
Sssss

1

qwertyuiopasdfghjklzxcvbnmqwerty
uiopasdfghjklzxcvbnmqwertyuiopasd
fghjklzxcvbnmqwertyuiopasdfghjklzx
cvbnmqwertyuiopasdfghjklzxcvbnmq
wertyuiopasdfghjklzxcvbnmqwertyui
opasdfghjklzxcvbnmqwertyuiopasdfg
hjklzxcvbnmqwertyuiopasdfghjklzxc
vbnmqwertyuiopasdfghjklzxcvbnmq
wertyuiopasdfghjklzxcvbnmqwertyui
opasdfghjklzxcvbnmqwertyuiopasdfg
hjklzxcvbnmqwertyuiopasdfghjklzxc
vbnmqwertyuiopasdfghjklzxcvbnmq
wertyuiopasdfghjklzxcvbnmqwertyui
opasdfghjklzxcvbnmqwertyuiopasdfg
hjklzxcvbnmrtyuiopasdfghjklzxcvbn
mqwertyuiopasdfghjklzxcvbnmqwert
yuiopasdfghjklzxcvbnmqwertyuiopas
dfghjklzxcvbnmqwertyuiopasdfghjklz

Computer system &
Programming NOTES

UNIT - 2

Rajesh Tripathi
SIET

2

Introduction about C

C is a general-purpose high level language that was originally developed by Dennis Ritchie in AT & T
BELL LAB in U.S.A for the Unix operating system. It was first implemented on the Digital Equipment
Corporation PDP-11 computer in 1972. C has now become a widely used professional language for
various reasons.

 Easy to learn
 Structured language
 It produces efficient programs.
 It can handle low-level activities.
 It can be compiled on a variety of computers.

Why to use C ?

C was initially used for system development work, in particular the programs that make-up the operating
system. C was adoped as a system development language because it produces code that runs nearly as fast
as code written in assembly language. Some examples of the use of C might be:

 Operating Systems
 Language Compilers
 Assemblers
 Text Editors
 Print Spoolers
 Network Drivers
 Modern Programs
 Data Bases
 Language Interpreters
 Utilities

C - Program Structure

A C program basically has the following form:

 Preprocessor Commands
 Functions
 Variables
 Statements & Expressions
 Comments

The following program is written in the C programming language. Open a text file hello.c using vi editor
and put the following lines inside that file.

#include <stdio.h>

int main()
{
 /* My first program */
 printf("Hello, World! \n");

 return 0;
}

3

Preprocessor Commands: These commands tells the compiler to do preprocessing before doing actual
compilation. Like #include <stdio.h> is a preprocessor command which tells a C compiler to include
stdio.h file before going to actual compilation.

Functions: are main building blocks of any C Program. Every C Program will have one or more functions
and there is one mandatory function which is called main() function. This function is prefixed with
keyword int which means this function returns an integer value when it exits. This integer value is retured
using return statement.

The C Programming language provides a set of built-in functions. In the above example printf() is a C
built-in function which is used to print anything on the screen. Check Builtin function section for more
detail.

Variables: are used to hold numbers, strings and complex data for manipulation.

Statements & Expressions : Expressions combine variables and constants to create new values.
Statements are expressions, assignments, function calls, or control flow statements which make up C
programs.

Comments: are used to give additional useful information inside a C Program. All the comments will be
put inside /*...*/ as given in the example above. A comment can span through multiple lines.

Note the followings

 C is a case sensitive programming language. It means in C printf and Printf will have different
meanings.

 C has a free-form line structure. End of each C statement must be marked with a semicolon.
 Multiple statements can be one the same line.
 White Spaces (ie tab space and space bar) are ignored.
 Statements can continue over multiple lines.

C Compilers

When you write any program in C language then to run that program you need to compile that program
using a C Compiler which converts your program into a language understandable by a computer. This is
called machine language (ie. binary format). So before proceeding, make sure you have C Compiler
available at your computer.

Q. What is C Token? Explain types of C token used in C language.

 Ans. C tokens are the basic buildings blocks in C language which are constructed together to write a C program.
 Each and every smallest individual units in a C program are known as C tokens.

 C tokens are of six types. They are,

1. Keywords (eg: int, while),
2. Identifiers (eg: main, total),
3. Constants (eg: 10, 20),
4. Operators (eg: +, /,-,*)

4

1. Keyword: The following names are reserved by the C language. Their meaning is already defined,
and they cannot be re-defined to mean anything else.

auto else long switch

break enum register typedef

case extern return union

char float short unsigned

const for signed void

continue goto sizeof volatile

default if static while

do int struct _Packed

IDENTIFIER

 Each program elements in a C program are given a name called identifiers.
 Names given to identify Variables, functions and arrays are examples for identifiers. eg. x is a name given to

integer variable in above program.

The Programming language C has two main variable types

 Local Variables
 Global Variables

Identifier rules:

1. Variable can single character or combination of character or digits.
2. Each variable have the first character must be alphabets.
3. No any special character required within the variable names.
4. Only underscore(_) sign can be used within the variable names.
5. No any keyword can be used as a variable names.

Constants:

The term constant means that it does not change its value during the execution of program. In the language
C, constant and is the data with a constant value that does not change in the program. For example, in the
program "100" "3.14" "'A'" "" Hello "" and the like, if you write data directly, and constant. Moreover,
also called a literal constant. Constant expression is an expression consisting only of constants. There are
four basic types of constants in C. They are:

1.Integer constants
2.Floating-point constants
3.Character constants
4.String constants

5

Integer constants

 Integer constants are whole numbers without any fractional part. Thus integer constants
consist of a sequence of digits. Integer constants can be written in three different number systems:
Decimal, Octal and Hexadecimal.

 A decimal integer constant consists of any combination of digits taken from the set 0
through 9. If the decimal constant contains two or more digits, the first digit must be something other than
0. The following are valid decimal integer constants.

0 1 1234 -786

Floating-point constants
A floating-point constant can be written in two forms: Factorial form or Exponential form. A floating-
point constant in a fractional form must have at least one digit each to the left and right of the decimal
point. A floating-point in exponent form consists of a mantissa and an exponent.
The following are valid floating-point constants.</1.0 0.1 2E-4 -0.1555e-4
Character constants
 A character constant is a single character, enclosed in single quotation marks.
e.g., ‘A’ ‘B’ ‘1’
Character constants are usually just the character enclosed in single quotes; 'a', 'b', 'c'. Some characters
can't be represented in this way, so we use a 2 character sequence as follows.
'\n' newline
'\t' tab
'\\' backslash
'\'' single quote
'\0' null (Usedautomatically to terminate character string)

String constants
 A string constant consists of zero or more character enclosed in quotation marks. Several string constants
are given below.
 “Welcome to C Programming”

Q. What is Operator? Explain types of C operator used in C Language?

ANS: Simple answer can be given using expression 4 + 5 is equal to 9. Here 4 and 5 are called operands
and + is called operator. C language supports following type of operators.

 Arithmetic Operators
 Logical (or Relational) Operators
 Bitwise Operators
 Assignment Operators
 Misc Operators

Arithmetic Operators:

There are following arithmetic operators supported by C language:

Assume variable A holds 10 and variable B holds 20 then:

6

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand from the first A - B will give -10

* Multiply both operands A * B will give 200

/ Divide numerator by denumerator B / A will give 2

%
Modulus Operator and remainder of after an
integer division

B % A will give 0

++ Increment operator, increases integer value by one A++ will give 11

-- Decrement operator, decreases integer value by one A-- will give 9

Logical Relational) Operators:There are following logical operators supported by C language
Assume variable A holds 10 and variable B holds 20 then:

Operator Description Example

= =
Checks if the value of two operands is equal or not,
if yes then condition becomes true.

(A = = B) is not true.

!=
Checks if the value of two operands is equal or not,
if values are not equal then condition becomes true.

(A != B) is true.

>
Checks if the value of left operand is greater than
the value of right operand, if yes then condition
becomes true.

(A > B) is not true.

<
Checks if the value of left operand is less than the
value of right operand, if yes then condition
becomes true.

(A < B) is true.

>=
Checks if the value of left operand is greater than
or equal to the value of right operand, if yes then
condition becomes true.

(A >= B) is not true.

<=
Checks if the value of left operand is less than or
equal to the value of right operand, if yes then
condition becomes true.

(A <= B) is true.

Relational Operators:

&& Called Logical AND operator. If both the operands are
non zero then then condition becomes true.

 (A && B) is true.

||
Called Logical OR Operator. If any of the two operands
is non zero then then condition becomes true..

 (A || B) is true

! Called Logical NOT Operator. Use to reverses the logical
state of its operand. If a condition is true then Logical
NOT operator will make false.

 !(A && B) is false.

7

Bitwise Operators:
Bitwise operator works on bits and perform bit by bit operation.
Assume if A = 60; and B = 13; Now in binary format they will be as follows:
A = 0011 1100
B = 0000 1101

A&B = 0000 1100
A|B = 0011 1101
A^B = 0011 0001
~A = 1100 0011
There are following Bitwise operators supported by C language

Operator Description Example

&
Binary AND Operator copies a bit to the
result if it exists in both operands.

(A & B) will give 12 which is 0000 1100

|
Binary OR Operator copies a bit if it exists
in eather operand.

(A | B) will give 61 which is 0011 1101

^
Binary XOR Operator copies the bit if it is
set in one operand but not both.

(A ^ B) will give 49 which is 0011 0001

~
Binary Ones Complement Operator is unary
and has the efect of 'flipping' bits.

(~A) will give -60 which is 1100 0011

<<

Binary Left Shift Operator. The left
operands value is moved left by the number
of bits specified by the right operand.

A << 2 will give 240 which is 1111 0000

>>

Binary Right Shift Operator. The left
operands value is moved right by the
number of bits specified by the right
operand.

A >> 2 will give 15 which is 0000 1111

Assignment Operators: There are following assignment operators supported by C language:

Operator Description Example

=
Simple assignment operator, Assigns
values from right side operands to left
side operand

C = A + B will assigne value of A + B into C

+=
Add AND assignment operator, It adds
right operand to the left operand and
assign the result to left operand

C += A is equivalent to C = C + A

-=

Subtract AND assignment operator, It
subtracts right operand from the left
operand and assign the result to left
operand

C -= A is equivalent to C = C - A

*=

Multiply AND assignment operator, It
multiplies right operand with the left
operand and assign the result to left
operand

C *= A is equivalent to C = C * A

/= Divide AND assignment operator, It C /= A is equivalent to C = C / A

8

divides left operand with the right
operand and assign the result to left
operand

%=
Modulus AND assignment operator, It
takes modulus using two operands and
assign the result to left operand

C %= A is equivalent to C = C % A

<<= Left shift AND assignment operator C <<= 2 is same as C = C << 2

>>= Right shift AND assignment operator C >>= 2 is same as C = C >> 2

&= Bitwise AND assignment operator C &= 2 is same as C = C & 2

^=
bitwise exclusive OR and assignment
operator

C ^= 2 is same as C = C ^ 2

|=
bitwise inclusive OR and assignment
operator

C |= 2 is same as C = C | 2

Short Notes on L-VALUE and R-VALUE:
x = 1; takes the value on the right (e.g. 1) and puts it in the memory referenced by x. Here x and 1 are
known as L-VALUES and R-VALUES respectively L-values can be on either side of the assignment
operator where as R-values only appear on the right.
So x is an L-value because it can appear on the left as we've just seen, or on the right like this: y = x;
However, constants like 1 are R-values because 1 could appear on the right, but 1 = x; is invalid.
Misc Operators: There are few other operators supported by C Language.
Show Examples

Operator Description Example

sizeof() Returns the size of an variable. sizeof(a), where a is interger, will return 4.

& Returns the address of an variable. &a; will give actaul address of the variable.

* Pointer to a variable. *a; will pointer to a variable.

? : Conditional Expression
If Condition is true ? Then value X : Otherwise
value Y

Operators Categories:
All the operators we have discussed above can be categorized into following categories:

 Postfix operators, which follow a single operand.
 Unary prefix operators, which precede a single operand.
 Binary operators, which take two operands and perform a variety of arithmetic and logical

operations.
 The conditional operator (a ternary operator), which takes three operands and evaluates either

the second or third expression, depending on the evaluation of the first expression.
 Assignment operators, which assign a value to a variable.
 The comma operator, which guarantees left-to-right evaluation of comma-separated expressions.

Precedence of C Operators:
Operator precedence determines the grouping of terms in an expression. This affects how an expression
is evaluated. Certain operators have higher precedence than others; for example, the multiplication
operator has higher precedence than the addition operator:
For example x = 7 + 3 * 2; Here x is assigned 13, not 20 because operator * has higher precedenace than
+ so it first get multiplied with 3*2 and then adds into 7.
Here operators with the highest precedence appear at the top of the table; those with the lowest appear at
the bottom. Within an expression, higher precedence operators will be evaluated first.

9

Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type) * & sizeof Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %= >>= <<= &= ^= |= Right to left

Comma , Left to right

Q. What is data type? Explain types of data type used in C language?

Data Type in C

C has a concept of 'data types' which are used to define a variable before its use. The definition of a
variable will assign storage for the variable and define the type of data that will be held in the location.
Data type is used to determine what type of value a variable or a constant can contain throughout the program. In
C language, different variables contain different data types

Th In C language, it is compulsory to declare variables with their data type before using them in any
statement. Mainly data types are categorized into 3 categories:-

1. Fundamental Data Types
2. Derived Data Types
3. User Defined Data Types

1. Fundamental Data Types

Fundamental data types are further categorized into 3 types. Let us discuss each of this type briefly.

Int (Integer)

Integer data type is used to store numeric values without any decimal point e.g. 7, -101, 107, etc.
A variable declared as 'int' must contain whole numbers e.g. age is always in number.

10

Syntax:
int variable name;
E.g. int roll, marks, age;

Float

Float data type is used to store numeric values with decimal point. In other words, float data type is used to
store real values, e.g. 3.14, 7.67 etc. A variable declared as float must contain decimal values e.g.
percentage, price, pi, area etc. may contain real values.

Syntax:

Float variable name;

E.g. float per, area;

Char (Character)

Char (Character) data type is used to store single character, within single quotes e.g. 'a', 'z','e' etc. A
variable declared as 'char' can store only single character e.g. Yes or No Choice requires only 'y' or 'n' as
an answer.

Syntax:

Char variable name;

E.g. Char chi='a', cha;

Void

Void data type is used to represent an empty value. It is used as a return type if a function does not return
any value.

Data Type-name Type Range

Int Numeric – Integer -32 768 to 32 767

short Numeric – Integer -32 768 to 32 767

long Numeric – Integer -2 147 483 648 to 2 147 483 647

float Numeric – Real 1.2 X 10-38 to 3.4 X 1038

double Numeric – Real 2.2 X 10-308 to 1.8 X 10308

char Character All ASCII characters

2. Derived data types:-

i. Array
ii. Structure

iii. Pointer
iv. Union
v. function

11

i. Array:-An array type describes a contiguously allocated nonempty set of objects with a particular
member object type, called the element type. Array types are characterized by their element type and by
the number of elements in the array. An array type is said to be derived from its element type, and if its
element type is T, the array type is sometimes called array of T. The construction of an array type from an
element type is called array type derivation.
ii. Structure:-A structure type describes a sequentially allocated nonempty set of member objects (and, in
certain circumstances, an incomplete array), each of which has an optionally specified name and possibly
distinct type.
iii. Pointer:- A pointer type may be derived from a function type, an object type, or an incomplete type,
called the referenced type. A pointer type describes an object whose value provides a reference to an entity
of the referenced type. A pointer type derived from the referenced type T is sometimes called pointer to T.
The construction of a pointer type from a referenced type is called pointer type derivation.

iv. Union:- A union type describes an overlapping nonempty set of member objects, each of which has an
optionally specified name and possibly distinct type.
v. Function:-A function type describes a function with specified return type. A function type is
characterized by its return type and the number and types of its parameters. A function type is said to be
derived from its return type, and if its return type is T , the function type is sometimes called function
returning T. The construction of a function type from a return type is called function type derivation.

Data type modifiers in C

In c language Data Type Modifiers are keywords used to change the properties of current properties of data type. Data

type modifiers are classified into following types.

 long

 short

 unsigned

 signed

Modifiers are prefixed with basic data types to modify (either increase or decrease) the amount of storage space

allocated to a variable.

For example, storage space for int data type is 4 byte for 32 bit processor. We can increase the range by using long int

which is 8 byte. We can decrease the range by using short int which is 2 byte.

long:

This can be used to increased size of the current data type to 2 more bytes, which can be applied on int or double data

types. For example int occupy 2 byte of memory if we use long with integer variable then it occupy 4 byte of memory.

Syntax

long a; --> by default which represent long

short

In general int data type occupies different memory spaces for a different operating system; to allocate fixed memory

space short keyword can be used.

Syntax

short int a; --> occupies 2 bytes of memory space

unsigned

This keyword can be used to make the accepting values of a data type is positive data type.

Syntax

unsigned int a =100; // right

unsigned int a=-100; // wrong

Signed

This keyword accepts both negative or positive value and this is default properties or data type

data type.

Example

int a=10; // right

int a=-10; // right

signed int a=10; // right

signed int a=-10; // right

Note: in real time no need to write signed keyword explicitly for any data type.

12

long int.

In general int data type occupies different memory spaces for a different operating system; to allocate fixed memory

bytes of memory space in every operating system.

can be used to make the accepting values of a data type is positive data type.

This keyword accepts both negative or positive value and this is default properties or data type

in real time no need to write signed keyword explicitly for any data type.

In general int data type occupies different memory spaces for a different operating system; to allocate fixed memory

This keyword accepts both negative or positive value and this is default properties or data type modifiers for every

13

Qualifiers

A type qualifier is used to refine the declaration of a variable, a function, and parameters, by specifying
whether:

 The value of a variable can be changed.
 The value of a variable must always be read from memory rather than from a register

Standard C language recognizes the following two qualifiers:

 const
 volatile

The const qualifier is used to tell C that the variable value can not change after initialization.

const float pi=3.14159; Now pi cannot be changed at a later time within the program.

The volatile qualifier declares a data type that can have its value changed in ways outside the control or
detection of the compiler (such as a variable updated by the system clock or by another program). This
prevents the compiler from optimizing code referring to the object by storing the object's value in a
register and re-reading it from there, rather than from memory, where it may have changed. You will use
this qualifier once you will become expert in "C".

Q. What is INPUT and OUTPUT statement in C? Explain with syntax and Example.

ANS.Input and Output Statements
Reading, processing, and printing of data are the three essential functions of a computer program.
There are two methods of providing data to the program variables. One method is to assign values
to variables through the assignment statements. Another method is to use input functions, which
can get data from the keyboard (standard input-stdin).
There are two types of Input and Output (I/O) statements: Unformatted I/O statements and Formatted I/O
statements.
Unformatted Input statements
Character Input

There are several functions available to input a character from the console.
getchar ()
This function accepts a single character from the stream stdin (keyboard buffer). This single
character includes alphabets, digits, punctuations, return, and tab.

General form:
char-variable = getchar();
getch (); - character input from console & doesn’t echo the character.
getche(); - character input from console & echoes the character.

getch():
getch() is a nonstandard function and is present in conio.h header file which is mostly used by MS-DOS
compilers like Turbo C. Like above functions, it reads also a single character from keyboard. But it does not
use any buffer, so the entered character is immediately returned without waiting for the enter key.

getche Function: The getche() = get character echo. It is also used to get a single character from the keyboard
during the program execution. When this function is executed, the character entered by the user is displayed on the
screen.

Syntax: Variable name=getche();

gets (): This function accepts a string terminated by a new line character. Blank space is also considered

14

as a character. To get a line of text, this function serves the purpose.
General Form:
gets(stringvariable); /* string is represented as character array */
Example
char ch[5];
gets(ch);

Unformatted Output statements
Character Output:
putchar():-This function displays a single character in the standard output (stdout), monitor.

General Form:
putchar(char variable);
char ch;
ch = getchar();
putchar(ch);
String Output
puts():-This function displays the string in the standard output.
General Form:
puts(str);

Example char ch[5];
gets(ch);
puts(ch);

Formatted I/O Statements
Formatted input refers to an input data that has been arranged in a particular format. C has a
special formatting character (%). A character following this defines the format for a value.
Some of the format specifies are given below:

%c – character
%d – integer
%f, %e, %g – float
%s – string
%ld – long integer
%o – octal
%lf—double
%Lf—long double
%x – hexadecimal
%hd – short integer
%[..] – string of specified characters
%u – unsigned

Formatted Input Statement
scanf():- scanf () function is used to read formatted data items.
General Form:
scanf (“format string”, list of variables);
Format string specifies the field format in which the data is to be entered. List of variables specify the address of
memory locations where the data is to be stored. Address operator (&) is used before the variables. Format string
and variables are separated by comma. Format string, also known as control string contains field specifications,
which directs the interpretation of input data. By default, the delimiter
while reading the values is space. Delimiter can be user-defined. To read a string using ‘%s’, ‘&’
need not be used.

Example
scanf (“%c %d %f”, &ch, &i, &x);
scanf (“%[^\n]s”, str);
scanf (“%d=%d”, &a, &b);
scanf (“%2d%5d”,&a,&b);

15

scanf (“%d%d”, &a,&b);
sscanf()
sscanf() function to read values from a string. This functions returns the number of inputs read
successfully.
General Form:
sscanf (str, “format string”, list of variables);

Formatted Output Statement
printf():-printf () function is used to output the values. This function returns the number of characters
printed.

General Form:
printf (“format string”, list of variables);

Example
printf (“char=%c, int=%3d, floating point=%6.2f”,ch, i, x);
printf (“sum = %*.*f”, w, p, sum);
printf (“name = %10.4s”, name);

sprintf():- sprintf() function is used to output values to a string.
General Form:
sprintf (str, “format string”, list of variables);

Summary
_ C is a structured programming language.
_ C program is a collection of functions.
_ C supports four basic primitive data types: int, char, float, double.
_ C has a rich set of operators.
_ C has Unformatted and Formatted Input / Output statements.

Q. What is storage class? Explain types of storage class used in C language.

 Ans. storage class defines the scope (visibility) and life time of variables and/or functions within a C
Program. These specifiers precede the type that they modify. There are following storage classes which
can be used in a C Program

 auto
 register
 static
 extern

The auto Storage Class
The auto storage class is the default storage class for all local variables.
{
 int mount;
 auto int month;
}

The example above defines two variables with the same storage class, auto can only be used within
functions, i.e. local variables.

The register Storage Class

The register storage class is used to define local variables that should be stored in a register instead of
RAM. This means that the variable has a maximum size equal to the register size (usually one word) and
can't have the unary '&' operator applied to it (as it does not have a memory location).

16

{
 register int miles;
}

The register should only be used for variables that require quick access such as counters. It should also be
noted that defining 'register' goes not mean that the variable will be stored in a register. It means that it
MIGHT be stored in a register depending on hardware and implementation restrictions.

The static Storage Class

The static storage class instructs the compiler to keep a local variable in existence during the lifetime of
the program instead of creating and destroying it each time it comes into and goes out of scope. Therefore,
making local variables static allows them to maintain their values between function calls.

The static modifier may also be applied to global variables. When this is done, it causes that variable's
scope to be restricted to the file in which it is declared.

In C programming, when static is used on a class data member, it causes only one copy of that member to
be shared by all objects of its class.

#include <stdio.h>

/* function declaration */
void func(void);

static int count = 5; /* global variable */

main()
{
 while(count--)
 {
 func();
 }
 return 0;
}
/* function definition */
void func(void)
{
 static int i = 5; /* local static variable */
 i++;

 printf("i is %d and count is %d\n", i, count);
}

You may not understand this example at this time because I have used function and global variables which
I have not explained so far. So for now let us proceed even if you do not understand it completely. When
the above code is compiled and executed, it produces following result:

i is 6 and count is 4
i is 7 and count is 3
i is 8 and count is 2
i is 9 and count is 1
i is 10 and count is 0

17

The extern Storage Class: The extern storage class is used to give a reference of a global variable that is
visible to ALL the program files. When you use 'extern' the variable cannot be initialized as all it does is
point the variable name at a storage location that has been previously defined.

When you have multiple files and you define a global variable or function which will be used in other files
also, then extern will be used in another file to give reference of defined variable or function. Just for
understanding extern is used to declare a global variable or function in another files.

The extern modifier is most commonly used when there are two or more files sharing the same global
variables or functions as explained below.

Second File: write.c

#include <stdio.h>

extern int count;

void write_extern(void)
{ count = 5;
 printf("count is %d\n", count);
}

Here extern keyword is being used to declare count in the second file where as it has its definition in the
first file. Now compile these two files as follows: Decision making structures require that the programmer
specify one or more conditions to be evaluated or tested by the program, along with a statement or
statements to be executed if the condition is determined to be true, and optionally, other statements to be
executed if the condition is determined to be false.

