Registers 329

the state sequences in Fig. 9.20b we find logic relation like Y = QR or Y = RS or Y = ST, etc.
can also be used for decoding purpose as they generate Y = 1 only once during 2N clock cycles. Note
that for ring counter we don’t need any decoding gate and clock pulse count can directly be obtained
from any one flip-flop output. We shall discuss other counter design techniques in Chapter 10, which
require less number of flip-flops for a particular modulo number. But, there decoding complexity
increases with increasing number of flip-flops. For example, a modulo-8 counter is possible to design
with log,8 = 3 number of flip-flops but we need a 3 input AND gate to decode the counter.
Similarly, modulo-16 counter requires 4 flip-flops and 4 input AND gate for decoding.

There is another important issue related with ring counter and switched tail counter. An n-bit
register has 2" different combination of states. But, the counter is to be initialized with one of the
valid state of the counting sequence on which the design is based. Otherwise, the counter will follow
a completely different state sequence (mutually exclusive) and decoding will not be proper. Solve
problem 9.25 to get an idea on what happens if circuit in Fig. 9.20a is initialized with a word outside
the state sequence appearing in Fig. 9.20b.

Sequence Generator and Sequence Detector

Sequence generator is useful in generating a sequence pattern repetitively. It may be the
synchronizing bit pattern sent by a digital data transmitter or it may be a control word directing
repetitive control task. Sequence detector checks binary data stream and generates a signal when a
particular sequence is detected.

Figure 9.21a gives the basic block diagram of a sequence generator where shift register is
presented as pipe full of data and each flip-flop represents one compartment of it. The leftmost flip-
flop is connected to serial data in and rightmost provides serial data out. The clock is implied and
data transfer takes place only when a clock trigger arrives. Note that the shift register is connected
like a ring counter and with triggering of clock the binary word stored in the clock comes out
sequentially from serial out but does not get lost as it is fed back as serial in to fill the register all
over again. Sequence generated for binary word 1011 is shown in the figure and for any n-bit long
sequence to be generated for this configuration we need to store the sequence in an n-bit shift
register.

The circuit that can detect a 4-bit binary sequence is shown in Fig. 9.21b. It has one register to
store the binary word we want to detect from the data stream. Input data stream enters a shift register
as serial data in and leaves as serial out. At every clocking instant, bit-wise comparisons of these two
registers are done through Ex-NOR gate as shown in the figure. Two input Ex-NOR gives logic high
when both inputs are low or both of them are high i.e. when both are equal. The final output is
taken from a four input AND gate, which becomes 1 only when, all its inputs are 1, i.c. all the bits
are matched. Figure 9.21b shows a situation when data received so far is 0111 and word to be
matched is 1011. The first two bits are mismatched and corresponding Ex-NOR outputs are low, so
also final output Y. Now, as the next bit in the serial data stream is 1 when a clock trigger comes
the first flip-flop of the shift-register stores 1 and 011 gets shifted to 2nd to 3rd flip-flops. With
this both registers store 1011 and the first flip-flop of the shift-register stores 1 and 011 gets shifted
to 2nd to 3rd flip-flops and Y = 1 completing sequence detection.

Note that Fig. 9.21b can be used as a programmable sequence detector, i.e. if we want to
change the binary word to be detected we simply load that in the bottom register. For a fixed
sequence detector, we can reduce hardware cost by removing bottom register and directly connect



330 Digital Principles and Applications

Ex-NOR input to +Vc or GND depending on whether we need a 1 or a 0 to be detected in a
particular position.

(a)

|
Serial data in ———* 0 I 1 1 1 f——

1 0 1 1

Sequence to be detected

(b)

Serial Adder

The addition operation and full adder (FA) circuit is discussed in detail in Chapter 6. We have seen
for 8-bit addition we need 8 FA units (Fig. 6.6). There the addition is done in parallel. Using shift
register we can convert this parallel addition to serial one and reduce number of FA units to only
one. The benefit of this technique is more pronounced if the hardware unit that’s needed to be used
in parallel is very costly. Figure 9.22 shows how serial addition takes place in a time-multiplexed
 manner and also provides a snapshot of the register values at 3rd clock cycle.

Two 8-bit numbers, to be added (A;Aq4...A1Ay and B;Bg...B1B) are loaded in two 8-bit shift
registers A and B. The LSB of each number appears in the rightmost position in two registers. Serial
data out of A and B are fed to data inputs of full adder. The carry-in is fed from its own carry output
delayed by one clock period by a D flip-flop, which is initially cleared. Both registers and D flip-
flop are triggered by same clock. The sum (S) output of FA is fed to serial data in of Shift Register
A.

The serial addition takes place like this. The LSBs of two numbers (4 and B) appearing at serial
out of respective registers are added by FA during Ist clock cycle and generate sum (Sp) and carry
(Cp). Sy is available at serial data input of register A and Cj at input of D flip-flop. At NT of clock
shift registers shift its content to right by one unit. Sy becomes MSB of A and C appears at D flip-
flop output. Therefore in the second clock cycle FA is fed by second bit (A; and B,) of two numbers
and previous carry (Cp). In second clock cycle, S} and Cy are generated and made available at serial




