ribosome, and similar proteins in the
photosynthetic reaction center.[62][63] The
endosymbiotic theory suggests that
photosynthetic bacteria were acquired (by
endocytosis) by early eukaryotic cells to
form the first plant cells. Therefore,
chloroplasts may be photosynthetic
bacteria that adapted to life inside plant
cells. Like mitochondria, chloroplasts
possess their own DNA, separate from the
nuclear DNA of their plant host cells and
the genes in this chloroplast DNA
resemble those found in cyanobacteria.[64]

DNA in chloroplasts codes for redox
proteins such as those found in the
photosynthetic reaction centers. The CoRR
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Hypothesis proposes that this co-location
of genes with their gene products is
required for redox regulation of gene
expression, and accounts for the
persistence of DNA in bioenergetic
organelles.[65]

Photosynthetic eukaryotic lineages

Symbiotic and kleptoplastic organisms
excluded:

The glaucophytes and the red and green
algae—clade Archaeplastida (unicellular
and multicellular)
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The cryptophytes—clade Cryptista
(unicellular)

The haptophytes—clade Haptista
(unicellular)

The dinoflagellates and chromerids in
the superphylum Myzozoa—clade
Alveolata (unicellular)

The ochrophytes—clade Heterokonta
(unicellular and multicellular)

The chlorarachniophytes and three
species of Paulinella in the phylum
Cercozoa—clade Rhizaria (unicellular)

The euglenids—clade Excavata
(unicellular)
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Except for the euglenids, all of them
belongs to the Diaphoretickes.
Archaeplastida and the photosynthetic
Paulinella got their plastids through
primary endosymbiosis in two separate
events by engulfing a cyanobacterium. The
plastids in all the other groups have either
a red or green algal origin, and are referred
to as the "red lineages" and the "green
lineages". While able to perform
photosynthesis, many of them are
mixotrophs and practice heterotrophy to
various degrees.

Cyanobacteria and the evolution of
photosynthesis
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The biochemical capacity to use water as
the source for electrons in photosynthesis
evolved once, in a common ancestor of
extant cyanobacteria (formerly called blue-
green algae), which are the only
prokaryotes performing oxygenic
photosynthesis. The geological record
indicates that this transforming event took
place early in Earth's history, at least
2450–2320 million years ago (Ma), and, it
is speculated, much earlier.[66][67] Because
the Earth's atmosphere contained almost
no oxygen during the estimated
development of photosynthesis, it is
believed that the first photosynthetic
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cyanobacteria did not generate oxygen.[68]

Available evidence from geobiological
studies of Archean (>2500 Ma)
sedimentary rocks indicates that life
existed 3500 Ma, but the question of when
oxygenic photosynthesis evolved is still
unanswered. A clear paleontological
window on cyanobacterial evolution
opened about 2000 Ma, revealing an
already-diverse biota of Cyanobacteria.
Cyanobacteria remained the principal
primary producers of oxygen throughout
the Proterozoic Eon (2500–543 Ma), in
part because the redox structure of the
oceans favored photoautotrophs capable
of nitrogen fixation. Green algae joined
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cyanobacteria as the major primary
producers of oxygen on continental
shelves near the end of the Proterozoic,
but it was only with the Mesozoic (251–66
Ma) radiations of dinoflagellates,
coccolithophorids, and diatoms did the
primary production of oxygen in marine
shelf waters take modern form.
Cyanobacteria remain critical to marine
ecosystems as primary producers of
oxygen in oceanic gyres, as agents of
biological nitrogen fixation, and, in
modified form, as the plastids of marine
algae.[69]

Discovery
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Although some of the steps in
photosynthesis are still not completely
understood, the overall photosynthetic
equation has been known since the 19th
century.

Portrait of Jan Baptist van Helmont by Mary Beale,
c.1674
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Jan van Helmont began the research of
the process in the mid-17th century when
he carefully measured the mass of the soil
used by a plant and the mass of the plant
as it grew. After noticing that the soil mass
changed very little, he hypothesized that
the mass of the growing plant must come
from the water, the only substance he
added to the potted plant. His hypothesis
was partially accurate – much of the
gained mass also comes from carbon
dioxide as well as water. However, this
was a signaling point to the idea that the
bulk of a plant's biomass comes from the
inputs of photosynthesis, not the soil
itself.
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Joseph Priestley, a chemist and minister,
discovered that, when he isolated a
volume of air under an inverted jar, and
burned a candle in it (which gave off CO2),
the candle would burn out very quickly,
much before it ran out of wax. He further
discovered that a mouse could similarly
"injure" air. He then showed that the air
that had been "injured" by the candle and
the mouse could be restored by a plant.

In 1778, Jan Ingenhousz, repeated
Priestley's experiments. He discovered
that it was the influence of sunlight on the
plant that could cause it to revive a mouse
in a matter of hours.
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In 1796, Jean Senebier, a Swiss pastor,
botanist, and naturalist, demonstrated that
green plants consume carbon dioxide and
release oxygen under the influence of light.
Soon afterward, Nicolas-Théodore de
Saussure showed that the increase in
mass of the plant as it grows could not be
due only to uptake of CO2 but also to the
incorporation of water. Thus, the basic
reaction by which photosynthesis is used
to produce food (such as glucose) was
outlined.[70]

Cornelis Van Niel made key discoveries
explaining the chemistry of
photosynthesis. By studying purple sulfur
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bacteria and green bacteria he was the
first to demonstrate that photosynthesis is
a light-dependent redox reaction, in which
hydrogen reduces (donates its – electron
to) carbon dioxide.

Robert Emerson discovered two light
reactions by testing plant productivity
using different wavelengths of light. With
the red alone, the light reactions were
suppressed. When blue and red were
combined, the output was much more
substantial. Thus, there were two
photosystems, one absorbing up to
600 nm wavelengths, the other up to
700 nm. The former is known as PSII, the
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latter is PSI. PSI contains only chlorophyll
"a", PSII contains primarily chlorophyll "a"
with most of the available chlorophyll "b",
among other pigment. These include
phycobilins, which are the red and blue
pigments of red and blue algae
respectively, and fucoxanthol for brown
algae and diatoms. The process is most
productive when the absorption of quanta
are equal in both the PSII and PSI, assuring
that input energy from the antenna
complex is divided between the PSI and
PSII system, which in turn powers the
photochemistry.[13]



Robert Hill thought that a complex of
reactions consisting of an intermediate to
cytochrome b6 (now a plastoquinone),
another is from cytochrome f to a step in
the carbohydrate-generating mechanisms.
These are linked by plastoquinone, which
does require energy to reduce cytochrome
f for it is a sufficient reductant. Further
experiments to prove that the oxygen
developed during the photosynthesis of
green plants came from water, were
performed by Hill in 1937 and 1939. He
showed that isolated chloroplasts give off
oxygen in the presence of unnatural
reducing agents like iron oxalate,
ferricyanide or benzoquinone after
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exposure to light. The Hill reaction[71] is as
follows:

2 H2O + 2 A + (light, chloroplasts) → 2
AH2 + O2

where A is the electron acceptor.
Therefore, in light, the electron acceptor is
reduced and oxygen is evolved.

Samuel Ruben and Martin Kamen used
radioactive isotopes to determine that the
oxygen liberated in photosynthesis came
from the water.
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Melvin Calvin and Andrew Benson, along
with James Bassham, elucidated the path
of carbon assimilation (the photosynthetic
carbon reduction cycle) in plants. The
carbon reduction cycle is known as the
Calvin cycle, which ignores the
contribution of Bassham and Benson.
Many scientists refer to the cycle as the
Calvin-Benson Cycle, Benson-Calvin, and

Melvin Calvin works in his photosynthesis laboratory.
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some even call it the Calvin-Benson-
Bassham (or CBB) Cycle.

Nobel Prize-winning scientist Rudolph A.
Marcus was able to discover the function
and significance of the electron transport
chain.

Otto Heinrich Warburg and Dean Burk
discovered the I-quantum photosynthesis
reaction that splits the CO2, activated by
the respiration.[72]

In 1950, first experimental evidence for the
existence of photophosphorylation in vivo
was presented by Otto Kandler using
intact Chlorella cells and interpreting his
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findings as light-dependent ATP
formation.[73] In 1954, Daniel I. Arnon et al.
discovered photophosphorylation in vitro
in isolated chloroplasts with the help of
P32.[74][75]

Louis N.M. Duysens and Jan Amesz
discovered that chlorophyll a will absorb
one light, oxidize cytochrome f, chlorophyll
a (and other pigments) will absorb another
light, but will reduce this same oxidized
cytochrome, stating the two light reactions
are in series.

Development of the concept
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In 1893, Charles Reid Barnes proposed
two terms, photosyntax and
photosynthesis, for the biological process
of synthesis of complex carbon compounds
out of carbonic acid, in the presence of
chlorophyll, under the influence of light.
Over time, the term photosynthesis came
into common usage as the term of choice.
Later discovery of anoxygenic
photosynthetic bacteria and
photophosphorylation necessitated
redefinition of the term.[76]

C3 : C4 photosynthesis research
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After WWII at late 1940 at the University of
California, Berkeley, the details of
photosynthetic carbon metabolism were
sorted out by the chemists Melvin Calvin,
Andrew Benson, James Bassham and a
score of students and researchers utilizing
the carbon-14 isotope and paper
chromatography techniques.[77] The
pathway of CO2 fixation by the algae
Chlorella in a fraction of a second in light
resulted in a 3 carbon molecule called
phosphoglyceric acid (PGA). For that
original and ground-breaking work, a Nobel
Prize in Chemistry was awarded to Melvin
Calvin in 1961. In parallel, plant
physiologists studied leaf gas exchanges
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using the new method of infrared gas
analysis and a leaf chamber where the net
photosynthetic rates ranged from 10 to 13
μmol CO2·m−2·s−1, with the conclusion that
all terrestrial plants having the same
photosynthetic capacities that were light
saturated at less than 50% of
sunlight.[78][79]

Later in 1958–1963 at Cornell University,
field grown maize was reported to have
much greater leaf photosynthetic rates of
40 μmol CO2·m−2·s−1 and was not
saturated at near full sunlight.[80][81] This
higher rate in maize was almost double
those observed in other species such as
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wheat and soybean, indicating that large
differences in photosynthesis exist among
higher plants. At the University of Arizona,
detailed gas exchange research on more
than 15 species of monocot and dicot
uncovered for the first time that
differences in leaf anatomy are crucial
factors in differentiating photosynthetic
capacities among species.[82][83] In tropical
grasses, including maize, sorghum,
sugarcane, Bermuda grass and in the dicot
amaranthus, leaf photosynthetic rates
were around 38−40 μmol CO2·m−2·s−1, and
the leaves have two types of green cells, i.
e. outer layer of mesophyll cells
surrounding a tightly packed



cholorophyllous vascular bundle sheath
cells. This type of anatomy was termed
Kranz anatomy in the 19th century by the
botanist Gottlieb Haberlandt while
studying leaf anatomy of sugarcane.[84]

Plant species with the greatest
photosynthetic rates and Kranz anatomy
showed no apparent photorespiration, very
low CO2 compensation point, high
optimum temperature, high stomatal
resistances and lower mesophyll
resistances for gas diffusion and rates
never saturated at full sun light.[85] The
research at Arizona was designated
Citation Classic by the ISI 1986.[83] These
species was later termed C4 plants as the
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first stable compound of CO2 fixation in
light has 4 carbon as malate and
aspartate.[86][87][88] Other species that lack
Kranz anatomy were termed C3 type such
as cotton and sunflower, as the first stable
carbon compound is the 3-carbon PGA. At
1000 ppm CO2 in measuring air, both the
C3 and C4 plants had similar leaf
photosynthetic rates around 60 μmol
CO2·m−2·s−1 indicating the suppression of
photorespiration in C3 plants.[82][83]

Factors
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There are three main factors affecting
photosynthesis and several corollary
factors. The three main are:

Light irradiance and wavelength

Carbon dioxide concentration

Temperature.

Total photosynthesis is limited by a range
of environmental factors. These include
the amount of light available, the amount

The leaf is the primary site of photosynthesis in
plants.
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of leaf area a plant has to capture light
(shading by other plants is a major
limitation of photosynthesis), rate at which
carbon dioxide can be supplied to the
chloroplasts to support photosynthesis,
the availability of water, and the availability
of suitable temperatures for carrying out
photosynthesis.[89]

Light intensity (irradiance),
wavelength and temperature

https://en.m.wikipedia.org/wiki/Leaf
https://en.m.wikipedia.org/wiki/Chloroplast
https://en.m.wikipedia.org/wiki/File:Chlorophyll_ab_spectra-en.svg


The process of photosynthesis provides
the main input of free energy into the
biosphere, and is one of four main ways in
which radiation is important for plant
life.[90]

The radiation climate within plant
communities is extremely variable, with

Absorbance spectra of free chlorophyll a (blue) and b
(red) in a solvent. The action spectra of chlorophyll
molecules are slightly modified in vivo depending on
specific pigment–protein interactions.
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both time and space.

In the early 20th century, Frederick
Blackman and Gabrielle Matthaei
investigated the effects of light intensity
(irradiance) and temperature on the rate of
carbon assimilation.

At constant temperature, the rate of
carbon assimilation varies with
irradiance, increasing as the irradiance
increases, but reaching a plateau at
higher irradiance.

At low irradiance, increasing the
temperature has little influence on the
rate of carbon assimilation. At constant
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high irradiance, the rate of carbon
assimilation increases as the
temperature is increased.

These two experiments illustrate several
important points: First, it is known that, in
general, photochemical reactions are not
affected by temperature. However, these
experiments clearly show that temperature
affects the rate of carbon assimilation, so
there must be two sets of reactions in the
full process of carbon assimilation. These
are the light-dependent 'photochemical'
temperature-independent stage, and the
light-independent, temperature-dependent
stage. Second, Blackman's experiments
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illustrate the concept of limiting factors.
Another limiting factor is the wavelength
of light. Cyanobacteria, which reside
several meters underwater, cannot receive
the correct wavelengths required to cause
photoinduced charge separation in
conventional photosynthetic pigments. To
combat this problem, a series of proteins
with different pigments surround the
reaction center. This unit is called a
phycobilisome.

Carbon dioxide levels and
photorespiration
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As carbon dioxide concentrations rise, the
rate at which sugars are made by the light-
independent reactions increases until
limited by other factors. RuBisCO, the
enzyme that captures carbon dioxide in
the light-independent reactions, has a
binding affinity for both carbon dioxide and
oxygen. When the concentration of carbon
dioxide is high, RuBisCO will fix carbon
dioxide. However, if the carbon dioxide

Photorespiration
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concentration is low, RuBisCO will bind
oxygen instead of carbon dioxide. This
process, called photorespiration, uses
energy, but does not produce sugars.

RuBisCO oxygenase activity is
disadvantageous to plants for several
reasons:

1. One product of oxygenase activity is
phosphoglycolate (2 carbon) instead
of 3-phosphoglycerate (3 carbon).
Phosphoglycolate cannot be
metabolized by the Calvin-Benson
cycle and represents carbon lost
from the cycle. A high oxygenase
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activity, therefore, drains the sugars
that are required to recycle ribulose 5-
bisphosphate and for the
continuation of the Calvin-Benson
cycle.

2. Phosphoglycolate is quickly
metabolized to glycolate that is toxic
to a plant at a high concentration; it
inhibits photosynthesis.

3. Salvaging glycolate is an
energetically expensive process that
uses the glycolate pathway, and only
75% of the carbon is returned to the
Calvin-Benson cycle as 3-
phosphoglycerate. The reactions also
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produce ammonia (NH3), which is
able to diffuse out of the plant,
leading to a loss of nitrogen.

A highly simplified summary is:
2 glycolate + ATP → 3-
phosphoglycerate + carbon dioxide
+ ADP + NH3

The salvaging pathway for the products of
RuBisCO oxygenase activity is more
commonly known as photorespiration,
since it is characterized by light-dependent
oxygen consumption and the release of
carbon dioxide.

See also
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