| (Following Paper ID and Roll No. to be filled in your Answer Book) |          |   |     |  |      |  |       |  |  |  |     |
|--------------------------------------------------------------------|----------|---|-----|--|------|--|-------|--|--|--|-----|
| PAPER ID: 2483                                                     | Roll No. | 1 | 3.7 |  | 1 10 |  | 1 - 1 |  |  |  |     |
|                                                                    |          |   | 1   |  |      |  |       |  |  |  | •): |

## B.Tech.

## (SEM. VI) EVEN THEORY EXAMINATION 2012-13

## ADVANCED SEMICONDUCTOR DEVICES

Time: 2 Hours

Total Marks: 50

- Note: (1) Attempt all questions.
  - (2) Marks are indicated for each question.
  - (3) Assume the missing data, if any.
- 1. Attempt any two parts of the following:

 $(6 \times 2 = 12)$ 

- (a) (i) Find the nearest neighbour distance in a zincblende lattice.
  - (ii) Distinguish between unipolar and ambipolar semiconductors. Explain with examples.
- (b) Calculate the hole and electron concentrations in a silicon sample at 300 K, which has a Hall coefficient of zero. What percentage change in conductivity would you expect if 2×10<sup>12</sup> Boron atoms/cm<sup>3</sup> is added in the sample?
- (c) Excess holes are somehow injected into a semi-infinite semiconductor bar at x = 0, and the steady state hole injection maintains a constant excess hole concentration at the injection point. Prove that the diffusion current at any position x is just proportional to excess concentration at that position.

- 2. Attempt any two parts of the following:
- $(6 \times 2 = 12)$
- (a) What do you mean by minority carrier injection and extraction? Find the expression for the electron current in the n-type material of a forward biased p-n junction.
- (b) State the condition for which the junction between a metal and p-type semiconductor will work as a ohmic contact. Explain the contact and draw the energy band diagram of a ohmic contact formed between a metal and p-type semiconductor at equilibrium condition.
- (c) In a p<sup>+</sup>-n junction, the n-doping Nd is doubled. How do the following change if everything else remains unchanged?
  - (i) Junction capacitance
  - (ii) Built-in-potential
    - (iii) Breakdown voltage.

Give the proper justification for your answer.

- 3. Attempt any two parts of the following:
- $(6 \times 2 = 12)$
- (a) What is BNDC (Bulk Negative Differential Conductivity) effect? Discuss the construction, operation and characteristics of the device based on this effect with suitable diagrams.
- (b) What is tunneling phenomenon? Explain the V-I characteristics of Tunnel diode. Discuss the semiconductor material required for its fabrication. How do they differ from conventional semiconductors?

- (c) Why a solar cell must operate in the fourth quadrant of the p-n junction V-I characteristics? A Si solar cell has a short-circuit current of 10 mA and an open-circuit voltage of 0.8 V under full solar illumination. The fill-factor is 0.7. What is the maximum power delivered to a load by this cell?
- 4. Attempt any two parts of the following:  $(7\times2=14)$ 
  - (a) What are the various models to describe the behaviour of the short-channel MESFETs devices? Explain them.
  - (b) Define and derive the expression for the threshold voltage for MOS transistor. What are the factors which affect it?
  - (c) Describe the storage and charge transfer processes in charge-coupled devices with suitable schematic diagrams. Also draw the schematic diagrams to illustrate the operation of a three phase charge-coupled device.