
3-May-17

XML

2

HTML and XML, I

XML stands for eXtensible Markup Language

HTML is used to mark up

text so it can be displayed to

users

XML is used to mark up

data so it can be processed

by computers

HTML describes both

structure (e.g. <p>, <h2>,

) and appearance (e.g.

, , <i>)

XML describes only

content, or “meaning”

HTML uses a fixed,

unchangeable set of tags

In XML, you make up

your own tags

3

HTML and XML, II

 HTML and XML look similar, because they are
both SGML languages (SGML = Standard
Generalized Markup Language)

 Both HTML and XML use elements enclosed in tags
(e.g. <body>This is an element</body>)

 Both use tag attributes (e.g.,
)

 Both use entities (<, >, &, ", ')

 More precisely,

 HTML is defined in SGML

 XML is a (very small) subset of SGML

4

HTML and XML, III

 HTML is for humans

 HTML describes web pages

 You don’t want to see error messages about the web pages you

visit

 Browsers ignore and/or correct as many HTML errors as they can,

so HTML is often sloppy

 XML is for computers

 XML describes data

 The rules are strict and errors are not allowed

 In this way, XML is like a programming language

 Current versions of most browsers can display XML

 However, browser support of XML is spotty at best

5

XML-related technologies

 DTD (Document Type Definition) and XML Schemas are used to

define legal XML tags and their attributes for particular purposes

 CSS (Cascading Style Sheets) describe how to display HTML or

XML in a browser

 XSLT (eXtensible Stylesheet Language Transformations) and

XPath are used to translate from one form of XML to another

 DOM (Document Object Model), SAX (Simple API for XML,

and JAXP (Java API for XML Processing) are all APIs for XML

parsing

6

Example XML document

<?xml version="1.0"?>

<weatherReport>

<date>7/14/97</date>

<city>North Place</city>, <state>NX</state>

<country>USA</country>

High Temp: <high scale="F">103</high>

Low Temp: <low scale="F">70</low>

Morning: <morning>Partly cloudy, Hazy</morning>

Afternoon: <afternoon>Sunny & hot</afternoon>

Evening: <evening>Clear and Cooler</evening>

</weatherReport>

From: XML: A Primer, by Simon St. Laurent

7

Overall structure

 An XML document may start with one or more

processing instructions (PIs) or directives:

<?xml version="1.0"?>

<?xml-stylesheet type="text/css" href="ss.css"?>

 Following the directives, there must be exactly one root

element containing all the rest of the XML:

<weatherReport>

...

</weatherReport>

8

XML building blocks

 Aside from the directives, an XML document is

built from:

 elements: high in <high scale="F">103</high>

 tags, in pairs: <high scale="F">103</high>

 attributes: <high scale="F">103</high>

 entities: <afternoon>Sunny & hot</afternoon>

 character data, which may be:

 parsed (processed as XML)--this is the default

 unparsed (all characters stand for themselves)

9

Elements and attributes

 Attributes and elements are somewhat interchangeable

 Example using just elements:

<name>
<first>David</first>
<last>Matuszek</last>

</name>

 Example using attributes:

<name first="David" last="Matuszek"></name>

 You will find that elements are easier to use in your programs--
this is a good reason to prefer them

 Attributes often contain metadata, such as unique IDs

 Generally speaking, browsers display only elements (values
enclosed by tags), not tags and attributes

10

Well-formed XML

 Every element must have both a start tag and an end tag, e.g.
<name> ... </name>

 But empty elements can be abbreviated: <break />.

 XML tags are case sensitive

 XML tags may not begin with the letters xml, in any
combination of cases

 Elements must be properly nested, e.g. not <i>bold and
italic</i>

 Every XML document must have one and only one root element

 The values of attributes must be enclosed in single or double
quotes, e.g. <time unit="days">

 Character data cannot contain < or &

11

Entities

 Five special characters must be written as entities:

& for & (almost always necessary)

< for < (almost always necessary)

> for > (not usually necessary)

" for " (necessary inside double quotes)

' for ' (necessary inside single quotes)

 These entities can be used even in places where they

are not absolutely required

 These are the only predefined entities in XML

12

XML declaration

 The XML declaration looks like this:
<?xml version="1.0" encoding="UTF-8"
standalone="yes"?>
 The XML declaration is not required by browsers, but is required by

most XML processors (so include it!)

 If present, the XML declaration must be first--not even whitespace
should precede it

 Note that the brackets are <? and ?>

 version="1.0" is required (this is the only version so far)

 encoding can be "UTF-8" (ASCII) or "UTF-16" (Unicode), or
something else, or it can be omitted

 standalone tells whether there is a separate DTD

13

Processing instructions

 PIs (Processing Instructions) may occur anywhere in the XML

document (but usually first)

 A PI is a command to the program processing the XML

document to handle it in a certain way

 XML documents are typically processed by more than one

program

 Programs that do not recognize a given PI should just ignore it

 General format of a PI: <?target instructions?>

 Example: <?xml-stylesheet type="text/css"

href="mySheet.css"?>

14

Comments

 <!-- This is a comment in both HTML and XML -->

 Comments can be put anywhere in an XML document

 Comments are useful for:

 Explaining the structure of an XML document

 Commenting out parts of the XML during development and testing

 Comments are not elements and do not have an end tag

 The blanks after <!-- and before --> are optional

 The character sequence -- cannot occur in the comment

 The closing bracket must be -->

 Comments are not displayed by browsers, but can be seen by

anyone who looks at the source code

15

CDATA

 By default, all text inside an XML document is parsed

 You can force text to be treated as unparsed character data by

enclosing it in <![CDATA[...]]>

 Any characters, even & and <, can occur inside a CDATA

 Whitespace inside a CDATA is (usually) preserved

 The only real restriction is that the character sequence]]> cannot

occur inside a CDATA

 CDATA is useful when your text has a lot of illegal characters

(for example, if your XML document contains some HTML text)

16

Names in XML

 Names (as used for tags and attributes) must begin with

a letter or underscore, and can consist of:

 Letters, both Roman (English) and foreign

 Digits, both Roman and foreign

. (dot)

- (hyphen)

_ (underscore)

: (colon) should be used only for namespaces

 Combining characters and extenders (not used in English)

17

Namespaces

 Recall that DTDs are used to define the tags that can be

used in an XML document

 An XML document may reference more than one DTD

 Namespaces are a way to specify which DTD defines a

given tag

 XML, like Java, uses qualified names

 This helps to avoid collisions between names

 Java: myObject.myVariable

 XML: myDTD:myTag

 Note that XML uses a colon (:) rather than a dot (.)

18

Namespaces and URIs

 A namespace is defined as a unique string

 To guarantee uniqueness, typically a URI (Uniform
Resource Indicator) is used, because the author “owns”
the domain

 It doesn't have to be a “real” URI; it just has to be a
unique string

 Example: http://www.matuszek.org/ns

 There are two ways to use namespaces:

 Declare a default namespace

 Associate a prefix with a namespace, then use the prefix
in the XML to refer to the namespace

19

Namespace syntax

 In any start tag you can use the reserved attribute name xmlns:

<book xmlns="http://www.matuszek.org/ns">

 This namespace will be used as the default for all elements up to the
corresponding end tag

 You can override it with a specific prefix

 You can use almost this same form to declare a prefix:

<book xmlns:dave="http://www.matuszek.org/ns">

 Use this prefix on every tag and attribute you want to use from this
namespace, including end tags--it is not a default prefix

<dave:chapter dave:number="1">To Begin</dave:chapter>

 You can use the prefix in the start tag in which it is defined:

<dave:book xmlns:dave="http://www.matuszek.org/ns">

20

Review of XML rules

 Start with <?xml version="1"?>

 XML is case sensitive

 You must have exactly one root element that encloses

all the rest of the XML

 Every element must have a closing tag

 Elements must be properly nested

 Attribute values must be enclosed in double or single

quotation marks

 There are only five predeclared entities

21

Another well-structured example

<novel>
<foreword>

<paragraph> This is the great American novel.
</paragraph>

</foreword>
<chapter number="1">

<paragraph>It was a dark and stormy night.
</paragraph>
<paragraph>Suddenly, a shot rang out!
</paragraph>

</chapter>
</novel>

22

XML as a tree

 An XML document represents a hierarchy; a hierarchy is a tree

novel

foreword chapter

number="1"

paragraph paragraph paragraph

This is the great

American novel.

It was a dark

and stormy night.

Suddenly, a shot

rang out!

23

Valid XML

 You can make up your own XML tags and attributes, but...

 ...any program that uses the XML must know what to expect!

 A DTD (Document Type Definition) defines what tags are legal

and where they can occur in the XML

 An XML document does not require a DTD

 XML is well-structured if it follows the rules given earlier

 In addition, XML is valid if it declares a DTD and conforms to

that DTD

 A DTD can be included in the XML, but is typically a separate

document

 Errors in XML documents will stop XML programs

 Some alternatives to DTDs are XML Schemas and RELAX NG

24

Viewing XML

 XML is designed to be processed by computer
programs, not to be displayed to humans

 Nevertheless, almost all current browsers can display
XML documents

 They don’t all display it the same way

 They may not display it at all if it has errors

 For best results, update your browsers to the newest available
versions

 Remember:
HTML is designed to be viewed,
XML is designed to be used

25

Extended document standards

 You can define your own XML tag sets, but here are
some already available:

 XHTML: HTML redefined in XML

 SMIL: Synchronized Multimedia Integration Language

 MathML: Mathematical Markup Language

 SVG: Scalable Vector Graphics

 DrawML: Drawing MetaLanguage

 ICE: Information and Content Exchange

 ebXML: Electronic Business with XML

 cxml: Commerce XML

 CBL: Common Business Library

26

Vocabulary

 SGML: Standard Generalized Markup Language

 XML : Extensible Markup Language

 DTD: Document Type Definition

 element: a start and end tag, along with their contents

 attribute: a value given in the start tag of an element

 entity: a representation of a particular character or string

 PI: a Processing Instruction, to possibly be used by a
program that processes this XML

 namespace: a unique string that references a DTD

 well-formed XML: XML that follows the basic syntax rules

 valid XML: well-formed XML that conforms to a DTD

27

The End

