
SHAMBHUNATH INSTITUTE OF ENGINEERING & TECHNOLOGY 

Subject: Programming for Problem Solving  Subject Code: KCS-101 

       B.Tech.: 1st Year                                 SEMESTER: 1st  

SOLUTION-  1st Sessional Examination (2019-2020) 

Branch: Computer Science & Engineering 

Time – 1 hr. 30 min.          Max Marks – 30 

SECTION – A 

Question 1(a): C-Tokens with example: 

(i) Keywords: For example, int, float, for, if, etc.  

(ii) Identifiers: For example, x, var1, val_2, etc. 

(iii) Constants: For example, ‘1’, ‘2.3’, ‘c’, ‘{’, etc. 

(iv) Strings: For example, “Hello_2_c”, “Rahul Singh”, “Maximum12”, etc. 

(v) Special Symbols: For example, <, }, $, %, etc. 

Question 1(b): Function of Compiler: Compiler is program that converts the code written in high level 

languages (like C, C++, etc.) into low level language (like assembly level language or machine level 

language). Machine language code is the binary code which is understandable by the computer machine. 

Some examples of compilers for C and C++ languages are Portable C, Turbo C/C++, gcc, Visual C++, Intel 

C++ (ICC), etc. 

 
 

Question 1(c): Primary data types in C and amount they occupy in memory: 

 (i) int  2 bytes 

 (ii) float 4 bytes 

 (iii) char 1 byte 

 (iv) double 8 bytes 

 

Question 1(d): Role of clrscr() in a C program: clrscr() is predefined function included in conio.h 

(console input output header file). When clrscr() function is called in a program everything currently 

displayed in the console screen such as output of previous programs, output of current program until the 

invocation of clrscr(), user inputs, error messages, etc. is deleted. 

 

Question 1(e): Output of given program: 0 

 

 

SECTION – B 

Question 2(a): Algorithm: An algorithm is a sequence of finite and well-defined instructions for 

completing a task or solving a problem. An algorithm is given an initial state, proceed through a well-

defined series of successive states, eventually terminating in an end-state.  

Errors 



 

Properties of the algorithm 

 Finiteness. An algorithm must always terminate after a finite number of steps. 

 Definiteness. Each step of an algorithm must be precisely defined and must be unambiguous  

 Input. An algorithm has zero or more inputs 

 Output. An algorithm has one or more outputs 

 Effectiveness. An algorithm is also generally expected to be effective. This means that all of the 

operations of algorithm must be so basic that they can be executed in a finite length of time. 

 

Algorithm to find smallest among three distinct numbers 

1. Read three distinct input numbers n1, n2 and n3 

2. Take a variable ‘small’ 

3. Compare value of n1 and n2. Whichever is lesser, store it in variable ‘small’ 

4. Now. compare the value of n3 with value of ‘small’. Whichever is lesser, store it in variable ‘small’ 

5. Display the value of ‘small’. 

6. End. 

 

Question 2(b): Flowchart to sum the odd number between 1 to 200. 

 

 
 

Question 2(c): 

(i). ‘break’ statement: The ‘break’ statements in C language causes the termination of enclosing (within 

which ‘break’ is used) loop or switch-block immediately. As a break statement is encountered the 

program control exits from the loop (or switch-block) and jumps to the immediate next statement outside 

the block. 

Start 

Display value of 

sum 

i = 1 

sum = 0 

Is i <= 200 ? 

Is i % 2 = = 0 ? 

Stop 

sum = sum + i 

 

True 

True 

False 

False 

i = i + 1 



 

(ii). ‘continue’ statement: The ‘continue’ statement causes the next iteration of enclosing for, while, 

or do-while loop to begin. The continue statement is used when we want to skip one or more statements 

in loop's body and to transfer the control to the next iteration. 

 

Example of ‘break’ Example of ‘continue’ 

                                  

# include <stdio.h> 

# include <conio.h> 

void main() 

{ 

    int i; 

 

    for(i=1; i<= 10; i++) 

    { 

        // when value of i is 5, loop is terminated 

        if(i = = 5) 

        { 

            break; 

        }   

       printf("%d  ", i); 

    } 

    getch(); 

} 

 

 

Output: 

 

1 2 3 4  

 

 

# include <stdio.h> 

# include <conio.h> 

void main() 

{ 

    int i; 

 

    for(i=1; i<= 10; i++) 

    { 

        // when value of i is 5, loop begins new cycle 

        if(i = = 5) 

        { 

            continue; 

        } 

       printf("%d  ", i); 

    } 

    getch(); 

} 

 

 

Output: 

 

1 2 3 4 6 7 8 9 10 

 

 

 

Question 2(d): (i) Operating System: 

 Operating system is a system program that act as an interface between hardware and user. 

 It manages system resources. 

 It provides a platform on which other application programs are installed. 

Example: Windows, Linux, Unix, DOS, etc. 

Functions of Operating System 

 Process Management 

 Memory Management 

 File Management 

 I/O Device Management 

 Network Management 

 Security and Protection 

(ii) Storage Devices: Storage device is any hardware capable of holding information either temporarily or 

permanently. 

 

A. Primary Storgae 

Primary memory is the memory which is directly accessed by the CPU during program execution. The 

programs and data that the CPU requires during execution of a program are stored in primary memory. 

Primary memory is of two basic types –    

 



 Volatile memory: The data in a volatile memory is vanished whenever the power supply to it  

                                goes off. RAM is an example of volatile memory 

 Non-volatile memory: The data in a volatile memory is not vanished whenever the power 

                                       supply to it goes off. ROM is an example of non-volatile memory 

 

B. Secondary Storage 

Secondary memory is computer memory that is non-volatile and persistent in nature and is not directly 

accessed by a computer/processor. Data in secondary memory must be copied into primary storage (also 

known as RAM) before use. Secondary memories are the slower and cheaper form of memory as compared 

to primary memory. Secondary memory devices include: 

 Magnetic disks like hard drives and floppy disks  

 Magnetic tapes 

 optical disks such as CDROMs, DVDs, etc. 

 

SECTION – C 

Question 3(a): Functional Components of a Digital Computer: Working of a computer includes 

following three major tasks: Data Input, Processing Input and Data Output. The basic components that 

helps in performing above mentioned tasks are called as the functional components of a computer. These 

functional components are: 

 Input unit: It takes the input from input devices 

 Central processing unit: It does the processing of data 

 Output unit: It produces the output and helps in visualizing it.  

 Memory unit: It holds the data and instructions during the processing of data. 

 
 

 

   Block Diagram of a Digital Computer 

 Input Unit: The input unit consists of input devices that are attached to the computer. These 

devices take input and convert it into binary language that the computer understands. Some of the 

common input devices are keyboard, mouse, joystick, scanner, etc. 

 

 Central Processing Unit (CPU): The CPU is called the brain of the computer because it is the 

control center of the computer. CPU processes the information input by the input devices. CPU 

first fetches the instructions from memory and then interprets them so as to know what is to be 

done. If required, data is fetched from memory or input device. Thereafter CPU performs the 

required computation After computation, stores the output or displays it on some output device.  

 

 Output Unit: It is composed of output devices attached to the computer. It converts the binary 

output data coming from CPU to human understandable form. Some examples of different output 

devices are monitor, printer, plotter, etc. 

 

Memory Unit 

CPU Registers 



 Main Memory Unit: This memory unit stores data and instructions and also called as Primary 

Memory, Internal memory, and/or Random Access Memory (RAM). Whenever a program is 

executed, it’s data is copied to this memory and is stored in the memory till the end of the execution.  

 

 

Question 3(b): Logical Operators: Logical operators allow to join two or more than two test conditions 

to make a single decision. There are three types of logical operators in C; && (meaning logical AND), || 

(meaning logical OR) and ! (meaning logical NOT).  

 

Operator Description Example Output 

&& It performs logical conjunction of two 

expressions.  

 If both expressions evaluate to True, 

the overall result is True.  

 If any of expressions evaluates to 

False, the overall result is False 

 int a=0, b=0, c=1, d=2; 

 int e, f, g, h; 

 e = a && b;  

 f = a && c; 

 g = c && a; 

 h = c && d; 

  

 printf(“e=%d\n”, e); 

 printf(“f=%d\n”, f); 

 printf(“g=%d\n”, g); 

 printf(“h=%d”, h); 

 

 

 

 

 

 

 

  

 0 

 0 

 0 

 1 

|| It performs a logical disjunction on two 

expressions.  

 If either or both expressions evaluate 

to True, the overall result is True 

 If both expressions evaluate to False, 

the overall result is False 

 int a=0, b=0, c=1, d=2; 

 int e, f, g, h; 

 e = a || b;  

 f = a || c; 

 g = c || a; 

 h = c || d; 

  

 printf(“e=%d\n”, e); 

 printf(“f=%d\n”, f); 

 printf(“g=%d\n”, g); 

 printf(“h=%d”, h); 

 

  

 

 

 

 

 

  

 0 

 1 

 1 

 1 

! It performs logical negation on an expression. 

 If expression evaluates to True, ! 

gives False and vice-versa.  

 

 int a=0, b=1, c=2; 

 int e, f, g, h; 

 e = !a;  

 f = !b; 

 g = !c; 

 

 printf(“e=%d\n”, e); 

 printf(“f=%d\n”, f); 

 printf(“g=%d”, g); 

 

 

 

 

 

 

 1 

 0 

 0 

 

Question 4(a): 

(i)  Random Access Memory (RAM) – 

 It is also called as read write memory. 

 The programs and data that the CPU requires during execution of a program are stored in this 

memory. 

 It is a volatile memory as the data loses when the power is turned off. 



      Read Only Memory (ROM) – 
 Stores crucial information essential to operate the system, like the program essential to boot the 

computer. 

 It is a non-volatile memory. 

 Always retains its data. 

 

Difference between RAM and ROM 

Random Access Memory Read Only Memory 

Temporary Storage Permanent Storage 

Volatile Memory Non Volatile Memory 

Writing data is faster Writing data is slower 

Used in normal operations Used for startup process of computer 

 

(ii) Linker: The Assembler/Compiler generates the object code of a source program and hands it over to 

the linker. The linker takes this object code and generates the executable code for the program, and hand 

it over to the Loader. Linking is performed at the last step in compiling a program. 

Loader: As the program that has to be executed must reside in the main memory of the computer, it is the 

responsibility of the loader to load the executable file of a program (generated by the linker) to the main 

memory for execution. It allocates the memory space to the executable module in main memory. 

 

Difference Linker and Loader 

Basis for Comparison Linker Loader 

Basic 
It generates the executable module of 

a source program. 

It loads the executable module to the 

main memory. 

Input 
It takes as input, the object code 

generated by an assembler. 

It takes executable module generated 

by a linker. 

Function 

It combines all the object modules of 

a source code to generate an 

executable module. 

It allocates the addresses to an 

executable module in main memory 

for execution. 

 

Question 4(b):  

The switch statement allows us to execute one code block among many alternatives. The syntax is as 

follows:  

switch (expression) 

{ 

    case label1:   // statements 

                   break; 

    case label2:  // statements 

        break; 

    . 

    . 

    . 

    default:  // default statements 

} 

 

The expression is evaluated once and compared with the values of each case label. 



 If there is a match, the corresponding statements after the matching label are executed.  

 If there is no match, the default statements are executed. 

 

/* Program to check vowel or consonant */ 

  

# include <stdio.h> 

# include <conio.h> 

void main() 

{ 

    int ch; 

    printf(“Enter a character”); 

    scanf(“%c”,&ch) 

    switch (ch) 

    { 

         case ‘A’: 

         case ‘a’:   

         case ‘E’: 

         case ‘e’:  

         case ‘I’: 

         case ‘i’:    

         case ‘O’: 

         case ‘o’:   

         case ‘U’: 

         case ‘u’:   printf(“It is a vowel”); 

         break; 

 

         default:  printf(“It is a consonant”); 

   }    

   getch(); 

} 

 

 

Question 5(a): 

 

/* Program to print the sum of series */ 

 

#include <stdio.h> 

#include<conio.h> 

 

void main() 

{ 

    int i, j, x=2, n; 

    float sumn=1, muld=1, term=0; 

   

    printf("Enter number of terms in series"); 

    scanf(“%d”,&n); 

 

    //Loop for number of terms 

    for(i=1;i<=n;i++) 

    { 

        //Calculation of numerator 

        sumn = sumn + x; 



 

        //Calculation of denominator  

        muld = muld * x; 

 

        term = term + sumn/muld; 

        x++; 

    }  

    printf("sum of series = %f", term); 

    getch(); 

} 

 

 

 

Question 5(b): 

 

/* Program to print the pattern */ 

 

#include <stdio.h> 

#include<conio.h> 

 

void main() 

{ 

    int i,j,x; 

    //Loop for number of rows 

    for(i=1;i<=4;i++) 

    { 

        x=1; 

 

        //Logic to print increasing values in a row 

        for(j=1;j<=i;j++) 

        { 

            printf("%d",x); 

            x++; 

        } 

         

        x=x-2; 

 

        //Logic to print decreasing values in a row 

        for(j=1;j<=i-1;j++) 

        { 

            printf("%d",x); 

            x--; 

        } 

        printf("\n"); 

    } 

    getch(); 

} 


