

Bakshi Rohit Prasad- [M.Tech-IIIT Allahabad]

Errors: Error is an illegal operation performed by the user which results in abnormal working

of the program. Programming errors often remain undetected until the program is compiled or

executed. The most common errors can be broadly classified as follows:

1. Syntax errors: Errors that occur when you violate the rules of programming syntax are

known as syntax errors. The compiler detects these syntax errors and thus they are known as

compile-time errors. Most frequent syntax errors are:

 Missing Parenthesis (})

 Printing the value of variable without declaring it

 Missing semicolon like this

Example Program

// C program to illustrate syntax error
#include<stdio.h>
void main()
{
 int x = 10;
 int y = 15;

 printf("%d", (x, y)) // Syntax error: semicolon missed

 getch();
}

2. Run-time Errors: Errors which occur during program execution (run-time) even after

successful compilation are called run-time errors. These types of errors are hard to find as the

compiler doesn’t point to the line at which the error occurs. Some of the most common run-time

errors are:

 Division by zero

 Null pointer assignment

 Data overflow

Example Program

// C program to illustrate run-time error
#include<stdio.h>
void main()
{
 int n = 9, div = 0;

 // Number is divided by 0, so this program abnormally terminates

Bakshi Rohit Prasad- [M.Tech-IIIT Allahabad]

 div = n/0;

 printf("resut = %d", div);

 getch();
}

3. Logical Errors: On compilation and execution of a program, desired output is not obtained

when certain input values are given. These types of errors which provide incorrect output despite

the program appears to be error free are called logical errors. These errors are easy to detect if we

follow the line of execution and determine why the program takes that path of execution.

Example Program

// C program to illustrate logical error
void main()
{
 int i = 0;

 // logical error : a semicolon after loop : This program generates no output.

 for(i = 0; i < 3; i++);
 {
 printf("loop ");
 continue;
 }
 getch();
}

Data Types: In the C programming language, data types are declarations for variables that determine the

characteristics of the data that may be stored and the methods (operations) of processing that are

permitted on them. Different data types also have different ranges up to which they can store numbers.

These ranges may vary from compiler to compiler. The following table provides the details of

Fundamental data types with their storage sizes and value ranges (on Turbo C compiler) –

Type Types of values Storage size Value range Format Specifier

char Stores single character like

‘a’, ‘S’, ‘2’, ‘}’, etc.

1 byte -128 to 127 %c

int
Stores integer values like 2,

13, 102, etc.
2 bytes

-32,768 to 32,767 %d

float Stores decimal/real values like

2.426, 0.13, 152.0, etc.

4 bytes 1.2E-38 to 3.4E+38 %f

double 8 bytes 2.3E-308 to 1.7E+308 %lf

Bakshi Rohit Prasad- [M.Tech-IIIT Allahabad]

Operators:

Operators are used to perform some operations on the input operands. There are different types of

operators and they are used for manipulating, calculating, comparing values and for taking logical

decisions, etc.

Expressions:

C operators when combined with constants and variables form expressions. Consider the expression B * 3

+ C / 5. where, +, *, / are operators, B, C are variables, 3 and 5 are constants.

Types of C operators: C language offers many types of operators. They are:

 Arithmetic operators

 Increment/decrement operators

 Relational operators

 Logical operators

 Bit wise operators

 Conditional operators (ternary operators)

 Assignment operators

 Special operators

Arithmetic Operators

Arithmetic Operators are used to performing mathematical calculations like addition (+), subtraction (-),

multiplication (*), division (/) and modulus (%).

Operators Description Example Output

+ Addition void main()

{

 int a=20, b=3, c;

 c = a+ b;

 printf(“c=%d”, c);

}

c=23

- Subtraction int a=20, b=3, c;

 c = a - b;

 printf(“c=%d”, c);

c=17

Bakshi Rohit Prasad- [M.Tech-IIIT Allahabad]

* Multiplication int a=20, b=3, c;

 c = a * b;

 printf(“c=%d”, c);

c=60

/ Division

 Gives quotient when used with integer

operands.

 If any of numerator or denominator is a

real vale then this operator gives real value

as a result of division

 int a=20, b=3, c;

 float d;

 c = a / b;

 d = a/3.0

 printf(“c=%d\n”, c);

 printf(“d=%f”, d);

c=6

d=6.3333333

% Modulus

 Gives remainder when used with integer

operands

 This operator cannot be used with

decimal/real operands

 int a=20, b=3, c;

 c = a % b;

 printf(“c=%d”, c);

c=2

Relational Operators

Relational operators are used to:

 Compare two quantities or values.

 This comparison represents some condition check

 If comparison evaluates to true, then checking condition returns True (or 1), otherwise it returns

False (or 0).

Operator Description (Condition that is checked by

the operator)

Example Output

== Is equal to int x=10, y=10, z=20;

 printf(“%d\n”, x==y);

 printf(“%d”, x==z);

 1

 0

!= Is not equal to int x=10, y=10, z=20;

 printf(“%d\n”, x!=y);

 printf(“%d”, x!=z);

 0

 1

> Greater than int x=10, y=10, z=20;

 printf(“%d\n”, x > y);

 0

Bakshi Rohit Prasad- [M.Tech-IIIT Allahabad]

 printf(“%d”, z > x);

 1

< Less than int x=10, y=10, z=20;

 printf(“%d\n”, x < y);

 printf(“%d”, x < z);

 0

 1

>= Greater than or equal to int x=10, y=10, z=20;

 printf(“%d\n”, x >= y);

 printf(“%d”, x > z);

 1

 0

<= Less than or equal to int x=10, y=10, z=20;

 printf(“%d\n”, x <= y);

 printf(“%d”, z <= x);

 1

 0

Logical Operators

Logical operators allow to join two or more than two test conditions to make a single decision. There are

three types of logical operators in C; && (meaning logical AND), || (meaning logical OR) and ! (meaning

logical NOT).

Operator Description Example Output

&& It performs logical conjunction of two

expressions.

 If both expressions evaluate to True,

the overall result is True.

 If any of expressions evaluates to

False, the overall result is False

 int a=0, b=0, c=1, d=2;

 int e, f, g, h;

 e = a && b;

 f = a && c;

 g = c && a;

 h = c && d;

 printf(“e=%d\n”, e);

 printf(“f=%d\n”, f);

 printf(“g=%d\n”, g);

 printf(“h=%d”, h);

 0

 0

 0

 1

|| It performs a logical disjunction on two

expressions.

 If either or both expressions evaluate

 int a=0, b=0, c=1, d=2;

 int e, f, g, h;

 e = a || b;

Bakshi Rohit Prasad- [M.Tech-IIIT Allahabad]

to True, the overall result is True

 If both expressions evaluate to False,

the overall result is False

 f = a || c;

 g = c || a;

 h = c || d;

 printf(“e=%d\n”, e);

 printf(“f=%d\n”, f);

 printf(“g=%d\n”, g);

 printf(“h=%d”, h);

 0

 1

 1

 1

! It performs logical negation on an expression.

 If expression evaluates to True, !

gives False and vice-versa.

 int a=0, b=1, c=2;

 int e, f, g, h;

 e = !a;

 f = !b;

 g = !c;

 printf(“e=%d\n”, e);

 printf(“f=%d\n”, f);

 printf(“g=%d”, g);

 1

 0

 0

Bitwise Operators

C provides a special operator for bit operation between two variables.

Operator Description Example Output

<< Bitwise Left Shift Operator

 (<<n) means shift binary bits of

number n two places left

 Also, add n number of 0s on

right side

Example:

212 = 11010100 (In binary)

212<<0 = 11010100 (Shift by 0)

212<<1 = 110101000 (In binary)

 = 424 (In decimal)

[Left shift 1 bit, and add one 0’s on

right side]

212<<2 = 110101000000 (In binary)

 = 848 (In decimal)

[Left shift 2 bits, and add two 0’s on

right side]

#include <stdio.h>

#include <conio.h>

void main() {

int n=212, i;

printf("Left shift by:\n\n”);

for (i=0; i<=2; i++)

{

 n = n<<i;

 printf(“%d bits: %d\n",i, n);

}

getch();

}

Left Shift by:

0 bits: 212

1 bits: 424

2 bits: 848

Bakshi Rohit Prasad- [M.Tech-IIIT Allahabad]

>> Bitwise Right Shift Operator

 (>>n) means shift binary bits of

number n two places right

 Also, add n number of 0s on

left side.

Example:

212 = 11010100 (In binary)

212>>0 = 11010100 (No Shift)

212>>1 = 01101010 (In binary)

 = 106 (In decimal)

[Right shift 1 bit, and add one 0’s on

left side]

212>>2 = 00110101 (In binary)

 = 53 (In decimal)

[Right shift 2 bit, and add two 0’s in left

side]

#include <stdio.h>

#include <conio.h>

void main() {

int n=212, i;

printf("Right shift by:\n\n”);

for (i=0; i<=2; i++)

{

 n = n>>i;

 printf(“%d bits: %d\n",i, n);

}

getch();

}

Right Shift by:

0 bits: 212

1 bits: 106

2 bits: 53

~ Bitwise NOT (or Ones Complement)

Operator

 Individual bits of the operand is

complemented, i.e., 1 is

changed to 0 and vice-versa

Example:

35 = 00100011 (In Binary)

Bitwise complement Operation of 35

~ 00100011

 11011100

(Since, MSB is 1, it implies that the

number is negative, so again take the

2’s complement and convert it into

decimal value and put – sign before it)

Now, 2’s complement of 220 is:

= -(00100011+1)

= -(00100100)

= -36 (In decimal)

#include <stdio.h>

#include <conio.h>

void main()

{

 printf("%d\n", ~35);

 printf("%d\", ~-12);

 getch();

}

-36

 11

Bakshi Rohit Prasad- [M.Tech-IIIT Allahabad]

& Bitwise AND Operator

 Output of bitwise AND is 1 if

the corresponding bits of two

operands is 1.

 Otherwise output is 0.

Example:

12 = 00001100 (In Binary)

25 = 00011001 (In Binary)

Bit Operation of 12 and 25

 00001100

& 00011001

 00001000 = 8 (In decimal)

#include<stdio.h>

#include<conio.h>

void main()

{

 int a = 12, b = 25;

 printf("%d", a&b);

 getch();

}

 8

^ Bitwise XOR Operator

 Output of bitwise OR is 0 if the

corresponding bits of two

operands are same, i.e. either

both 1 or 0.

 Otherwise output is 1.

Example:

12 = 00001100 (In Binary)

25 = 00011001 (In Binary)

Bitwise XOR Operation of 12 and 25

 00001100

^ 00011001

 00010101 = 21 (In decimal)

#include <stdio.h>

#include <conio.h>

void main()

{

 int a = 12, b = 25;

 printf("%d", a^b);

 getch();

}

 21

| Bitwise OR Operator

 Output of bitwise OR is 0 if the

corresponding bits of two

operands is 0.

 Otherwise output is 1.

Example:

12 = 00001100 (In Binary)

25 = 00011001 (In Binary)

Bitwise OR Operation of 12 and 25

 00001100

| 00011001

#include <stdio.h>

#include <conio.h>

void main()

{

 int a = 12, b = 25;

 printf("%d", a|b);

 getch();

}

 29

Bakshi Rohit Prasad- [M.Tech-IIIT Allahabad]

 00011101 = 29 (In decimal)

Conditional Operator

C offers a ternary operator which is called as ‘conditional operator’ (? :). This operator is used to construct

conditional expressions like if-else.

Operator Description

? : Conditional operator is a Ternary operator because it works on three operands. As given

below in the syntax, there are three operands; Conditional-expression1, expression2 and

expression3.

 Syntax: Contional-expression1 ? expression2 : expression3

 First of all, Conditional-expression1 is evaluated.

 If result of expression1 is TRUE, then expression2 is executed

 If result of expression1 is FALSE, then expression3 is executed

Example Program:

void main

{

 int x;

 x = 5 > 8 ? 10 : 20; /* Condtion-expression1, i.e. 5>8 is evaluated first.

 Since, it is false, 20 is assigned to variable x */

 printf("Value of x= %d", x);

 getch();

}

Output:

Value of x= 20

Special Operators

C supports some special operators

Operator Description

sizeof() Returns the size of a memory location.

Bakshi Rohit Prasad- [M.Tech-IIIT Allahabad]

& Returns the address of a memory location.

* Pointer to a variable.

Use of sizeof operator

Program Example: Size of data type may vary from compiler to compiler. In following program, Turbo

C/C++ compiler has been considered as reference.

Program Output:

Operator Precedence:

Operator Precedence: C language has a predefined rule of priority for the operators called

operator precedence. If more than one operators are involved in an expression, this rule of priority of

operators decides the order in which these operators will be executed. For example, in C, precedence of

arithmetic operators (*, %, /, +, -) is higher than relational operators (==, !=, >, <, >=, <=) and precedence

of relational operator is higher than logical operators(&&, || and !).

Example of precedence: Let’s take following expression containing multiple types of operators:

(1 > 2 + 3 && 4)

Here, there are three types of operators; Relational operator >, Arithmetic operator +, Logical operator

&&. Considering operator precedence, first of all operator + is executed, then operator > is executed and

finally, operator && is executed. Thus, above expression will be processed as following:

1 > 2 + 3 && 4 // 2 + 3 executes first resulting into 5

integer: 2

float: 4

#include<stdio.h>

#include<conio.h>

void main()

{

 /* Variables Defining and Assign values */

 int a=10;

 float b=4.32;

 printf("integer: %d\n", sizeof(a));

 printf("float: %d\n", sizeof(b));

 getch();

}

https://www.programiz.com/c-programming/c-operators

Bakshi Rohit Prasad- [M.Tech-IIIT Allahabad]

 = 1 > 5 && 4 // 1 > 5 executes resulting into 0 (False)

 = 0 && 4 // 0 && 4 executes resulting into 0 (False)

 = 0

Associativity of operators

If two operators of same precedence (priority) is present in an expression, Associativity of operators

indicate the order in which they execute.

Example of associativity: Consider following expression having multiple logical operators having same

precedence.
1 == 2 != 3

Here, operators == and != have same precedence. The associativity of both == and != is left to right, i.e,

the expression on the left is executed first and moves towards the right. That means, == is executed first

and then != operates. As given below, the above expression is equivalent to:

 ((1 == 2) != 3) // (1 == 2) executes first resulting into 0 (false)

= (0 != 3) // (0 != 3) executes resulting into 1 (true)

= 1

Mixed Operands: In an expression, when operands (constants or variables) of different data types are used, then

such expressions are called mixed-operand expressions. In such cases, type conversion becomes necessary for

evaluating the expression. For example: Following expression has mixed operands (some are integer values and

some are float values):

3 + 5.12 - 4.5 * 10

Type Conversion: In a mixed operand expression, all operands are converted to same data type during

calculation. This process of converting a value of predefined data type into a value of another data type is called

Type Conversion. In C language, type conversion is classified into two types:

1. Automatic Type Conversion (Implicit Type Conversion): In a mixed operand expression, when

compiler automatically converts all the operands of lower size data types into largest size data type. This

process is called Automatic Type Conversion or Implicit Type Conversion. For example: Consider following

expression with mixed operands:

3 + 5.12 - 0.5 * 10

Here, two values are integer and two values are floating point. Integer is a lower sized data

type than float. Therefore, during the calculation, first of all integer values are internally

converted to float. Thus, above expression becomes:

Bakshi Rohit Prasad- [M.Tech-IIIT Allahabad]

 3.0 + 5.12 – 0.5 * 10.0 /* Multiplication has highest precedence, hence, calculated first */

 = 3.0 + 5.12 – 5.0 /* Operator + and – has equal precedence, but left to right associativity,

 hence, + will be executed first */

 = 8.12 – 5.0

 = 3.12

2. Type Casting (Explicit Type Conversion): Type Casting is used to convert an operand of one data type to

another data type. This kind of conversion in a program is explicitly written by the programmer. After type

casting, during calculation, compiler considers the operand as newer data type. The syntax is as follows:

Syntax: (data_type_name) value

Example: Consider following expression which gives an integer value 5 which is stored in variable x:

 Without Type Casting With Type Casting

Program

#include<stdio.h>

#include<conio.h>

void main ()

{

 float x;

 x = 10 / 4;

 printf("value of x = %f", x);

 getch();

}

#include<stdio.h>

#include<conio.h>

void main ()

{

 float x;

 x = (float) 10 / 4;

 printf("value of x = %f", x);

 getch();

}

Output value of x = 2.000000 value of x = 2.500000

Description Since, 10 and 4 both are integers therefore,

division operator / will give quotient, i.e. 2.

Here, 10 is type casted to float and then division is operated.

Therefore, division operator / will perform floating point

division and result will be i.e. 2.500000

