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UNIT-III  
Coding:  

 
Coding a Sequence : In order to distinguish a sequence of symbols from another sequence of 

symbols we need to tag it with a unique identifier. One possible set of tags for representing 

sequences of symbols are the numbers in the unit interval [0,1). Because the number of numbers 

in the unit interval is infinite, it should be possible to assign a unique tag to each distinct 

sequence of symbols. In order to do this, we need a function that will map sequences of symbols 

into the unit interval. A function that maps random variables, and sequences of random 

variables, into the unit interval is the cumulative distribution function (cdf) of the random 

variable associated with the source. This is the function we will use in developing the arithmetic 

code The use of the cumulative distribution function to generate a binary code for a sequence 

has a rather interesting history. Shannon mentioned an approach using the cumulative 

distribution function when describing what is now known as the Shannon-Fano code. Peter 

Elias, another member of Fano’s first information theory class at MIT (this class also included 
Huffman), came up with a recursive implementation for this idea. However, he never published 

it, and we only know about it through a mention in a 1963 book on information theory by 

Abramson.  Abramson described this coding approach in a note to a chapter. In another book on 

information theory by Jelinek in 1968, the idea of arithmetic coding is further developed, this 

time in an appendix, as an example of variable-length coding. Modern arithmetic coding owes 

its birth to the independent discoveries in 1976 of Pasco and Rissanen who solved the problem 

of finite precision. Finally, several papers appeared that provided practical arithmetic coding 

algorithms, the most well known of which is the paper by Rissanen and Langdon. Before we 

begin our development of the arithmetic code, we need to establish some nota-tion. Recall that a 

random variable maps the outcomes, or sets of outcomes, of an experiment to values on the real 

number line. For example, in a coin-tossing experiment, the random variable could map a head 

to zero and a tail to one (or it could map a head to 2367.5 and a tail to −192). To use this 

technique, we need to map the source symbols or letters to numbers. For convenience, in the 

discussion in this chapter we will use the mapping 
 

X (ai ) = i    ai ∈ A (1) 
    where A = {a1, a2, . . . , am } is the alphabet for a discrete source and X is a random 

 variable. This mapping means that given a probability model P for the source, we also 
  have a probability density function for the random variable 
 

          P( X = i) = P(ai ) 
 

and the cumulative density function can be defined as 
 

i 

  FX (i) = P( X = k) 

k=1 
 

Notice that for each symbol ai with a nonzero probability, we have a distinct value of FX 

(i).We will use this fact in what follows to develop the arithmetic code. Our development 
may be more detailed than what you are looking for, at least on the first reading. If so, 

skip or skim Sections 4.3.1–4.4.1 and go directly to Section 
 

 



SIET | Data Compression Notes (NCS-085,VIII
th

 Sem)                                 By- Sudesh Srivastava  
 

 [UNIT – III] Page 2 
 

Generating a Tag: The procedure for generating the tag works by reducing the size of the 

interval in which the tag resides as more and more elements of the sequence are received. 
We start out by first dividing the unit interval into subintervals of the form [FX (i − 1), FX (i)), 

i = 1, . . ., m. Because the minimum value of the cdf is zero and the maximum value is one, this 
exactly partitions the unit interval. We associate the subinterval [FX (i − 1), FX (i) with the 
symbol ai . The appearance of the first symbol in the sequence restricts the interval containing 
the tag to one of these subintervals. Suppose the first symbol was ak . Then the interval 
containing the tag value will be the subinterval [FX (k − 1), FX (k)). This subinterval is now 
partitioned in exactly the same proportions as the original interval. That is, the jth interval 
corresponding to the symbol a j is given by [FX (k − 1) + FX ( j − 1) × (F X (k) − FX (k − 1), FX (k 

− 1) + FX ( j) × (FX (k) − FX (k − 1))]. So if the second symbol in the sequence is a j , then the 
interval containing the tag value becomes [FX (k − 1) + FX ( j − 1) × FX (k) − FX (k − 1), FX (k − 

1) + FX ( j) × (FX (k) − FX (k − 1)))]. Each succeeding symbol causes the tag to be restricted to a 
subinterval that is further partitioned in the same proportions. This process can be more clearly 
understood through an example. 

Consider a simple dice-throwing experiment with a fair die. The outcomes of a roll of the die 

can be mapped into the numbers {1, 2, . . . , 6}. For a fair die 

  

  P( X = k) = 

1 

for k = 1, 2, . . . , 6 

 
 

  

     

6   
 

Therefore, using (3) we can find the tag 

for X = 2 as       
 

   

1 P( X = 2) = 1 + 1 = 0.25 

 

 

T X (2) = P( X = 1) + 
 

and the tag for X = 5 as 
 

4 
  1  

T X (5) = P( X = k) + P( X = 5) = 0.75  
k=1 

 

The tags for all other outcomes are shown in Table 4.3 where the overbar denotes repeating 

decimal values. 

 
T A B L E 4 . 3 Toss for outcomes in a 

 

 dice-throwing experment. 
 

    
 

Outcome Tag 
 

    
 

1 
   

 

0.0833  
 

3 
    

0.4166  
 

4 
    

0.5833  
 

6 
    

0.9166  
 

 
 
 
 

As we can see from the example above, giving a unique tag to a sequence of length one is an 
easy task. This approach can be extended to longer sequences by imposing an order on the 
sequences. We need to impose an order on the sequences because we will assign a tag to a 
particular sequence xi as   

 (m) y   i 
1 

P(xi ) (4) 

 

  

T X  (xi ) = 
  

 

P(y) + 2 
 

  <x     
  

where y < x means that y precedes x in the ordering, and the superscript denotes the length of 

the sequence.An easy ordering to use is lexicographic ordering. In lexicographic ordering, the 

ordering of letters in an alphabet induces an ordering on the words constructed from this 

alphabet. The ordering of words in a dictionary is a good (maybe the original) example of 
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lexicographic ordering. Dictionary order is sometimes used as a synonym for lexicographic 

order. 

E x a m p l e :We can extend Example so that the sequence consists of two rolls of a die. Using 

the ordering scheme described above, the outcomes (in order) would be 11, 12, 13, . . . , 66. The 

tags can then be generated using Equation(4). For example, the tag for the sequence 1 3 would 

be 
 

 

X (13) = P(x = 11) + P(x = 12) + 1/2P(x = 13) (5) 

 

T  

= 1/36 + 1/36 + 1/2(1/36) (6)  

= 5/72 (7)  
 

Notice that to generate the tag for the sequence 1 3 we did not have to generate a tag for every 

other possible message. However, based on Equation (4) and Example , we need to know the 

probability of every sequence that is “less than” the sequence for which the tag is being 

generated. The requirement that the probability of all sequences of a given length be explicitly 

calculated can be as prohibitive as the requirement that we have codewords for all sequences of 

a given length. Fortunately, we shall see that to compute a tag for a given sequence of symbols, 

all we need is the probability of individual symbols, or the probability model. 

 

Generating a Binary Code:-  Using the algorithm described in the previous section, we can 

obtain a tag for a given sequence x. However, the binary code for the sequence is what we really 

want to know. We want to find a binary code that will represent the sequence x in a unique and 

efficient manner.  
We have said that the tag forms a unique representation for the sequence. This means that the 

binary representation of the tag forms a unique binary code for the sequence. However, we have 

placed no restrictions on what values in the unit interval the tag can take. The binary 

representation of some of these values would be infinitely long, in which case, although the code 

is unique, it may not be efficient. To make the code efficient, the binary representation has to be 

truncated. But if we truncate the representation, is the resulting code still unique? Finally, is the 

resulting code efficient? How far or how close is the average number of bits per symbol from the 

entropy.  

 

Comparison of Huffman and Arithmetic Coding:-We have described a new coding scheme that, 

although more complicated than Huffman coding, allows us to code sequences of symbols. How 

well this coding scheme works depends on how it is used. Let’s first try to use this code for 
encoding sources for which we know the Huffman code.  

Looking at Example 4.4.1, the average length for this code is 
 

l = 2 × 0.5 + 3 × 0.25 + 4 × 0.125 + 4 0.125 (83) 

= 2.75 bits/symbol (84) 

  

T A B L E  Arithmetic code for two-symbol sequences. 
 
       

_log 
1 

_ + 1 
 

 

Message P(x) 
 

T X (x) T X (x) in Binary Code 
 

 P(x) 
 

11 .25 .125 .001  3  001 
 

12 .125 .3125 .0101  4  0101 
 

13 .0625 .40625 .01101  5  01101 
 

14 .0625 .46875 .01111  5  01111 
 

21 .125 .5625 .1001  4  1001 
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22 .0625 .65625 .10101  5  10101 
 

23 .03125 .703125 .101101  6  101101 
 

24 .03125 .734375 .101111  6  101111 
 

31 .0625 .78125 .11001  5  11001 
 

32 .03125 .828125 .110101  6  110101 
 

33 .015625 .8515625 .1101101  7  1101101 
 

34 .015625 .8671875 .1101111  7  1101111 
 

41 .0625 .90625 .11101  5  11101 
 

42 .03125 .953125 .111101  6  111101 
 

43 .015625 .9765625 .1111101  7  1111101 
 

44 .015625 .984375 .1111111  7  1111111 
 

           
 

 

Recall from Section that the entropy of this source was 1.75 bits/symbol and the Huffman code 

achieved this entropy. Obviously, arithmetic coding is not a good idea if you are going to encode 

your message one symbol at a time. Let’s repeat the example with messages consisting of two 
symbols. 

  

Dictionary Techniques:- 

 

Introduction:- In many applications, the output of the source consists of recurring patterns. A 

classic example is a text source in which certain patterns or words recur constantly. Also, there are 

certain patterns that simply do not occur, or if they do occur, it is with great rarity. For example, 

sgiomlaireached might be an annoying habit but the word probably occurs in a very small fraction 

of the text sources in existence.A very reasonable approach to encoding such sources is to keep a 

list, or dictionary, of frequently occurring patterns. When these patterns appear in the source output, 

they are encoded with a reference to the dictionary. If the pattern does not appear in the dictionary, 

then it can be encoded using some other less efficient method. In effect, we are splitting the input 

into two classes: frequently occurring patterns and infrequently occurring patterns. For this 

technique to be effective, the class of frequently occurring patterns, and hence the size of the 

dictionary, must be much smaller than the number of all possible patterns.  
Suppose we have a particular text that consists of four-character words, three characters from the 

26 lowercase letters of the English alphabet followed by a punctuation mark. Sup-pose our source 

alphabet consists of the 26 lowercase letters of the English alphabet and the punctuation marks 

comma, period, exclamation mark, question mark, semicolon, and colon. In other words, the size of 

the input alphabet is 32. If we were to encode the text source one character at a time, treating each 

character as an equally likely event, we would need 5 bits per character. Treating all 32
4
(= 2

20
 = 1, 

048, 576) four-character patterns as equally likely, we have a code that assigns 20 bits to each four-

character pattern. Let us now put the 256 most likely four-character patterns into a dictionary. The 

transmission scheme works as follows. Whenever we want to send a pattern that exists in the 

dictionary, we will send a 1-bit flag, say, a 0, followed by an 8-bit index corresponding to the entry 

in the dictionary. If the pattern is not in the dictionary, we will send a 1 followed by the 20-bit 

encoding of the pattern. If the pattern we encounter is not in the dictionary, we will actually use 

more bits than in the original scheme, 21 instead of 20. But if it is in the dictionary, we will send 

only 9 bits. The utility of our scheme will depend on the percentage of the words we encounter that 

are in the dictionary. We can get an idea about the utility of our scheme by calculating the average 

number of bits per pattern. If the probability of encountering a pattern from the dictionary is p, then 

the average number of bits per pattern R is given by 
 

R = 9 p + 21(1 − p) = 21 − 12 p 

  

For our scheme to be useful, R should have a value less than 20. This happens when p 0.084. This 

does not seem like a very large number. However, note that if all patterns were occurring in an 
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equally likely manner, the probability of encountering a pattern from the dictionary would be less 

than 0.00025. We do not simply want a coding scheme that performs slightly better than the simple-

minded approach of coding each pattern as equally likely; we would like to improve the 

performance as much as possible. In order for this to happen, p should be as large as possible. This 

means that we should carefully select patterns that are most likely to occur as entries in the 

dictionary. To do this, we have to have a pretty good idea about the structure of the source output. If 

we do not have information of this sort available to us prior to the encoding of a particular source 

output, we need to acquire this information somehow when we are encoding. If we feel we have 

sufficient prior knowledge, we can use a static approach; if not, we can take an adaptive approach. 
 
Static Dictionary:- Choosing a static dictionary technique is most appropriate when considerable 

prior knowl-edge about the source is available. This technique is especially suitable for use in 

specific applications. For example, if the task were to compress the student records at a university, a 

static dictionary approach may be the best. This is because we know ahead of time that certain 

words and phrases such as “Name” and “Student ID” are going to appear in almost all of the 

records. Other words such as “Sophomore,” “credits,” and so on will occur quite often. Depending 
on the location of the university, certain digits in Social Security numbers are more likely to occur. 

For example, in Nebraska most student ID numbers used to begin with the digits 505. In fact, most 

entries will be of a recurring nature. In this situation, it is highly efficient to design a compression 

scheme based on a static dictionary containing the recurring patterns. Similarly, there could be a 

number of other situations in which an application-specific or data-specific static-dictionary-based 

coding scheme would be the most efficient. It should be noted that these schemes would work well 

only for the applications and data they were designed for. If these schemes were to be used with 

different applications, they may cause an expansion of the data instead of compression.  
A static dictionary technique that is less specific to a single application is digram coding. 
 
Digram Coding:- One of the more common forms of static dictionary coding is digram coding. 
In this form of coding, the dictionary consists of all letters of the source alphabet followed by as 
many pairs of letters, called digrams, as can be accommodated by the dictionary. For example, 
suppose we were to construct a dictionary of size 256 for digram coding of all printable ASCII 
characters. The first 95 entries of the dictionary would be the 95 printable ASCII characters. The 
remaining 161 entries would be the most frequently used pairs of characters.  
The digram encoder reads a two-character input and searches the dictionary to see if this input exists 

in the dictionary. If it does, the corresponding index is encoded and transmitted. If it does not, the 

first character of the pair is encoded. The second character in the pair then becomes the first 

character of the next digram. The encoder reads another character to complete the digram, and the 

search procedure is repeated. 

Example:- Suppose we have a source with a five-letter alphabet A = {a, b, c, d, r }. Based on 

knowledge about the source, we build the dictionary shown in Table 5.1. 
 
 
 

T A B L E  5.1  A sample dictionary. 
 

Code Entry Code Entry 
    

000 a 100 r 
001 b 101 ab 
010 c 110 ac 
011 d 111 ad 
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T A B L E 5.2:   Thirty most frequently occurring pairs of 

character in a 41,364-character-long LaTeX 

document. 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Suppose we wish to encode the sequence 
 

abracadabra 
 
The encoder reads the first two characters ab and checks to see if this pair of letters exists in the 

dictionary. It does and is encoded using the codeword 101. The encoder then reads the next two 

characters ra and checks to see if this pair occurs in the dictionary. It does not, so the encoder sends 

out the code for r , which is 100, then reads in one more character, c, to make the two-character 

pattern ac. This does exist in the dictionary and is encoded as 110. Continuing in this fashion, the 

remainder of the sequence is coded. The output string for the given input sequence is 

101100110111101100000. 

A list of the 30 most frequently occurring pairs of characters in an earlier version of this chapter 

is shown in Table 5.2. For comparison, the 30 most frequently occurring pairs of characters in a set 

of C programs is shown in Table 5.3.  
In these tables, b/ corresponds to a space and nl corresponds to a new line. Notice how different the 

two tables are. It is easy to see that a dictionary designed for compressing LaTeX documents would 

not work very well when compressing C programs. However, we generally want techniques that 

will be able to compress a variety of source outputs. If we want to compress computer files, we do 

not want to change techniques based on the content of the file. Rather, we would like the technique 

to adapt to the characteristics of the source output. We discuss adaptive-dictionary-based techniques 

in the next section. 

T A B L E 5 . 3 Thirty most frequently occurring pairs 

characters in a collection of C programs containing 

64,983 characters. 
 

Pair Count Pair Count 
    

b/b/ 5728 st 442 
nlb/ 1471 le 440 
; nl 1133 ut 440 
in 985 f ( 416 
nt 739 ar 381 
= b/ 687 or 374 
bi/ 662 rb/ 373 

 Pair Count Pair Count 
     

 eb/ 1128 ar 314 
bt/ 838 at 313 
b/b/ 823 b/w 309 
 th 817 te 296 
 he 712 bs/ 295 
in 512 db/ 272 
 sb/ 494 bo/ 266 
 er 433 io 257 
ba/ 425 co 256 
 tb/ 401 re 247 
 en 392 b/$ 246 
 on 385 rb/ 239 
 nb/ 353 di 230 
 ti 322 ic 229 
bi/ 317 ct 226 
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tb/ 615 en 371 
b/ = 612 er 358 
); 558 ri 357 
, b/ 554 at 352 
nlnl 506 pr 351 
b/ f 505 te 349 
eb/ 500 an 348 

b/∗ 444 lo 347 

 

Adaptive Dictionary:- Most adaptive-dictionary-based techniques have their roots in two landmark 

papers by Jacob Ziv and Abraham Lempel in 1977 [52] and 1978 [53]. These papers provide two different 

approaches to adaptively building dictionaries, and each approach has given rise to a number of variations. 

The approaches based on the 1977 paper are said to belong to the LZ77 family (also known as LZ1), while 

the approaches based on the 1978 paper are said to belong to the LZ78, or LZ2, family. The transposition of 

the initials is a historical accident and is a convention we will observe in this book. In the following sections, 

we first describe an implementation of each of the adaptive-dictionary-based compression approaches 

followed by some of the more well-known variations. 

 

LZ77 Approach:- In the LZ77 approach, the dictionary is simply a portion of the previously 

encoded sequence. The encoder examines the input sequence through a sliding window, as shown in 

Figure 5.1. The window consists of two parts, a search buffer that contains a portion of the recently 

encoded sequence and a lookahead buffer that contains the next portion of the sequence to be 

encoded. In Figure 5.1, the search buffer contains eight symbols, while the lookahead buffer 

contains seven symbols. In practice, the size of the buffers is significantly larger; however, for the 

purpose of explanation, we will keep the buffer sizes small.  
To encode the sequence in the lookahead buffer, the encoder moves a search pointer back 

through the search buffer until it encounters a match to the first symbol in the lookahead 

 
 Match pointer           

 

           

 
 

 
    

                
 

                
 

a    x   x a b r a   x a d a b   r a   r  r a   r    r   a            x 
 

                   

    Search buffer    Look ahead buffer   
 

     
 

F I G U R E 5 . 1  Encoding using the LZ77 approach.   
 

 
buffer. The distance of the pointer from the lookahead buffer is called the offset. The encoder then 
examines the symbols following the symbol at the pointer location to see if they match consecutive 
symbols in the lookahead buffer. The number of consecutive symbols in the search buffer that 
match consecutive symbols in the lookahead buffer, starting with the first symbol, is called the 
length of the match. The encoder searches the search buffer for the longest match. Once the longest 
match has been found, the encoder encodes it with a triple _o, l, c _, where o is the offset, l is the 
length of the match, and c is the codeword corresponding to the symbol in the lookahead buffer that 
follows the match. For example, in Figure 5.1 the pointer is pointing to the beginning of the longest 
match. The offset o in this case is 7, the length of the match l is 4, and the symbol in the lookahead 
buffer following the match is r .The reason for sending the third element in the triple is to take care 
of the situation where no match for the symbol in the lookahead buffer can be found in the search 
buffer. In this case, the offset and match-length values are set to 0, and the third element of the triple 
is the code for the symbol itself. 
Example: The LZ77 Approach 
 
Suppose the sequence to be encoded is 
 

. . . cabracadabrarrarrad . . . 
 
Suppose the length of the window is 13, the size of the lookahead buffer is 6, and the current 
condition is 
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cabraca  dabrar 
 
with dabrar in the lookahead buffer. We look back in the already encoded portion of the window to 

find a match for d. As we can see, there is no match, so we transmit the triple 
_0, 0, C(d)_. The first two elements of the triple show that there is no match to d in the search 
buffer, while C(d) is the code for the character d. This seems like a wasteful way to encode a single 
character, and we will have more to say about this later.  

For now, let’s continue with the encoding process. As we have encoded a single character, we 

move the window by one character. Now the contents of the buffer are 
 

abracad  abrarr 
 
with abrarr in the lookahead buffer. Looking back from the current location, we find a match to a at 
an offset of two. The length of this match is one. Looking further back, we have another match for a 
at an offset of four; again the length of the match is one. Looking back even further in the window, 
we have a third match for a at an offset of seven. However, this time the length of the match is four 
(see Figure 5.2). So we encode the string abra with the triple _7, 4, C(r )_, and move the window 
forward by five characters. The window now contains the following characters: 

adabrar  rarrad 
 
Now the lookahead buffer contains the string rarrad. Looking back in the window, we find a match 

for r at an offset of one and a match length of one, and a second match at an offset of three with a 

match length of what at first appears to be three. It turns out we can use a match length of five 

instead of three. 
 

Search pointer  
o  7 

 

c a   b r a c a d a b r a r r   a   r   r   a d 
              

 
l  4 

 
F I G U R E 5 . 2 The encoding process. 
 

Why this is so will become clearer when we decode the sequence. To see how the decoding 
works, let us assume that we have decoded the sequence cabraca and we receive the triples _0, 0, 
C(d)_,7, 4, C(r )_, & 3, 5, C(d)_. The first triple is easy to decode; there was no match within the 
previously decoded string, and the next symbol is d. The decoded string is now cabracad. The first 
element of the next triple tells the decoder to move the copy pointer back seven characters, and copy 
four characters from that point. The decoding process works as shown in Figure 5.3.  
Finally, let’s see how the triple _3, 5, C(d)_ gets decoded. We move back three characters and start 

copying. The first three characters we copy are rar . The copy pointer moves once again, as shown 

in Figure 5.4, to copy the recently copied character r . Similarly, we copy the next character a. Even 

though we started copying only three characters back, we end up decoding five characters. Notice 

that the match only has to start in the search buffer; it can extend into the lookahead buffer. In fact, 

if the last character in the lookahead buffer had been r instead of d, followed by several more 

repetitions of rar , the entire sequence of repeated rar s could have been encoded with a single triple 

As we can see, the LZ77 scheme is a very simple adaptive scheme that requires no prior knowledge 

of the source and seems to require no assumptions about the characteristics of the source. The 

authors of this algorithm showed that the performance of this algorithm asymptotically approached 

the best that could be obtained by using a scheme that had full knowledge about the statistics of the 

source. While this may be true asymptotically, in practice there are a number of ways of improving 

the performance of the LZ77 algorithm as described here. Furthermore, by using the recent portions 

of the sequence, there is an assumption of sorts being used here—that is, that patterns recur “close” 
together. As we shall see, the authors removed this “assumption” and came up with an entirely 
different adaptive-dictionary-based scheme in LZ78. Before we get to that, let us look at the 

different variations of the LZ77 algorithm 
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 LZ78 Approach:- 
 
The LZ77 approach implicitly assumes that like patterns will occur close together. It makes use of 

this structure by using the recent past of the sequence as the dictionary for encoding. However, this 

means that any pattern that recurs over a period longer than that covered by the coder window will 

not be captured. The worst-case situation would be where the sequence to be encoded was periodic 

with a period longer than the search buffer. Consider Figure 5.5.  
This is a periodic sequence with a period of nine. If the search buffer had been just one symbol 

longer, this sequence could have been significantly compressed. As it stands, none of the new 

symbols will have a match in the search buffer and will have to be represented by separate 

codewords. As this involves sending along overhead (a 1-bit flag for LZSS and a triple for the 

original LZ77 algorithm), the net result will be an expansion rather than a compression. 

 

 

a b   c  d  e   f   g  h   i   a  b   c  d  e   f   g  h   i   a  b   c  d  e   f   g  h   i 
 
               Search buffer Look ahead buffe 
 
 
 

Move back 7                                Copy 1  
 

                                     
 

                                                    
 

                                                    
 

 c a b r a c  a   d             c a b r a c a d a      
 

                                              

         Copy 2                Copy 3  
 

                                        
 

 c a b r a c  a   d   a b          c a b r a c a d a b  r     
 

                                                    

            Copy 4                 
Decode C(r) 

    
 

                                             
 

                                             
 

                                                    
 

                                                    
 

 c a b r a c  a   d   a b  r  a      c a b r a c a d a b  r   a r  
 

                                                     

                                  
 

F I G U R E 5 . 3  Decoding the triple 7, 4, C(r) .  
 

     Move back 3                Copy 1  
 

             
 

                                                    
 

                                                    
 

 a b a b r a r         a b a b r a r r   
 

                                  

           Copy 2                 Copy 3  
 

                 
 

 a b a b r a r r  a         a b a b r a r r a r   
 

                                        
 

               Copy 4                    Copy 5  
 

                                     
 

 a b a b r a r r a   r r          a b a b r a r r a   r   r a  
 

                                                 

              
Decode C(d) 

                            
 

                                          
 

                        
 

                                                    
 

 a b a b r a r  r a   r   r  a   d      
 

                        

    
 

    F I G U R E 5 . 4  Decoding the triple 3, 5, C(d) .  
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T A B L E 5 . 4 The initial dictionary. 
   

 Index Entry 
   

1 w 
2 a 
3 b 

   

 
 
Although this is an extreme situation, there are less drastic circumstances in which the finite view of 
the past would be a drawback. The LZ78 algorithm solves this problem by dropping the reliance on 
the search buffer and keeping an explicit dictionary. This dictionary has to be built at both the 
encoder and decoder, and care must be taken that the dictionaries are built in an identical manner. 
The inputs are coded as a double _i, c_, with i being an index corresponding to the dictionary entry 
that was the longest match to the input and c being the code for the character in the input following 
the matched portion of the input. As in the case of LZ77, the index value of 0 is used in the case of 
no match. This double then becomes the newest entry in the dictionary. Thus, each new entry into 
the dictionary is one new symbol concatenated with an existing dictionary entry. To see how the 
LZ78 algorithm works, consider the following example. 

 
Example : The LZ78 Approach 
 
Let us encode the following sequence using the LZ78 approach 
 

wabbab/wabbab/wabbab/wabbab/woob/woob/woo. 
 
where b/ stands for space. Initially, the dictionary is empty, so the first few symbols encountered are 
encoded with the index value set to 0. The first three encoder outputs are _0, C(w)_, _0, C(a)_, and 
_0, C(b)_, and the dictionary looks like Table 5.4.The fourth symbol is a b, which is the third entry 
in the dictionary. If we append the next symbol, we would get the pattern ba, which is not in the 
dictionary, so we encode these two symbols as _3, C(a)_ and add the pattern ba as the fourth entry 
in the dictionary. Continuing in this fashion, the encoder output and the dictionary develop as in 
Table 5.5. Notice that the entries in the dictionary generally keep getting longer, and if this 
particular sentence was repeated often, as it is in the song, after a while the entire sentence would be 
an entry in the dictionary.While the LZ78 algorithm has the ability to capture patterns and hold them 
indefinitely, it also has a rather serious drawback. As seen from the example, the dictionary keeps 
growing without bound. In a practical situation, we would have to stop the growth of the dictionary 
at some stage and then either prune it back or treat the encoding as a fixed dictionary scheme. We 
will discuss some possible approaches when we study applications of dictionary coding. 
      

T A B L E 5 . 5 Development of the dictionary. 
    

   Dictionary 
 Encoder Output Index Entry 
    

 _0, C(w)_ 01 w 
 _0, C(a)_ 02 a 
 _0, C(b)_ 03 b 
 _3, C(a)_ 04 ba 
 _0, C(/b)_ 05 b/ 
 _1, C(a)_ 06 wa 
 _3, C(b)_ 07 bb 
 _2, C(/b)_ 08 ab/ 
 _6, C(b)_ 09 wab 
 _4, C(/b)_ 10 bab/ 
 _9, C(b)_ 11 wabb 
 _8, C(w)_ 12 ab/w 
 _0, C(o)_ 13 o 
 _13, C(/b)_ 14 ob/ 
 _1, C(o)_ 15 wo 
 _14, C(w)_ 16 ob/w 

 _13, C(o)_ 17 oo 
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Example : The LZW Algorithm Encoding 
 
We will use the sequence previously used to demonstrate the LZ78 algorithm as our input sequence:  

wabbab/wabbab/wabbab/wabbab/woob/woob/woo 
 
Assuming that the alphabet for the source is {b/, a, b, o, w}, the LZW dictionary initially looks like 
Table 5.6. 
 

T A B L E 5 . 6 Initial LZW dictionary. 
   

 Index Entry 
   

1 b/ 
2 a 
3 b 
4 o 
5 w 

   

T A B L E 5 . 7 Constructing the 12th entry of 
  the LZW dictionary. 
   

 Index Entry 
   

01 b/ 
02 a 
03 b 
04 o 
05 w 
06 wa 
07 ab 
08 bb 
09 ba 
10 a/b/ 
11 b/ w 
12 w… 

   

 

The encoder first encounters the letter w. This “pattern” is in the dictionary so we concate-nate the 

next letter to it, forming the pattern wa. This pattern is not in the dictionary, so we encode w with its 

dictionary index 5, add the pattern wa to the dictionary as the sixth element of the dictionary, and 

begin a new pattern starting with the letter a. As a is in the dictionary, we concatenate the next 

element b to form the pattern ab. This pattern is not in the dictionary, so we encode a with its 

dictionary index value 2, add the pattern ab to the dictionary as the seventh element of the 

dictionary, and start constructing a new pattern with the letter b. We continue in this manner, 

constructing two-letter patterns, until we reach the letter w in the sec-ond wabba. At this point, the 

output of the encoder consists entirely of indices from the initial dictionary: 5 2 3 3 2 1. The 

dictionary looks like Table 5.7. (The 12th entry in the dictionary is still under construction.) The 

next symbol in the sequence is a. Concatenating this to w, we get the pattern wa. This pattern 

already exists in the dictionary (item 6), so we read the next symbol, which is b. Concatenating this 

to wa, we get the pattern wab. This pattern does not exist in the dictionary, so we include it as the 

12th entry in the dictionary and start a new pattern with the symbol b. We also encode wa with its 

index value of 6. Notice that after a series of two-letter entries, we now have a three-letter entry. As 

the encoding progresses, the length of the entries keeps increasing. The longer entries in the 

dictionary indicate that the dictionary is capturing more of the structure in the sequence. The 

dictionary at the end encoding process is shown in Table 5.8. Notice that the 12th through the 19th 

entries are all either three or four letters in length. Then we encounter the pattern woo for the first 

time and we drop back to two-letter patterns for three more entries, after which we go back to 

entries of increasing length. 
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The encoder output sequence is 5 2 3 3 2 1 6 8 10 12 9 11 7 16 5 4 4 11 21 23 4. 

 

 

T A B L E 5 . 8 The LZW dictionary for encoding 

wabbab/wabbab/wabbab/wabbab/ woob/woob/woo. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Example : The LZW Algorithm Decoding:- In this example we will take the encoder output 

from the previous example and decode it using the LZW algorithm. The encoder output sequence in 

the previous example was 
 

5 2 3 3 2 1 6 8 10 12 9 11 7 16 5 4 4 11 21 23 4 
 
This becomes the decoder input sequence. The decoder starts with the same initial dictionary as the 

encoder (Table 5.6).  
The index value 5 corresponds to the letter w, so we decode w as the first element of our 

sequence. At the same time, we begin construction of the next element of the dictionary in order to 

mimic the dictionary construction procedure of the encoder. We start with the letter w. This pattern 

exists in the dictionary, so we do not add it to the dictionary and continue with the decoding process. 

The next decoder input is 2, which is the index corresponding to the letter a. We decode an a and 

concatenate it with our current pattern to form the pattern wa. As this does not exist in the 

dictionary, we add it as the sixth element of the dictionary and start a new pattern beginning with the 

letter a. The next four inputs 3 3 2 1 correspond to the letters bbab/ and generate the dictionary 

entries ab, bb, ba, and ab/. The dictionary now looks like Table 5.9, where the 11th entry is under 

construction. The next input is 6, which is the index of the pattern wa. Therefore, we decode a w and 

an a. We first concatenate w to the existing pattern, which is b/ and form the pattern b/w. As b/w 
 

T A B L E 5 . 9 Constructing the 11th entry of 
  the LZW dictionary while 
  decoding. 
   

 Index Entry 
   

01 b/ 
02 a 
03 b 
04 o 
05 w 
06 wa 
07 ab 
08 bb 
09 ba 
10 ab/ 
11 b/. . . 

   

 

Index Entry Index Entry 
    

01 b/ 14 ab/ w 
02 a 15 wabb 
03 b 16 bab/ 
04 o 17 b/ wa 
05 w 18 abb 
06 wa 19 bab/ w 
07 ab 20 wo 
08 bb 21 oo 
09 ba 22 ob/ 
10 ab/ 23 b/ wo 
11 b/ w 24 oob/ 
12 wab 25 b/ woo 
13 bba   
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does not exist in the dictionary, it becomes the 11th entry. The new pattern now starts with the letter 

w. We had previously decoded the letter a, which we now concatenate to w to obtain the pattern wa. 

This pattern is contained in the dictionary, so we decode the next input, which is 8. This corresponds 

to the entry bb in the dictionary. We decode the first b and concatenate it to the pattern wa to get the 

pattern wab. This pattern does not exist in the dictionary, so we add it as the 12th entry in the 

dictionary and start a new pattern with the letter b. Decoding the second b and concatenating it to 

the new pattern, we get the pattern bb. This pattern exists in the dictionary, so we decode the next 

element in the sequence of encoder outputs. Continuing in this fashion, we can decode the entire 

sequence. Notice that the dictionary being constructed by the decoder is identical to that constructed 

by the encoder. 

There is one particular situation in which the method of decoding the LZW algorithm described 

above breaks down. Suppose we had a source with an alphabet A = {a, b}, and we were to encode 

the sequence beginning with abababab . . .. The encoding process is still the same. We begin with 

the initial dictionary shown in Table 5.10 and end up with the final dictionary shown in Table 5.11.  
The transmitted sequence is 1235 . . .. This looks like a relatively straightforward sequence to 

decode. However, when we try to do so, we run into a snag. Let us go through the decoding process 

and see what happens. 
T A B L E 5 . 10 Initial dictionary for 
  abababab. 
   

 Index Entry 
   

1 a 
2 b 

   

 
T A B L E 5 . 11 Final dictionary for abababab. 
    

 Index Entry 
    

1 a 
2 b 
3 ab 
4 ba 
5 aba 
6 abab 
7 b . . . 
    

T A B L E 5 . 12 Constructing the fourth entry of 
  the dictionary while decoding. 
    

 Index Entry 
    

1 a 
2 b 
3 ab 
4 b . . . 
    

T A B L E 5 . 13 Constructing the fifth entry 
  (stage one). 
    

 Index Entry 
    

1 a 
2 b 
3 ab 
4 ba 
5 a . . . 
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We begin with the same initial dictionary as the encoder (Table 5.10). The first two elements in 

the received sequence 1235 . . . are decoded as a and b, giving rise to the third dictionary entry ab, 

and the beginning of the next pattern to be entered in the dictionary, b. The dictionary at this point is 

shown in Table 5.12.  
The next input to the decoder is 3. This corresponds to the dictionary entry ab. Decoding each in 

turn, we first concatenate a to the pattern under construction to get ba. This pattern is not contained 

in the dictionary, so we add this to the dictionary (keep in mind, we have not used the b from ab 

yet), which now looks like Table 5.13.  
The new entry starts with the letter a. We have only used the first letter from the pair ab. 

Therefore, we now concatenate b to a to obtain the pattern ab. This pattern is contained in the 

dictionary, so we continue with the decoding process. The dictionary at this stage looks like Table 

5.14. 
T A B L E 5 . 14 Constructing the fifth entry 
  (stage two). 
   

 Index Entry 
   

1 a 
2 b 
3 ab 
4 ba 
5 ab . . . 

   

T A B L E 5 . 15 Completion of the fifth entry. 
   

 Index Entry 
   

1 a 
2 b 
3 ab 
4 ba 
5 aba 
6 a . . . 

   

 

The first four entries in the dictionary are complete, while the fifth entry is still under 

construction. However, the very next input to the decoder is 5, which corresponds to the incomplete 

entry. How do we decode an index for which we do not as yet have a complete dictionary entry?  
The situation is actually not as bad as it looks. While we may not have a fifth entry for the 

dictionary, we do have the beginnings of the fifth entry, which is ab . . .. Let us, for the moment, 

pretend that we do indeed have the fifth entry and continue with the decoding process. If we had a 

fifth entry, the first two letters of the entry would be a and b. Concatenating a to the partial new 

entry we get the pattern aba. This pattern is not contained in the dictionary, so we add this to our 

dictionary, which now looks like Table 5.15. Notice that we now have the fifth entry in the 

dictionary, which is aba. We have already decoded the ab portion of aba. We can now decode the 

last letter a and continue on our merry way.  
This means that the LZW decoder has to contain an exception handler to handle the special case 

of decoding an index that does not have a corresponding complete entry in the decoder dictionary. 

 
Applications:-Since the publication of Terry Welch’s article, there has been a steadily increasing 
number of applications that use some variant of the LZ78 algorithm. Among the LZ78 variants, by 

far the most popular is the LZW algorithm. In this section, we describe two applications of LZW: 

GIF and V.42 bis. While the LZW algorithm was initially the algorithm of choice, patent concerns 

led to increasing use of the LZ77 algorithm. The most popular implementation of the LZ77 
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algorithm is the deflate algorithm initially designed by Phil Katz. It is part of the popular zlib library 

developed by Jean-Loup Gailly and Mark Adler. Jean-Loup Gailly also used deflate in the widely 

used gzip algorithm. The deflate algorithm is also used in PNG, which we describe below. 
 

File Compression UNIX compress:-The UNIX compress command is one of the earlier 

applications of LZW. The size of the dictionary is adaptive. We start with a dictionary of size 512. 

This means that the transmitted codewords are 9 bits long. Once the dictionary has filled up, the size 

of the dictionary is doubled to 1024 entries. The codewords transmitted at this point have 10 bits. 

The size of the dictionary is progressively doubled as it fills up. In this way, during the earlier part 

of the coding process when the strings in the dictionary are not very long, the codewords used to 

encode them also have fewer bits. The maximum size of the codeword, bmax, can be set by the user 

to between 9 and 16, with 16 bits being the default. Once the dictionary contains 2
bmax

 entries, 

compress becomes a static dictionary coding technique. At this point the algorithm monitors the 

compression ratio. If the compression ratio falls below a threshold, the dictionary is flushed, and the 

dictionary building process is restarted. This way, the dictionary always reflects the local 

characteristics of the source. 

 

Image Compressio The Graphics Interchange Format (GIF):-The Graphics Interchange Format 

(GIF) was developed by CompuServe Information Service to encode graphical images. It is another 

implementation of the LZW algorithm and is very similar to the compress command. The 

compressed image is stored with the first byte being the minimum number of bits b per pixel in the 

original image. For the images we have been using as examples, this would be eight. The binary 

number 2
b
 is defined to be the clear code. This code is used to reset all compression and 

decompression parameters to a start-up state. The initial size of the dictionary is 2
b+1

. When this fills 

up, the dictionary size is doubled, as was done in the compress algorithm, until the maximum 

dictionary size of 4096 is reached. At this point, the compression algorithm behaves like a static 

dictionary algorithm. The codewords from the LZW algorithm are stored in blocks of characters. 

The characters are 8 bits long, and the maximum block size is 255. Each block is preceded by a 

header that contains the block size. The block is terminated by a block terminator consisting of eight 

0s. The end of the compressed image is denoted by an end-of-information code with a value of 2
b
 + 

1. This codeword should appear before the block terminator.GIF has become quite popular for 

encoding all kinds of images, both computer-generated and “natural” images. While GIF works well 
with computer-generated graphical images and pseudocolor or color-mapped images, it is generally 

not the most efficient way to losslessly compress images of natural scenes, photographs, satellite 

images, and so on. In Table 5.16, we give the file sizes for the GIF-encoded test images. For 

comparison, we also include the file sizes for arithmetic coding the original images and arithmetic 

coding the differences 
 

T A B L E 5 . 16 Comparison of GIF with 

   arithmetic coding. 
     

   Arithmetic Coding Arithmetic Coding 

 Image GIF of Pixel Values of Pixel Differences 
     

 Sena 51,085 53,431 31,847 

 Sensin 60,649 58,306 37,126 

 Earth 34,276 38,248 32,137 

 Omaha 61,580 56,061 51,393 
     

Notice that even if we account for the extra overhead in the GIF files, for these images GIF barely 

holds its own even with simple arithmetic coding of the original pixels. While this might seem odd 
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at first, if we examine the image on a pixel level, we see that there are very few repetitive patterns 

compared to a text source. Some images, like the Earth image, contain large regions of constant 

values. In the dictionary coding approach, these regions become single entries in the dictionary. 

Therefore, for images like these, the straightforward dictionary coding approach does hold its own. 

However, for most other images, it would probably be preferable to perform some preprocessing to 

obtain a sequence more amenable to dictionary coding. The Portable Network Graphics (PNG) 

standard described next develops an appropriate preprocessor to take advantage of the fact that in 

natural images the pixel-to-pixel variation is generally small. 

 
Compression over Modems V.42 bits:-The ITU-T Recommendation V.42 bis is a compression 

standard devised for use over a tele-phone network along with error-correcting procedures described 

in CCITT Recommendation V.42. This algorithm is used in modems connecting computers to 

remote users. The algorithm described in this recommendation operates in two modes, a transparent 

mode and a compressed mode. In the transparent mode, the data are transmitted in uncompressed 

form, while in the compressed mode an LZW algorithm is used to provide compression.  
The reason for the existence of two modes is that at times the data being transmitted do not have 

repetitive structure and, therefore, cannot be compressed using the LZW algorithm. In this case, the 

use of a compression algorithm may even result in expansion. In these situations, it is better to send 

the data in an uncompressed form. A random data stream would cause the dictionary to grow 

without any long patterns as elements of the dictionary. This means that most of the time the 

transmitted codeword would represent a single letter from the source alphabet. As the dictionary 

size is much larger than the source alphabet size, the number of bits required to represent an element 

in the dictionary is much more than the number of bits required to represent a source letter. 

Therefore, if we tried to compress a sequence that does not contain repeating patterns, we would end 

up with more bits to transmit than if we had not performed any compression. Data without repetitive 

structure are often encountered when a previously compressed file is transferred over the telephone 

lines. 

 

Prediction with Partial Match (ppm):- The best-known context-based algorithm is the ppm 

algorithm, first proposed by Cleary and Witten in 1984. It has not been as popular as the various 

Ziv-Lempel-based algorithms mainly because of the faster execution speeds of the latter algorithms. 

Lately, with the devel-opment of more efficient variants, ppm-based algorithms are becoming 

increasingly popular.  
The idea of the ppm algorithm is elegantly simple. We would like to use large contexts to 

determine the probability of the symbol being encoded. However, the use of large contexts would 

require us to estimate and store an extremely large number of conditional probabilities, which might 

not be feasible. Instead of estimating these probabilities ahead of time, we can reduce the burden by 

estimating the probabilities as the coding proceeds. This way we only need to store those contexts 

that have occurred in the sequence being encoded. This is a much smaller number than the number 

of all possible contexts. While this mitigates the problem of storage, it also means that, especially at 

the beginning of an encoding, we will need to code letters that have not occurred previously in this 

context. In order to handle this situation, the source coder alphabet always contains an escape 

symbol, which is used to signal that the letter to be encoded has not been seen in this context. 

 

(1) The Basic Algorithm:- The basic algorithm initially attempts to use the largest context. The size 

of the largest context is predetermined. If the symbol to be encoded has not previously been 

encountered in this context, an escape symbol is encoded and the algorithm attempts to use the next 

smaller context. If the symbol has not occurred in this context either, the size of the context is 
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further reduced. This process continues until either we obtain a context that has previously been 

encountered with this symbol or we arrive at the conclusion that the symbol has not been 

encountered previously in any context. In this case, we use probability of 1/M to encode the symbol, 

where M is the size of the source alphabet. For example, when coding the a of probability, 
 

                                               T A B L E 6 . 1 Count array for −1 order context. 

 
Letter Count Cum_Count 

   

t 1 1 
h 1 2 
i 1 3 
s 1 4 
e 1 5 
b/ 1 6 

   

 Total_Count 6 
   

 

we would first attempt to see if the string proba has previously occurred that is, if a had previously 

occurred in the context of prob. If not, we would encode an escape and see if a had occurred in the 

context of rob. If the string roba had not occurred previously, we would again send an escape 

symbol and try the context ob. Continuing in this manner, we would try the context b, and failing 

that, we would see if the letter a (with a zero-order context) had occurred previously. If a was being 

encountered for the first time, we would use a model in which all letters occur with equal 

probability to encode a. This equiprobable model is sometimes referred to as the context of order 

−1. As the development of the probabilities with respect to each context is an adaptive process, the 

count corresponding to a symbol is updated each time the symbol is encountered. The number of 

counts to be assigned to the escape symbol is not obvious, and a number of different approaches 

have been used. One approach used by Cleary and Witten is to give the escape symbol a count of 

one, thus inflating the total count by one. Cleary and Witten call this method of assigning counts 

Method A and the resulting algorithm ppma. We will describe some of the other ways of assigning 

counts to the escape symbol later in this section.  
Before we delve into some of the details, let’s work through an example to see how all this works 

together. As we will be using arithmetic coding to encode the symbols, you might wish to refresh 

your memory of the arithmetic coding algorithms. 
 

Example : Let’s encode the sequence      thisbis/bthe/btithe/ 
 
Assuming we have already encoded the initial seven characters thisbis/, the various counts and 

Cum_Count arrays to be used in the arithmetic coding of the symbols are shown in Tables 6.1–6.4. 

In this example, we are assuming that the longest context length is two. This is a rather small value 

and is used here to keep the size of the example reasonably small. A more common value for the 

longest context length is five.  
We will assume that the word length for arithmetic coding is six. Thus, l = 000000 and u = 111111. 

As thisbis/ has already been encoded, the next letter to be encoded is b/. The second-order context 

for this letter is is. Looking at Table 6.4, we can see that the letter b/ is the first letter in this context 

with a Cum_Count value of 1. As the T otal_Count in this case is 2, the update equations for the 

lower and upper limits are 
  _  

l = 0 + (63 − 0 + 1) × 
0 

= 0 = 000000 
 

   

2 
 

  _  

u = 0 + (63 − 0 + 1) × 
1 

− 1 = 31 = 011111 
 

   

2 
  

As the MSBs of both l and u are the same, we shift that bit out and shift a 0 into the LSB of l and a 1 
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into the LSB of u. The transmitted sequence, lower limit, and upper limit after the update are 

 
                                      T A B L E 6 . 2 Count array for zero-order context. 

 
Letter Count Cum_Count 

   

t 1 1 
h 1 2 
i 2 4 
s 2 6 
b/ 1 7 

_ Esc_ 1 8 
 Total_Count 8 
   

 

 Transmitted sequence : 0 
 

l : 000000 u : 111111 

We also update the counts in Tables 6.2–6.4.  
The next letter to be encoded in the sequence is t. The second-order context is sb/. Looking at 

Table 6.4, we can see that t has not appeared before in this context. We therefore encode an escape 

symbol. Using the counts listed in Table 6.4, we update the lower and upper limits: 
  _  

l = 0 + (63 − 0 + 1) × 
1 

= 32 = 100000 
 

   

2 
 

  _  

u = 0 + (63 − 0 + 1) × 2 − 1 = 63 = 111111 
 

Again, the MSBs of l and u are the same, so we shift the bit out and shift 0 into the LSB of l and 1 

into u, restoring l to a value of 0 and u to a value of 63. The transmitted sequence is now 01. After 

transmitting the escape, we look at the first-order context of t, which is b/. Looking at Table 6.3, we 

can see that t has not previously occurred in this context. To let the decoder know this, we transmit 

another escape. Updating the limits, we get 
 

              u = 0 +   (63 − 0 + 1)  × 
2

  − 1 = 63/2 = 111111 

                                    
T A B L E 6 . 3 Count array for first-order 
  contexts.  
     

Context Letter Count Cum_Count 
     

 t h 1 1 
  _ Esc_ 1 2 
 Total_Count  2 
     

 h i 1 1 
  _ Esc_ 1 2 
 Total_Count  2 
     

 i s 2 2 
  _ Esc_ 1 3 
 Total_Count  3 
     

 b/ i 1 1 
  _ Esc_ 1 2 
 Total_Count  2 
     

 s b/ 1 1 
  _ Esc_ 1 2 
 Total_Count  2 
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Table 6.4 Count array for second-order 
          contexts.  
     

Context Letter Count Cum_Count 
     

 th i 1 1 
  _ Esc_ 1 2 
 Total_Count  2 
     

 hi s 1 1 
  _ Esc_ 1 2 
 Total_Count  2 
     

 is b/ 1 1 
  _ Esc_ 1 2 
 Total_Count  2 
     

 sb/ i 1 1 
  _ Esc_ 1 2 
 Total_Count  2 
     

 bi/ s 1 1 
  _ Esc_ 1 2 
 Total_Count  2 
     

 

T A B L E  6 . 5 Updated count array for zero-order context. 
 

Letter Count Cum_Count 
   

t 1 1 
h 1 2 
i 2 4 
s 2 6 
b/ 2 8 

_ Esc_ 1 9 
 Total_Count 9 
   

 

As the MSBs of l and u are the same, we shift the MSB out and shift 0 into the LSB of l and 1 into 

the LSB of u. The transmitted sequence is now 011. Having escaped out of the first-order contexts, 

we examine Table 6.5, the updated version of Table 6.2, to see if we can encode t using a zero-order 

context. Indeed we can, and using the Cum_Count array, we can update l and u: 
  _  

l = 0 + (63 − 0 + 1) × 
0 

= 0 = 000000 
 

9 
 

  _  

u = 0 + (63 − 0 + 1) × 1 − 1 = 6 = 000110 
 

The three most significant bits of both l and u are the same, so we shift them out. After the update 

we get 
 

Transmitted sequence: 011000 l : 000000 u : 110111 
 

The next letter to be encoded is h. The second-order context bt/ has not occurred previously, so 

we move directly to the first-order context t. The letter h has occurred previously in this context, so 

we update l and u and obtain 
 

Transmitted sequence : 0110000 

l : 000000 

u : 110101  
The method of encoding should now be clear. At this point the various counts are as shown in 

Tables 6.6–6.8.Now that we have an idea of how the ppm algorithm works, let’s examine some of 
the variations. 
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T A B L E 6 . 6 Count array for zero-order 
  context.  
     

 Letter  Count Cum_Count 
     

 t  2 2 
 h  2 4 
 i  2 6 
 s  2 8 
 b/  2 10 
_ Esc_  1 11 

 Total_Count  11 
   

T A B L E 6 . 7 Count array for first-order 
  contexts.  
     

Context Letter Count Cum_Count 
     

 t h 2 2 
  _ Esc_ 1 3 
 Total_Count 3 
     

 h i 1 1 
  _ Esc_ 1 2 
 Total_Count 2 
     

 i s 2 2 
  _ Esc_ 1 3 
 Total_Count 3 
     

 b/ i 1 1 
  t 1 2 
  _ Esc_ 1 3 
 Total_Count 3 
     

 s b/ 2 2 
  _ Esc_ 1 3 
 Total_Count 3 
     

 
 

(2) The Escape Symbol : - In our example we used a count of one for the escape symbol, thus 

inflating the total count in each context by one. Cleary and Witten call this Method A, and the 

corresponding algorithm is referred to as ppma. There is really no obvious justification for assigning 

a count of one to the escape symbol. For that matter, there is no obvious method of assigning counts 

to the escape symbol. There have been various methods reported in the literature.  
Another method described by Cleary and Witten is to reduce the counts of each symbol by one 

and assign these counts to the escape symbol. For example, suppose in a given sequence a occurs 10 

times in the context of prob, l occurs 9 times, and o occurs 3 times in the same 

 
T A B L E 6 . 8 Count array for second-order 
  contexts.  
     

 Context Letter Count Cum_Count 
     

 th i 1 1 
  _ Esc_ 1 2 
 Total_Count  2 
     

 hi s 1 1 
  _ Esc_ 1 2 
 Total_Count  2 
     

 is b/ 2 2 
  _ Esc_ 1 3 



SIET | Data Compression Notes (NCS-085,VIII
th

 Sem)                                 By- Sudesh Srivastava  
 

 [UNIT – III] Page 21 
 

 Total_Count  3 
     

 sb/ i 1 1 
  t 1 2 
  _ Esc_ 1 3 
 Total_Count  3 
     

 bi/ s 1 1 
  _ Esc_ 1 2 
 Total_Count  2 
     

 bt/ h 1 1 
  _ Esc_ 1 2 
 Total_Count  2 
   

T A B L E 6 . 9 Counts using Method A. 
     

 Context  Symbol Count 
     

 prob  a 10 
   l 09 
   o 03 
   _ Esc_ 01 
 Total_Count  23 
     

 

context (e.g., problem, proboscis, etc.). In Method A, we assign a count of one to the escape 

symbol, resulting in a total count of 23, which is one more than the number of times prob has 

occurred. This situation is shown in Table 6.9.  
In this second method, known as Method B, we reduce the count of each of the symbols a, l, and 

o by one and give the escape symbol a count of three, resulting in the counts shown in Table 6.10.  
The reasoning behind this approach is that if in a particular context more symbols can occur, 

there is a greater likelihood that there is a symbol in this context that has not occurred 

 
T A B L E 6 . 10 Counts using Method B.  
     

 Context Symbol Count 
     

  prob a 09 
   l 08 
   o 02 
   _ Esc_ 03 
  Total_Count 22 
    

T A B L E 6 . 11 Counts using Method C.  
    

 Context Symbol Count 
     

  prob a 10 
   l 09 
   o 03 
   _ Esc_ 03 
  Total_Count 25 
     

 

before. This increases the likelihood that the escape symbol will be used. Therefore, we should 

assign a higher probability to the escape symbol.  
A variant of Method B, appropriately named Method C, was proposed by Moffat. In Method C, 

the count assigned to the escape symbol is the number of symbols that have occurred in that context. 

In this respect, Method C is similar to Method B. The difference comes in the fact that, instead of 

“robbing” this from the counts of individual symbols, the total count is inflated by this amount. This 
situation is shown in Table 6.11. While there is some variation in performance depending on the 

characteristics of the data being encoded, Method C, on average, seems to provide the best 
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performance of the three methods for assigning counts to the escape symbol. 

 

(3) Length of Context : - It would seem that as far as the maximum length of the contexts is 

concerned, more is better. However, this is not necessarily true. A longer maximum length will 

usually result in a higher probability if the symbol to be encoded has a non zero count with respect 

to that context. How-ever, a long maximum length also means a higher probability of long 

sequences of escapes, which in turn can increase the number of bits used to encode the sequence. If 

we plot the compression performance versus maximum context length, we see an initial sharp 

increase in performance until some value of the maximum length, followed by a steady drop as the 

maximum length is further increased. The value at which we see a downturn in performance 

changes depending on the characteristics of the source sequence. 

 

(4) The Exclusion Principle : - The basic idea behind arithmetic coding is the division of the unit 

interval into subintervals, each of which represents a particular letter. The smaller the subinterval, 

the more bits are required to distinguish it from other subintervals. If we can reduce the number of 

symbols to be represented, the number of subintervals goes down as well. This in turn means that 

the sizes of the subintervals increase, leading to a reduction in the number of bits required for 

encoding. The exclusion principle used in ppm provides this kind of reduction in rate. Suppose we 

have been compressing a text sequence and come upon the sequence proba, and suppose we are 

trying to encode the letter a. Suppose also that the state of the two-letter context ob and the one-

letter context b are as shown in Table 6.12.  
First, we attempt to encode a with the two-letter context. As a does not occur in this context, we 

issue an escape symbol and reduce the size of the context. Looking at the table for the one-letter 

context b, we see that a does occur in this context with a count of 4 out of a total possible count of 

21. Notice that other letters in this context include l and o. However, by sending the escape symbol 

in the context of ob, we have already signalled to the decoder that the symbol being encoded is not 

any of the letters that have previously been encountered in the context of ob. Therefore, we can 

increase the size of the subinterval corresponding to a by temporarily removing l and o from the 

table. Instead of using Table 6.12, we use Table 6.13 to encode a. This exclusion of symbols from 

contexts on a temporary basis can result in cumulatively significant savings in terms of rate. 
  T A B L E 6 . 12    Counts for exclusion example. 

 
Context Symbol Count 

   

ob l 10 
 o 03 
 _ Esc_ 02 
 Total_Count 15 
   

b l 05 
 o 03 
 a 04 
 r 02 
 e 02 
 _ Esc_ 05 
 Total_Count 21 
   

   

 

T A B L E 6 . 13 Modified table used for exclusion example. 
 

Context Symbol Count 
   

b a 4 
 r 2 
 e 2 
 _ Esc_ 3 
 Total_Count 11 
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You may have noticed that we keep talking about small but significant savings. In lossless 

compression schemes, there is usually a basic principle, such as the idea of prediction with partial 

match, followed by a host of relatively small modifications. The importance of these modifications 

should not be underestimated, because together they often provide the margin of compression that 

makes a particular scheme competitive. 
 
The Burrows Wheeler Transform : - The Burrows-Wheeler transform (BWT) algorithm also uses 

the context of the symbol being encoded, but in a very different way, for lossless compression. The 

transform that is a major part of this algorithm was developed by Wheeler in 1983. However, the 

BWT compression algorithm, which uses this transform, saw the light of day in 1994 [77]. Unlike 

most of the previous algorithms we have looked at, the BWT algorithm requires that the entire 

sequence to be coded be available to the encoder before the coding takes place. Also, unlike most of 

the previous algorithms, the decoding procedure is not immediately evident once we know the 

encoding procedure. We will first describe the encoding procedure. If it is not clear how this 

particular encoding can be reversed, bear with us and we will get to it.  
The algorithm can be summarized as follows. Given a sequence of length N , we create N − 1 

other sequences where each of these N − 1 sequences is a cyclic shift of the original sequence. These 

N sequences are arranged in lexicographic order. The encoder then transmits the sequence of length 

N created by taking the last letter of each sorted, cyclically shifted, sequence. This sequence of last 

letters L, and the position of the original sequence in the sorted list, are coded and sent to the 

decoder. As we shall see, this information is sufficient to recover the original sequence.  
We start with a sequence of length N and end with a representation that contains N + 1 elements. 

However, this sequence has a structure that makes it highly amenable to compression. In particular 

we will use a method of coding called move to front (mtf), which is particularly effective on the type 

of structure exhibited by the sequence L.  
Before we describe the mtf approach, let us work through an example to generate the L sequence. 

Example : Let’s encode the sequence  
thisbis/bthe/ 

 
We start with all the cyclic permutations of this sequence. As there are a total of 11 characters, there 

are 11 permutations, shown in Table 6.14.  
Now let’s sort these sequences in lexicographic (dictionary) order (Table 6.15). The se-quence of 

the last letters L in this case is 

L : sshtthbii/be/ 

Notice how like letters have come together. If we had a longer sequence of letters, the runs of like 

letters would have been even longer. The mtf algorithm, which we will describe later, takes 

advantage of these runs.  
The original sequence appears as sequence number 10 in the sorted list, so the encoding of the 

sequence consists of the sequence L and the index value 10. 

Now that we have an encoding of the sequence, let’s see how we can decode the original 
sequence by using the sequence L and the index to the original sequence in the sorted list. The 

important thing to note is that all the elements of the initial sequence are contained in L. We just 

need to figure out the permutation that will let us recover the original sequence.  
The first step in obtaining the permutation is to generate the sequence F consisting of the first 

element of each row. That is simple to do because we lexicographically ordered the sequences. 

Therefore, the sequence F is simply the sequence L in lexicographic order. In our example this 

means that F is given as 
 

F : b/behhiisstt/ 
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We can use L and F to generate the original sequence. Look at Table 6.15 containing the 

cyclically shifted sequences sorted in lexicographic order. Because each row is a cyclical shift, the 

letter in the first column of any row is the letter appearing after the last column in the row in the 

original sequence. If we know that the original sequence is in the kth row, then we can begin 

unraveling the original sequence starting with the kth element of F. 

 
T A B L E 6 . 14 Permutations of this/bis/bthe.  
             

00 t h i s b/ i s b/ t h e 

01 h i s b/ i s b/ t h e t 

02 i s b/ i s b/ t h e t h 

03 s b/ i s b/ t h e t h i 

04 b/ i s b/ t h e t h i s 

05 i s b/ t h e t h i s b/ 

06 s b/ t h e t h i s b/ i 

07 b/ t h e t h i s b/ i s 

08 t h e t h i s b/ i s b/ 

09 h e t h i s b/ i s b/ t 

10 e t h i s b/ i s b/ t h 
             

 
 

T A B L E 6 . 15  Sequences sorted into    

          lexicographic order.    
             

0 b/ i s b/ t h e t h i s 

1 b/ t h e t h i s b/ i s 

2 e t h i s b/ i s b/ t h 

3 h e t h i s b/ i s b/ t 

4 h i s b/ i s b/ t h e t 

5 i s b/ i s b/ t h e t h 

6 i s b/ t h e t h i s b/ 

7 s b/ i s b/ t h e t h i 

8 s b/ t h e t h i s b/ i 

9 t h e t h i s b/ i s b/ 

10 t h i s b/ i s b/ t h e 
             

 

the original sequence is sequence number 10, so the first letter in the original sequence is F[10] = t. 

To find the letter following t, we look for t in the array L. There are two t’s in L. Which should we 

use? The t in F that we are working with is the lower of two t’s, so we pick the lower of two t’s in L. 

This is L[4]. Therefore, the next letter in our reconstructed sequence is F[4 ] = h. The reconstructed 

sequence to this point is th. To find the next letter, we look for h in the L array. Again there are two 

h’s. The h at F[4] is the lower of two h’s in F, so we pick the lower of the two h’s in L. This is the 

fifth element of L, so the next element in our decoded sequence is F[5] = i.  

The decoded sequence to this point is thi. The process continues as depicted in Figure 6.1 to 

generate the original sequence. 

Why go through all this trouble? After all, we are going from a sequence of length N to another 

sequence of length N plus an index value. It appears that we are actually causing expansion instead 

of compression.  

The answer is that the sequence L can be compressed much more efficiently than the original 

sequence. Even in our small example, we have runs of like symbols. This will happen a lot more 
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when N is large. Consider a large sample of text that has been cyclically shifted and sorted in a list 

A. Consider all the rows of A beginning with 

 
0 b  s  

 

1 b  s  
 

2 

e
  h  

 

3 h  t  

 

4 h  t  

 

5 i  h  
 

6 i  b  

 

7 s  i  

 

8 s  i  

 

9 t  b  

 

10 t  e  

 
F I G U R E 6 . 1 Decoding process. 

 

heb/. With high probability, heb/ would be preceded by t. Therefore, in L we would get a long run of t
_
s. 

 

Move- to- Front Coding:- A coding scheme that takes advantage of long runs of identical symbols 

is move-to-front (mt f ) coding. In this coding scheme, we start with some initial listing of the source 

alphabet. The symbol at the top of the list is assigned the number 0, the next one is assigned the 

number 1, and so on. The first time a particular symbol occurs, the number corresponding to its 

place in the list is transmitted. Then it is moved to the top of the list. If we have a run of this symbol, 

we transmit a sequence of 0s. This way, long runs of different symbols get transformed to a large 

number of 0s. Applying this technique to our example does not produce very impressive results due 

to the small size of the sequence, but we can see how the technique functions. 

Example : 
 
Let’s encode L = sshtthbii/be/. Let’s assume that the source alphabet is given by 
 

A = {b/, e, h, i, s, t} 
 
We start out with the assignment 
 

0 1 2 3 4 5 
      

b/ e h i s t 
      

The first element of L is s, which gets encoded as a 4. We then move s to the top of the list, which 

gives us 
 

0 1 2 3 4 5 
      

s b/ e h i t 
      

 
The next s is encoded as 0. Because s is already at the top of the list, we do not need to make any 

changes. The next letter is h, which we encode as 3. We then move h to the top of the list: 
 

0 1 2 3 4 5 
      

h s b/ e i t 
      

 

The next letter is t, which gets encoded as 5. Moving t to the top of the list, we get 
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0 1 2 3 4 5 
      

t h s b/ e i 
      

 

The next letter is also a t, so that gets encoded as a 0. Continuing in this fashion, we get the 

sequence 

          4 0 3 5 0 1 3 5 0 1 5 
As we warned, the results are not too impressive with this small sequence, but we can see how we 

would get large numbers of 0s and small values if the sequence to be encoded was longer. These 

long sequences of 0s could then be efficiently encoded using schemes specifically designed for 

encoding long repetitions of the same symbol, such as run-length coding. 

 

CALIC:- The Context Adaptive Lossless Image Compression (CALIC) scheme, which came 

into being in response to a call for proposals for a new lossless image compression scheme in 

1994, uses both context and prediction of the pixel values. The CALIC scheme actually 

functions in two modes, one for grayscale images and another for bi-level images. In this 

section, we will concentrate on the compression of grayscale images.  
In an image, a given pixel generally has a value close to one of its neighbors. Which neighbor 

has the closest value depends on the local structure of the image. Depending on whether there is 

a horizontal or vertical edge in the neighborhood of the pixel being encoded, the pixel above, or 

the pixel to the left, or some weighted average of neighboring pixels may give the best 

prediction. How close the prediction is to the pixel being encoded depends on the surrounding 

texture. In a region of the image with a great deal of variability, the prediction is likely to be 

further from the pixel being encoded than in the regions with less variability.  
In order to take into account all of these factors, the algorithm has to make a determina-tion 

about the environment of the pixel to be encoded. The information used to make this 

determination has to be available to both the encoder and decoder.  
Let’s take up the question of the presence of vertical or horizontal edges in the neighborhood 

of the pixel being encoded. To help our discussion, we will refer to Figure 7.1. In this figure, the 

pixel to be encoded has been marked with an X. The pixel above is called the north pixel, the 

pixel to the left is the west pixel, and so on. Note that when pixel X is being encoded, all other 

marked pixels (N, W, NW, NE, WW, NN, NE, and NNE) are available to both the encoder and 

decoder.  
 

 

NN NNE 

 
NW N NE 

 
WW W X 

 

We can get an idea of what kinds of boundaries may or may not be in the neighborhood of X by 

computing 
 

dh = |W − W W | + |N − N W | + |N E − N |  
dv  = |W − N W | + |N − N N | + |N E − N N E | .  

The relative values of dh and dv are used to obtain the initial prediction of the pixel X. This initial 
prediction is then refined by taking other factors into account. If the value of dh is much higher 
than the value of dv , this will mean there is a large amount of horizontal variation, and it would 
be better to pick N to be the initial prediction. If, on the other hand, dv is much larger than dh , 
this would mean that there is a large amount of vertical variation, and the initial prediction is 
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taken to be W. If the differences are more moderate or smaller, the predicted value is a weighted 
average of the neighboring pixels.  
The exact algorithm used by CALIC to form the initial prediction is given by the following 

pseudocode: 
 

if dh − dv  > 80  
X ← N 

else if dv − dh > 80 

X ← W 
else  
{  

X ← (N + W )/2 + (N E − N W )/4 

if dh − dv  > 32 

X ← ( X + N )/2 

else if dv − dh > 32  
X ← ( X + W )/2 

else if dh − dv  > 8 

X ← (3X + N )/4 

else if dv − dh > 8 

X ← (3X + W )/4 

} 
 

Using the information about whether the pixel values are changing by large or small amounts in the 

vertical or horizontal direction in the neighborhood of the pixel being encoded results in a good 

initial prediction. In order to refine this prediction, we need some information about the 

interrelationships of the pixels in the neighborhood. Using this information, we can generate an 

offset or refinement to our initial prediction. We quantify the information about the neighborhood 

by first forming the vector 
 

[ N , W, N W, N E , N N , W W, 2N − N N , 2W − W W ] 

We then compare each component of this vector with our initial prediction X . If the value of the 

component is less than the prediction, we replace the value with a 1; otherwise we replace it with a 

0. Thus, we end up with an eight-component binary vector. If each component of the binary vector 

was independent, we would end up with 256 possible vectors. However, because 

of the dependence of various components, we actually have 144 possible configurations. We 

also compute a quantity that incorporates the vertical and horizontal variations and the previous 

error in prediction by 
δ = dh + dv + 
2  N − N (8) 
    

where N is the predicted value of N. This range of values of δ is divided into four intervals, each 
represented by 2 bits. These four possibilities, along with the 144 texture descriptors, create 144 
× 4 = 576 contexts for X. As the encoding proceeds, we keep track of how much prediction error 
is generated in each context and offset our initial prediction by that amount. This results in the 
final predicted value.  

Once the prediction is obtained, the difference between the pixel value and the prediction (the 
prediction error or residual) has to be encoded. While the prediction process outlined above 
removes a lot of the structure that was in the original sequence, there is still some structure left 
in the residual sequence. We can take advantage of some of this structure by coding the residual 
in terms of its context. The context of the residual is taken to be the value of δ defined in Eq. (8). 
In order to reduce the complexity of the encoding, rather than using the actual value as the 
context, CALIC uses the range of values in which δ lies as the context. Thus: 

0 δ < q1 ⇒ Context 1 

q1 δ < q2 ⇒ Context 2 

q2 δ < q3 ⇒ Context 3 
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q3 δ < q4 ⇒ Context 4 

q4 δ < q5 ⇒ Context 5 

q5 δ < q6 ⇒ Context 6 

q6 δ < q7 ⇒ Context 7 

q7 δ < q8 ⇒ Context 8 
The values of q1–q8 can be prescribed by the user.  

If the original pixel values lie between 0 and M − 1, the differences or prediction residuals 
will lie between −(M − 1) and M − 1. Even though most of the differences will have a magnitude 
close to zero, for arithmetic coding we still have to assign a count to all possible symbols. This 
means a reduction in the size of the intervals assigned to values that do occur, which in turn 
means using a larger number of bits to represent these values. The CALIC algorithm attempts to 
resolve this problem in a number of ways. Let’s describe these using an example.Consider the 
sequence 

xn : 0, 7, 4, 3, 5, 2, 1, 7  
We can see that all of the numbers lie between 0 and 7, a range of values that would require 3 
bits to represent. Now suppose we predict a sequence element by the previous element in the 
sequence. The sequence of differences  

       rn = xn − xn−1 
 
is given by 

              rn : 0, 7, −3, −1, 2, −3, −1, 6 
If we were given this sequence, we could easily recover the original sequence by using  

xn = xn−1 + rn . 
 
However, the prediction residual values rn lie in the [−7, 7] range. That is, the alphabet required to 
represent these values is almost twice the size of the original alphabet. However, if we look closely 
we can see that the value of rn actually lies between −xn−1 and 7 − xn−1. The smallest value that rn can 
take on occurs when xn has a value of 0, in which case rn will have a value of −xn−1. The largest 
value that rn can take on occurs when xn is 7, in which case rn has a value of 7 − xn−1. In other words, 
given a particular value for xn−1, the number of different values that rn can take on is the same as the 
number of values that xn can take on. Generalizing from this, we can see that if a pixel takes on 
values between 0 and M − 1, then given a predicted value X , the difference X − X will take on 
values in the range − X to M − 1 − X . We can use this fact to map the difference values into the 
range [0, M − 1], using the following mapping: 
Another approach used by CALIC to reduce the size of its alphabet is to use a modification of a 

technique called recursive indexing ] described in Chapter 9. Recursive indexing is a technique for 

representing a large range of numbers using only a small set. It is easiest to explain using an 

example. Suppose we want to represent positive integers using only the integers between 0 and 7—
that is, a representation alphabet of size 8. Recursive indexing works as follows. If the number to be 

represented lies between 0 and 6, we simply represent it by that number. If the number to be 

represented is greater than or equal to 7, we first send the number 7, subtract 7 from the original 

number, and repeat the process. We keep repeating the process until the remainder is a number 

between 0 and 6. Thus, for example, 9 would be represented by 7 followed by a 2, and 17 would be 

represented by two 7s followed by a 3. The decoder, when it sees a number between 0 and 6, will 

decode it at its face value, and when it sees 7, it will keep accumulating the values until a value 

between 0 and 6 is received. This method of representation followed by entropy coding has been 

shown to be optimal for sequences that follow a geometric distribution [86].  
In CALIC, the representation alphabet is different for different coding contexts. For each coding 

context k, we use an alphabet Ak = {0, 1, . . . , Nk }. Furthermore, if the residual occurs 

in context k, then the first number that is transmitted is coded with respect to context k; if further 

recursion is needed, we use the k + 1 context. 
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We can summarize the CALIC algorithm as follows: 
 

1. Find the initial prediction X . 
 

2. Compute the prediction context. 
 

3. Refine the prediction by removing the estimate of the bias in that context. 
 

4. Update the bias estimate. 
 

5. Obtain the residual and remap it so the residual values lie between 0 and M − 1, where M is 

the size of the initial alphabet. 
 

6. Find the coding context k. 
 

7. Code the residual using the coding context. 
 
All these components working together have kept CALIC as the state of the art in lossless image 

compression. However, we can get almost as good a performance if we simplify some of the more 

involved aspects of CALIC. 

 

JPEG-LS:- 

The JPEG-LS standard looks more like CALIC than the old JPEG standard. When the initial 

proposals for the new lossless compression standard were compared, CALIC was rated first in 

six of the seven categories of images tested. Motivated by some aspects of CALIC, a team from 

Hewlett-Packard (HP) proposed a much simpler predictive coder, under the name LOCO-I (for 

low complexity), that still performed close to CALIC.  
As in CALIC, the standard has both a lossless and a lossy mode. We will not describe the 

lossy coding procedures.  
The initial prediction is obtained using the following algorithm: 

 
if N W max(W, N ) 

 
X = max(W, N ) 
else  
{ 

if N W min(W, N ) 
 

X = min(W, N ) 
else  
X = W + N − N W 

} 
 
This prediction approach is a variation of Median Adaptive Prediction [88], in which the 

predicted value is the median of the N , W , and NW pixels. The initial prediction is then refined 

using the average value of the prediction error in that particular context. 
The contexts in JPEG-LS also reflect the local variations in pixel values. However, they are 
computed differently from CALIC. First, measures of differences D1, D2, and D3 are computed as 
follows:  

D1 = N E − N 

D2 = N − N W 

D3 = N W − W.  
The values of these differences define a three-component context vector Q. The components of Q ( 
Q1, Q2, and Q3) are defined by the following mappings:  

Di     −T3 ⇒   Qi = −4   

−T3 < Di−T2 ⇒   Qi = −3   
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−T2 < Di−T1 ⇒   Qi = −2   

−T1 < Di0  ⇒   Qi = −1   

Di = 0 ⇒   Qi = 0   

0 < Di     T1 ⇒   Qi = 1   

T1 < Di     T2 ⇒   Qi = 2   

T2 < Di     T3 ⇒   Qi = 3 

(9) 

 

T3 < Di ⇒   Qi = 4  
where T1, T2, and T3 are positive coefficients that can be defined by the user. Given nine possible 
values for each component of the context vector, this results in 9 × 9 × 9 = 729 possible 
contexts. In order to simplify the coding process, the number of contexts is reduced by replacing 
any context vector Q whose first nonzero element is negative by −Q. Whenever this happens, a 
variable SIGN is also set to −1; otherwise, it is set to +1. This reduces the number of contexts to 
365. The vector Q is then mapped into a number between 0 and 364. (The standard does not 
specify the particular mapping to use.)  

The variable SIGN is used in the prediction refinement step. The correction is first multi-plied 

by SIGN and then added to the initial prediction. 
The prediction error rn is mapped into an interval that is the same size as the range occupied 

by the original pixel values. The mapping used in JPEG-LS is as follows: 
M

 

rn < − ⇒ rn ← rn + M  M
 

rn > ⇒ rn ← rn − M   
Finally, the prediction errors are encoded using adaptively selected codes based on Golomb 

codes, which have also been shown to be optimal for sequences with a geometric distribution. In 

Table 7.3, we compare the performance of the old and new JPEG standards and CALIC. The 

results for the new JPEG scheme were obtained using a software implementation courtesy of 

HP. We can see that for most of the images, the new JPEG standard performs very close to 

CALIC and outperforms the old standard by 6% to 18%. The only case where the performance 

is not as good is for the Omaha image. While the performance improvement in these examples. 

 
T A B L E 7 . 3 Comparison of the file sizes obtained using the new and old JPEG 

lossless compression standards and CALIC.  
 

Image Old JPEG New JPEG CALIC 
    

Sena 31,055 27,339 26,433 
Sensin 32,429 30,344 29,213 
Earth 32,137 26,088 25,280 

Omaha 48,818 50,765 48,249 
    

 

may not be very impressive, we should keep in mind that we are picking the best result out of 

eight for the old JPEG. In practice, this would mean trying all eight JPEG predictors and picking 

the best. On the other hand, both CALIC and the new JPEG standard are single-pass algorithms. 

Furthermore, because of the ability of both CALIC and the new standard to function in multiple 

modes, both perform very well on compound documents, which may contain images along with 

text. 

 

Multiresolution Approaches:- Our final predictive image compression scheme is perhaps not as 

competitive as the other schemes. However, it is an interesting algorithm because it approaches the 

problem from a slightly different point of view.  
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Multiresolution models generate representations of an image with varying spatial resolu-tion. This 

usually results in a pyramid-like representation of the image, with each layer of the pyramid serving 

as a prediction model for the layer immediately below.  
One of the more popular of these techniques is known as HINT (Hierarchical INTerpola-tion). The 
specific steps involved in HINT are as follows. First, residuals corresponding to the pixels labeled in 
Figure 7.2 are obtained using linear prediction, and they are trans-mitted. Then, the intermediate 
pixels (◦) are estimated by linear interpolation, and the error in estimation is then transmitted. Then, 
the pixels X are estimated from and ◦, and the estimation error is transmitted. Finally, the pixels 
labeled ∗ and then • are estimated from known neighbors, and the errors are transmitted. The 
reconstruction process proceeds in a similar manner. One use of a multiresolution approach is in 
progressive image transmission. 
 

Progressive Image Transmission:- The last few years have seen a very rapid increase in the 

amount of information stored as images, especially remotely sensed images (such as images from 

weather and other satellites) and medical images (such as computerized axial tomography (CAT) 

scans, magnetic resonance 

 
 

  • X •  • X •   
           

 • * • * • * • * •  
           

 X •  • X •  • X  
           

 • * • * • * • * •  
           

  • X •  • X •   
           

 • * • * • * • * •  
           

 X •  • X •  • X  
           

 • * • * • * • * •  
           

  • X •  • X •   
           

             
  F I G U R E 7 . 2 The HINT scheme for hierarchical prediction. 
 

images (MRI), and mammograms). It is not enough to have information. We also need to make 

these images accessible to individuals who can make use of them. There are many issues 

involved with making large amounts of information accessible to a large number of people. In 

this section, we will look at one particular issue—transmitting these images to remote users. (For 

a more general look at the problem of managing large amounts of information.  
Suppose a user wants to browse through a number of images in a remote database. The user is 

connected to the database via a 1 Mbps link. Suppose the size of the images is 2048 × 1536, and 

on average, users have to look through 30 images before finding the image for which they are 

looking. If these images were monochrome with 8 bits per pixel, this process would take close to 

15 minutes, which is not very practical. Even if we compressed these images before 

transmission, lossless compression, on average, gives us about a 2:1 compression. This would 

only cut the transmission in half, which still makes the approach cumbersome. A better 

alternative is to send an approximation of each image first, which does not require too many bits 

but is still sufficiently accurate to give users an idea of what the image looks like. If users find 

the image to be of interest, they can request a further refinement of the approximation or the 

complete image. This approach is called progressive image transmission. 

E x a m p l e : A simple progressive transmission scheme is to divide the image into blocks and 

then send a representative pixel for the block. The receiver replaces each pixel in the block with the 

representative value. In this example, the representative value is the value of the pixel in the top-left 
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corner. Depending on the size of the block, the amount of data that would need to be transmitted 

could be substantially reduced. For example, to transmit a 2048 × 1536 image at 8 bits per pixel 

over a 1 Mbps link takes about 25 seconds. Using a block size of 8 × 8 and using the top-left pixel 

in each block as the representative value, we can approximate the 1024× 1024 image with a 128 × 

128 subsampled image. Using 8 bits per pixel and a 1 Mbps link, the time required to transmit this 

approximation to the image takes less than a third of a second. 

Assuming that this approximation was sufficient to let the user decide whether a particular image 

was the desired image, the time required now to look through 30 images becomes on the order of 

seconds instead of the 15 minutes mentioned earlier. If the approximation using a block size of 8 × 8 

does not provide enough resolution to make a decision, the user can ask for a refinement. The 

transmitter can then divide the 8 × 8 block into four 4 × 4 blocks. The pixel at the upper-left corner 

of the upper-left block was already transmitted as the representative pixel for the 8 × 8 block, so we 

need to send three more pixels for the other three 4 × 4 blocks. This takes a little more than a 

second, so even if the user had to request a finer approximation every third image, this would only 

increase the total search time by a very small amount. To see what these approximations look like, 

we have taken the Sena image and encoded it using different block sizes. The results are shown in 

Figure 7.3. The lowest-resolution image, shown in the top left, is a 32 × 32 image. The top-right 

image is a 64 × 64 image. The bottom-left image is a 128 × 128 image, and the bottom-right image 

is the 256 × 256 original. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
F I G U R E  Sena image coded using different block sizes for progressive trans-mission. Top row: 
block size 8 × 8 and block size 4 × 4. Bottom row: block size 2 × 2 and original image. 
 

Notice that even with a block size of 8, the image is clearly recognizable as a person. Therefore, 

if the user was looking for a house, they would probably skip over this image after seeing the 
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first approximation. If the user was looking for a picture of a person, they could still make 

decisions based on the second approximation.  
Finally, when an image is built line by line, the eye tends to follow the scan line. With the 

progressive transmission approach, the user gets a more global view of the image very early in 

the image formation process. Consider the images in Figure 7.4. The images on the left are the 8 

× 8, 4 × 4, and 2 × 2 approximations of the Sena image. On the right, we show how much of the 

image we would see in the same amount of time if we used the standard line-by-line 

raster scan order. We would like the first approximations that we transmit to use as few bits as 
possible yet be accurate enough to allow the user to make a decision to accept or reject the image 
with a certain degree of confidence. As these approximations are lossy, many progressive 
transmission schemes use well-known lossy compression schemes in the first pass.  

The more popular lossy compression schemes, such as transform coding, tend to require a 

significant amount of computation. As the decoders for most progressive transmission schemes 

have to function on a wide variety of platforms, they are generally implemented in software and 

need to be simple and fast. This requirement has led to the development of a number of 

progressive transmission schemes that do not use lossy compression for their initial 

approximations. Most of these schemes have a form similar to the one described in Example 

7.6.1, and they are generally referred to as pyramid schemes because of the manner in which the 

approximations are generated and the image is reconstructed.  
When we use the pyramid form, we still have a number of ways to generate the approxima-

tions. One of the problems with the simple approach described in Example 7.6.1 is that if the 

pixel values vary a lot within a block, the “representative” value may not be very representa-tive. 

To prevent this from happening, we could represent the block by some sort of an average or 

composite value. For example, suppose we start out with a 512 × 512 image. We first divide the 

image into 2 × 2 blocks and compute the integer value of the average of each block]. The integer 

values of the averages would constitute the penultimate approximation. The approximation to be 

transmitted prior to that can be obtained by taking the average of 2 × 2 averages and so on, as 

shown in Figure 7.5. 

Using the simple technique in Example 7.6.1, we ended up transmitting the same number of 

values as the original number of pixels. However, when we use the mean of the pixels as our 

approximation, after we have transmitted the mean values at each level, we still have to transmit 

the actual pixel values. The reason is that when we take the integer part of the average, we end 

up throwing away information that cannot be retrieved. To avoid this problem of data expansion, 

we can transmit the sum of the values in the 2 × 2 block. Then we only need to transmit three 

more values to recover the original four values. With this approach, although we would be 

transmitting the same number of values as the number of pixels in the image, we might still end 

up sending more bits because representing all possible values of the sum would require 

transmitting 2 more bits than was required for the original value.  

For example, if the pixels in the image can take on values between 0 and 255, which can be 

represented by 8 bits, their sum will take on values between 0 and 1024, which would require 10 

bits. If we are allowed to use entropy coding, we can remove the problem of data expansion by 

using the fact that the neighboring values in each approximation are heavily correlated, as are 

values in different levels of the pyramid.  

This means that differences between these values can be efficiently encoded using entropy 

coding. By doing so, we end up getting compression instead of expansion. 
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F I G U R E 7 . 4 Comparison between the received image using progressive transmis-sion and 
using the standard raster scan order. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  F I G U R E 7 . 5 The pyramid structure for progressive transmission. 
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Instead of taking the arithmetic average, we could also form some sort of weighted average. The 

general procedure would be similar to that described above. (For one of the more well-known 

weighted average techniques).  
The representative value does not have to be an average. We could use the pixel values in the 

approximation at the lower levels of the pyramid as indices into a lookup table. The lookup table 

could be designed to preserve important information such as edges. The problem with this 

approach would be the size of the lookup table. If we were using 2 × 2 blocks of 8-bit values, the 

lookup table would have 2
32

 values, which is too large for most applications. The size of the 

table could be reduced if the number of bits per pixel was lower or if, instead of taking 2 × 2 

blocks, we used rectangular blocks of size 2 × 1 and 1 × 2 .  
Finally, we do not have to build the pyramid one layer at a time. After sending the lowest-

resolution approximations, we can use some measure of information contained in a block to 

decide whether it should be transmitted . One possible measure could be the difference between 

the largest and smallest intensity values in the block. Another might be to look at the maximum 

number of similar pixels in a block. Using an information measure to guide the progressive 

transmission of images allows the user to see portions of the image first that are visually more 

significant. 
 

Facsimile Encoding:- One of the earliest applications of lossless compression in the modern era has 
been the com-pression of facsimile, or fax. In facsimile transmission, a page is scanned and 
converted into a sequence of black or white pixels. The requirements of how fast the facsimile of an 
A4 document (210 × 297 mm) must be transmitted have changed over the last two decades. The 

issued a number of recommendations based on the speed requirements at a given time. The 

CCITT classifies the apparatus for facsimile transmission into four groups. Although several 

considerations are used in this classification, if we only consider the time to transmit an A4-size 

document over phone lines, the four groups can be described as follows: 
 

Group 1: This apparatus is capable of transmitting an A4-size document in about 6 minutes 

over phone lines using an analog scheme. The apparatus is standardized in recommendation 

T.2. 
 

Group 2: This apparatus is capable of transmitting an A4-size document over phone lines 

in about 3 minutes. A Group 2 apparatus also uses an analog scheme and, therefore, does 

not use data compression. The apparatus is standardized in recommendation T.3. 
 

Group 3: This apparatus uses a digitized binary representation of the facsimile. Because it 

is a digital scheme, it can and does use data compression and is capable of transmitting an 

A4-size document in about a minute. The apparatus is standardized in recommendation T.4. 
 

Group 4: This apparatus has the same speed requirement as Group 3. The apparatus is 

standardized in recommendations T.6, T.503, T.521, and T.563. 
 

With the arrival of the Internet, facsimile transmission has changed as well. Given the wide 

range of rates and “apparatus” used for digital communication, it makes sense to focus more on 
protocols than on apparatus. The newer recommendations from the ITU provide standards for 

compression that are more or less independent of apparatus.  
Later in this chapter, we will look at the compression schemes described in ITU-T recom-

mendations T.4, T.6, T.82 (JBIG), T.88 (JBIG2), and T.44 (MRC). We begin with a look at an 

earlier technique for facsimile called run-length coding, which still survives as part of the T.4 

recommendation. 
 

 


