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UNIT-I  
Compression Techniques: 
 

When we speak of a compression technique or compression algorithm we are actually referring to 

two algorithms. There is the compression algorithm that takes an input X and generates a 

representation Xc that requires fewer bits, and there is a reconstruction algorithm that operates on the 

compressed representation Xc to generate the reconstruction Y. These operations are shown 

schematically in Figure.We will follow convention and refer to both the compression and 

reconstruction algorithms together to mean the compression algorithm. 
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                            Compression and Reconstruction 
 

 

Based on the requirements of reconstruction, data compression schemes can be divided into two 

broad classes: lossless compression schemes, in which Y is identical to X , and lossy compression 

schemes, which generally provide much higher compression than lossless compression but allow Y 

to be different from X . 

Lossless Compression:  
Lossless compression techniques, as their name implies, involve no loss of information. If data have 

been losslessly compressed, the original data can be recovered exactly from the compressed data. 

Lossless compression is generally used for applications that cannot tolerate any difference between 

the original and reconstructed data.  
Text compression is an important area for lossless compression. It is very important that the 

reconstruction is identical to the original text, as very small differences can result in statements with 

very different meanings. Consider the sentences “Do not send money” and “Do now send money.” 

A similar argument holds for computer files and for certain types of data such as bank records.  
If data of any kind are to be processed or “enhanced” later to yield more information, it is 

important that the integrity be preserved. For example, suppose we compressed a radiological image 

in a lossy fashion, and the difference between the reconstruction Y and the original X was visually 

undetectable. If this image was later enhanced, the previously undetectable differences may cause 

the appearance of artifacts that could seriously mislead the radiologist. Because the price for this 

kind of mishap may be a human life, it makes sense to be very careful about using a compression 

scheme that generates a reconstruction that is different from the original. 

There are many situations that require compression where we want the reconstruction to be 
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identical to the original. There are also a number of situations in which it is possible to relax this 

requirement in order to get more compression. In these situations, we look to lossy compression 

techniques. 

Lossy Compression: 
Lossy compression techniques involve some loss of information, and data that have been 

compressed using lossy techniques generally cannot be recovered or reconstructed exactly. In return 

for accepting this distortion in the reconstruction, we can generally obtain much higher compression 

ratios than is possible with lossless compression.  
In many applications, this lack of exact reconstruction is not a problem. For example, when 

storing or transmitting speech, the exact value of each sample of speech is not necessary. Depending 

on the quality required of the reconstructed speech, varying amounts of loss of information about 

the value of each sample can be tolerated. If the quality of the reconstructed speech is to be similar 

to that heard on the telephone, a significant loss of information can be tolerated. However, if the 

reconstructed speech needs to be of the quality heard on a compact disc, the amount of information 

loss that can be tolerated is much lower.  
Similarly, when viewing a reconstruction of a video sequence, the fact that the reconstruc-tion is 

different from the original is generally not important as long as the differences do not result in 

annoying artifacts. Thus, video is generally compressed using lossy compression. 

Measures of Performance: 
A compression algorithm can be evaluated in a number of different ways. We could measure the 

relative complexity of the algorithm, the memory required to implement the algorithm, how fast the 

algorithm performs on a given machine, the amount of compression, and how closely the 

reconstruction resembles the original.   
A very logical way of measuring how well a compression algorithm compresses a given set of 

data is to look at the ratio of the number of bits required to represent the data before compression to 

the number of bits required to represent the data after compression. This ratio is called the 

compression ratio. Suppose storing an image made up of a square array of 256×256 pixels requires 

65,536 bytes. The image is compressed and the compressed version requires 16,384 bytes. We 

would say that the compression ratio is 4:1. We can also represent the compression ratio by 

expressing the reduction in the amount of data required as a percentage of the size of the original 

data. In this particular example, the compression ratio calculated in this manner would be 75%.  
Another way of reporting compression performance is to provide the average number of bits 

required to represent a single sample. This is generally referred to as the rate. For example, in the 

case of the compressed image described above, if we assume 8 bits per byte (or pixel), the average 

number of bits per pixel in the compressed representation is 2. Thus, we would say that the rate is 2 

bits per pixel.  
In lossy compression, the reconstruction differs from the original data. Therefore, in order to 

determine the efficiency of a compression algorithm, we have to have some way of quantifying the 

difference. The difference between the original and the reconstruction is often called the distortion. 

Lossy techniques are generally used for the compression of data that originate as analog signals, 

such as speech and video. In compression of speech and video, the final arbiter of quality is human. 

Because human responses are difficult to model mathematically, many approximate measures of 

distortion are used to determine the quality of the reconstructed waveforms.  
Other terms that are also used when talking about differences between the reconstruction and the 

original are fidelity and quality. When we say that the fidelity or quality of a reconstruction is high, 

we mean that the difference between the reconstruction and the original is small. Whether this 

difference is a mathematical difference or a perceptual difference should be evident from the 
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context. 

Modeling and Coding:   
The development of data compression algorithms for a variety of data can be divided into two 

phases. The first phase is usually referred to as modeling. In this phase, we try to extract information 

about any redundancy that exists in the data and describe the redundancy in the form of a model. 

The second phase is called coding. A description of the model and a “description” of how the data 

differ from the model are encoded, generally using a binary alphabet. The difference between the 

data and the model is often referred to as the residual. 
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       Sequence of Data Values 

 

In the following three examples, we will look at three different ways that data can be modeled. We 

will then use the model to obtain compression. 

 

Example -1:  
Consider the following sequence of numbers {x1, x2, x3, . . .}: 
 

9 11 11 11 14 13 15 17 16 17 20 21             
 
If we were to transmit or store the binary representations of these numbers, we would need to use 5 

bits per sample. However, by exploiting the structure in the data, we can represent the sequence 

using fewer bits. If we plot these data as shown in Figure, we see that the data seem to fall on a 

straight line. A model for the data could, therefore, be a straight line given by the equation  
xˆn = n + 8   n = 1, 2, . . .  

The structure in this particular sequence of numbers can be characterized by an equation. Thus, 
xˆ1 = 9, while x1 = 9, xˆ2 = 10, while x2 = 11, and so on. To make use of this structure, let’s examine 
the difference between the data and the model. The difference (or residual) is given by the sequence 
 

en = xn − xˆn : 010 − 11 − 101 − 1 − 111 
 
The residual sequence consists of only three numbers {−1, 0, 1}. If we assign a code of 00 to −1, a 

code of 01 to 0, and a code of 10 to 1, we need to use 2 bits to represent each element of the residual 

sequence. Therefore, we can obtain compression by transmitting or storing the parameters of the 

model and the residual sequence. The encoding can be exact if the required compression is to be 

lossless, or approximate if the compression can be lossy. 
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The type of structure or redundancy that existed in these data follows a simple law. Once we 

recognize this law, we can make use of the structure to predict the value of each element in the 

sequence and then encode the residual. Structure of this type is only one of many types of structure. 

 
Example-2 : 
 
Consider the following sequence of numbers: 
 

27 28 29 28 26 27 29 28 30 32 34 36 38              
 
The sequence is plotted in Figure.  

The sequence does not seem to follow a simple law as in the previous case. However, each value 

in this sequence is close to the previous value. Suppose we send the first value, then in place of 

subsequent values we send the difference between it and the previous value. The sequence of 

transmitted values would be 
 

27 1   1   -1   -2   1   2   -1   2   2   2   2   2 
 
Like the previous example, the number of distinct values has been reduced. Fewer bits are required 

to represent each number, and compression is achieved. The decoder adds each received value to the 

previous decoded value to obtain the reconstruction corresponding to the received value. Techniques 

that use the past values of a sequence to predict the current value and then encode the error in 

prediction, or residual, are called predictive coding schemes. 
 

Example-3 : 
 
Suppose we have the following sequence: 
 

abbarrayaran/barray/bran/b/ f arb/ f aarb/ f aaarba/way 
 
which is typical of all sequences generated by a source (b/ denotes a blank space). Notice that the 

sequence is made up of eight different symbols. In order to represent eight symbols, we need to use 

3 bits per symbol. Suppose instead we used the code shown in Table. Notice that we have assigned a 

codeword with only a single bit to the symbol that occurs most often (a) and correspondingly longer 

codewords to symbols that occur less often. If we substitute the codes for each symbol, we will use 

106 bits to encode the entire sequence. As there are 41 symbols in the sequence, this works out to 

approximately 2.58 bits per symbol. This means we have obtained a compression ratio of 1.16:1.  
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 T A B L E  A code with  

 

  codewords  
 

  of varying  
 

  length.  
 

    
 

a 1  
 

b/ 001  
 

 b 01100  
 

 f 0100  
 

 n 0111  
 

r 000  
 

 w 01101  
 

 y 0101 
  

   
 

 

When dealing with text, along with statistical redundancy, we also see redundancy in the form of 

words that repeat often. We can take advantage of this form of redundancy by constructing a list of 

these words and then representing them by their position in the list. This type of compression 

scheme is called a dictionary compression scheme. Often the structure or redundancy in the data 

becomes more evident when we look at groups of symbols. Finally, there will be situations in which 

it is easier to take advantage of the structure if we decompose the data into a number of components. 

We can then study each component separately and use a model appropriate to that component. 

 

Mathematical Preliminaries for Lossless compression:  

A brief introduction to information theory: 

Shannon defined a quantity called self-information. Suppose we have an event A, which is a set of 

outcomes of some random experiment. If P (A) is the probability that the event A will occur, then 

the information associated with A is given by 
 

1  / 

= − logb P( A) 
i
 
(

 
A)

 
=

 
log 

b  P( A) 

 

Note that we have not specified the base b of the log function. We will discuss the choice of the base 

later in this section. The use of the logarithm to obtain a measure of information was not an arbitrary 

choice as we shall see in Section. But first let’s see if the use of a logarithm in this context makes 

sense from an intuitive point of view. Recall that log(1)= 0, and −log(x) increases as x decreases 

from one to zero. Therefore, if the probability of an event is low, the amount of self-information 

associated with it is high; if the probability of an event is high, the information associated with it is 

low. Even if we ignore the mathematical definition of information and simply use the definition we 

use in everyday language, this makes some intuitive sense. The barking of a dog during a burglary is 

a high-probability event and, therefore, does not contain too much information. However, if the dog 

did not bark during a burglary, this is a low-probability event and contains a lot of information. 

Although this equivalence of the mathematical and semantic definitions of information holds true 

most of the time, it does not hold all of the time. For example, a totally random string of letters will 

contain more information than a well-thought-out treatise on information theory. 

Another property of this mathematical definition of information that makes intuitive sense is that the 

information obtained from the occurrence of two independent events is the sum of the information 

obtained from the occurrence of the individual events. Suppose A and B are two independent events. 

The self-information associated with the occurrence of both event A and event B. 

The unit of information depends on the base of the log. If we use log base 2, the unit is bits; if we 

use log base e, the unit is nats and if we use log base 10, the unit is hartleys. In general, if we do not 
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explicitly specify the base of the log we will be assuming a base of 2. 

 

Because the logarithm base 2 probably does not appear on your calculator, let’s briefly review 

logarithms. Recall that 

logb x = a  
means that  

ba = x  
Therefore, if we want to take the log base 2 of x 
 

log2 x = a ⇒ 2a = x 
 
we want to find the value of a. We can take the natural log (log base e), which we will write as ln, or 

log base 10 of both sides (which do appear on your calculator). Then 
 

ln(2a ) = ln x ⇒ a ln 2 = ln x 

 

 

Example : 
 
Let H and T be the outcomes of flipping a coin. If the coin is fair, then 
 

P( H ) = P(T ) = 1 2 
 
and  

i ( H ) = i (T ) = 1 bit 
 
If the coin is not fair, then we would expect the information associated with each event to be 
different. Suppose 

P( H ) 

= 

1 ,   P(T ) 

= 

 7  

8 8   
Then  

i ( H ) = 3 bits,   i (T ) = 0.193 bits 
 
At least mathematically, the occurrence of a head conveys much more information than the 
occurrence of a tail. As we shall see later, this has certain consequences for how the information 
conveyed by these outcomes should be encoded. 

 

Models: 
Having a good model for the data can be useful in estimating the entropy of the source. As we will 

see in later chapters, good models for sources lead to more efficient compression algorithms. In 

general, in order to develop techniques that manipulate data using mathematical operations, we need 

to have a mathematical model for the data. Obviously, the better the model, the more likely it is that 

we will come up with a satisfactory technique. There are several approaches to building 

mathematical models. 

 

Physical Models: 
If we know something about the physics of the data generation process, we can use that information 

to construct a model. For example, in speech-related applications, knowledge about the physics of 

speech production can be used to construct a mathematical model for the sampled speech process. 

Sampled speech can then be encoded using this model.  
Models for certain telemetry data can also be obtained through knowledge of the underlying 

process. For example, if residential electrical meter readings at hourly intervals were to be coded, 

knowledge about the living habits of the populace could be used to determine when electricity usage 
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would be high and when the usage would be low. Then instead of the actual readings, the difference 

(residual) between the actual readings and those predicted by the model could be coded.  
In general, however, the physics of data generation is simply too complicated to understand, let 

alone use to develop a model. Where the physics of the problem is too complicated, we can obtain a 

model based on empirical observation of the statistics of the data. 

 

 Probability Models: 
The simplest statistical model for the source is to assume that each letter that is generated by the 

source is independent of every other letter, and each occurs with the same probability. We could call 
this the ignorance model, as it would generally be useful only when we know nothing about the 

source. (Of course, that really might be true, in which case we have a rather unfortunate name for 
the model!) The next step up in complexity is to keep the independence assumption, but remove the 

equal probability assumption and assign a probability of occurrence to each letter in the alphabet. 
For a source that generates letters from an alphabet A = {a1, a2, . . . , aM }, we can have a probability 

model P = { P(a1), P(a2), . . . , P(aM )}.  
Given a probability model (and the independence assumption), we can compute the entropy of 

the source using Equation (4). As we will see in the following chapters using the probability model, 

we can also construct some very efficient codes to represent the letters in A. Of course, these codes 

are only efficient if our mathematical assumptions are in accord with reality.  
If the assumption of independence does not fit with our observation of the data, we can generally 

find better compression schemes if we discard this assumption. When we discard the independence 

assumption, we have to come up with a way to describe the dependence of elements of the data 

sequence on each other. 

 

Markov Models: 
One of the most popular ways of representing dependence in the data is through the use of Markov 

models 
For models used in lossless compression, we use a specific type of Markov process called a discrete 
time Markov chain. Let {xn } be a sequence of observations. This sequence is said to follow a kth-
order Markov model if 
 

P(xn |xn−1, . . . , xn−k ) = P(xn |xn−1, . . . , xn−k , . . 

.) (13) 
 
In other words, knowledge of the past k symbols is equivalent to the knowledge of the entire past 
history of the process. The values taken on by the set {xn−1, . . . , xn−k } are called the states of the 
process. If the size of the source alphabet is l then the number of states is lk . The most commonly 
used Markov model is the first-order Markov model, for which 
 

P(xn |xn−1) = P(xn |xn−1, xn−2, xn−3, . . .) (14) 
 
Equations (13) and (14) indicate the existence of dependence between samples. However, they do 

not describe the form of the dependence. We can develop different first-order Markov models 

depending on our assumption about the form of the dependence between samples.  
If we assumed that the dependence was introduced in a linear manner, we could view the data 

sequence as the output of a linear filter driven by white noise. The output of such a filter can be 

given by the difference equation 
 

xn = ρ xn−1 + _n (15) 
where _n is a white noise process. This model is often used when developing coding algorithms for 
speech and images.  

The use of the Markov model does not require the assumption of linearity. For example, consider 
a binary image. The image has only two types of pixels, white pixels and black pixels. We know 
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that the appearance of a white pixel as the next observation depends, to some extent, on whether the 
current pixel is white or black. Therefore, we can model the pixel process as a discrete time Markov 
chain. Define two states Sw and Sb (Sw would correspond to the case where the current pixel is a 
white pixel, and Sb corresponds to the case where the current pixel is a black pixel). We define the 
transition probabilities P(w/b) and P(b/w) and the probability of being in each state P(Sw ) and P(Sb). 
The Markov model can then be represented by the state diagram shown in Figure 2.3.  

The entropy of a finite state process with states Si is simply the average value of the entropy at 
each state: 

 

M  
H =P(Si ) H (Si ) (16) 

i =1  

_  
For our particular example of a binary image 
 

H (Sw ) = − P(b|w) log P(b|w) − P(w|w) log P(w|w)  
where P(w|w) = 1 − P(b|w). H (Sb) can be calculated in a similar manner. 
 
 
 

           

         P(b|w) 
 
 
              P(w|w)     Sw                 Sb          P(b|b) 
 

 

        P(w|b) 
 

F I G U R E          A two-state Markov model for binary images. 
 
 

Example of Markov Model: 
To see the effect of modeling on the estimate of entropy, let us calculate the entropy for a binary 

image, first using a simple probability model and then using the finite state model described above. 

Let us assume the following values for the various probabilities: 
 

P(Sw ) = 30/31  P(Sb) = 1/31  
P(w|w) = 0.99  P(b|w) = 0.01  P(b|b) = 0.7  P(w|b) = 0.3 

 
Then the entropy using a probability model and the iid assumption is 
 

H = −0.8 log 0.8 − 0.2 log 0.2 = 0.206 bits 
 
Now using the Markov model 
 

H (Sb) = −0.3 log 0.3 − 0.7 log 0.7 = 0.881 bits 
 
and  

H (Sw ) = −0.01 log 0.01 − 0.99 log 0.99 = 0.081 bitswhich, using Equation(16), 

results in an entropy for the Markov model of 0.107 bits, about half of the entropy 
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       Composite Source Model: 
 

In many applications, it is not easy to use a single model to describe the source. In such cases, 
we can define a composite source, which can be viewed as a combination or composition of 
several sources, with only one source being active at any given time. A composite source can be 
represented as a number of individual sources Si , each with its own model Mi and a switch that 
selects a source Si with probability Pi (as shown in Figure 2.4). This is an exceptionally rich 
model and can be used to describe some very complicated processes. We will describe this 
model in more detail when we need it. 
 

      Coding: 
When we talk about coding we mean the assignment of binary sequences to elements of an 

alphabet. The set of binary sequences is called a code, and the individual members of the set are 

called codewords. An alphabet is a collection of symbols called letters. For example, the 

alphabet used in writing most books consists of the 26 lowercase letters, 26 uppercase letters, 

and a variety of punctuation marks. In the terminology used in this book, a comma is a letter. 

The ASCII code for the letter a is 1000011, the letter A is coded as 1000001, and the letter “,” is 

coded as 0011010. Notice that the ASCII code uses the same number of bits to represent each 

symbol. Such a code is called a fixed-length code. If we want to reduce the number of bits 

required to represent different messages, we need to use a different number of bits to represent 

different symbols. If we use fewer bits to represent symbols that occur more often, on the 

average we would use fewer bits per symbol. The average number of bits per symbol is often 

called the rate of the code. The idea of using fewer bits to represent symbols that occur more 

often is the same idea that is used in Morse code: the codewords for letters that occur more 

frequently are shorter than for letters that occur less frequently. For example, the codeword for E 

is while the codeword for Z is 
 

T A B L E Four different codes for a four-letter alphabet.  
 
Letters Probability Code 1 Code 2 Code 3 Code 4 

      

a1 0.5 0 0 0 0 
a2 0.25 0 1 10 01 
a3 0.125 1 00 110 011 
a4 0.125 10 11 111 0111 

 Average length 1.125 1.25 1.75 1.875 
      
 

Uniquely Decodable Codes: 
 
The average length of the code is not the only important point in designing a “good” code.  
Consider the following example adapted from [6]. Suppose our source alphabet consists of four  
letters a1, a2, a3, and a4, with probabilities P(a1) = 1 , P(a2) = 1 , and P(a3) = P(a4) = 1 . 2 4 8 
 

The average length l for each code is given by 

 

4 
l = P(ai )n(ai )  

i =1 
 
where n(ai ) is the number of bits in the codeword for letter ai and the average length is given in 
bits/symbol. Based on the average length, Code 1 appears to be the best code. However, to be 



SIET | Data Compression Notes (NCS-085,VIIIth Sem)                                 By- Sudesh Srivastava  
 

 [UNIT – I] Page 11 
 

useful, a code should have the ability to transfer information in an unambiguous manner. This is 
obviously not the case with Code 1. Both a1 and a2 have been assigned the codeword 
0. When a 0 is received, there is no way to know whether an a1 was transmitted or an a2. We 
would like each symbol to be assigned a unique codeword.  

At first glance, Code 2 does not seem to have the problem of ambiguity; each symbol is 
assigned a distinct codeword. However, suppose we want to encode the sequence a2 a1 a1. Using 
Code 2, we would encode this with the binary string 100. However, when the string  
100 is received at the decoder, there are several ways in which the decoder can decode this 
string. The string 100 can be decoded as a2a1a1, or as a2a3. This means that once a sequence is 
encoded with Code 2, the original sequence cannot be recovered with certainty. In general, this 
is not a desirable property for a code. We would like unique decodability from the code; that is, 
any given sequence of codewords can be decoded in one, and only one, way.  
We have already seen that Code 1 and Code 2 are not uniquely decodable. How about Code 3? 

Notice that the first three codewords all end in a 0. In fact, a 0 always denotes the termination of 

a codeword. The final codeword contains no 0s and is 3 bits long. Because all other codewords 

have fewer than three 1s and terminate in a 0, the only way we can get three 1s in a row is as a 

code for a4. The decoding rule is simple. Accumulate bits until you get a 0 or until you have 

three 1s. There is no ambiguity in this rule, and it is reasonably easy to see that this code is 

uniquely decodable. With Code 4 we have an even simpler condition. Each codeword starts with 

a 0, and the only time we see a 0 is in the beginning of a codeword 

 
T A B L E 2 . 3 Code 5. A code that is uniquely 
 decodable but not 
 instantaneous. 
  

Letter Codeword 
  

a1 0 
a

2 01 

a3 11 
 
 

Therefore, the decoding rule is to accumulate bits until you see a 0. The bit before the 0 is the 

last bit of the previous codeword.  
There is a slight difference between Code 3 and Code 4. In the case of Code 3, the decoder 

knows the moment a code is complete. In Code 4, we have to wait till the beginning of the next 

codeword before we know that the current codeword is complete. Because of this property, 

Code 3 is called an instantaneous code. Although Code 4 is not an instantaneous code, it is 

almost that. While this property of instantaneous or near-instantaneous decoding is a nice 

property to have, it is not a requirement for unique decodability. Consider the code shown in 

Table 2.3. Let’s decode the string 011111111111111111. In this string, the first codeword is 

either 0 corresponding to a1 or 01 corresponding to a 2. We cannot tell which one until we have 

decoded the whole string. Starting with the assumption that the first codeword corresponds to a1, 

the next eight pairs of bits are decoded as a3. However, after decoding eight a3s, we are left with 

a single (dangling) 1 that does not correspond to any codeword. On the other hand, if we assume 

the first codeword corresponds to a2, we can decode the next 16 bits as a sequence of eight a3s, 

and we do not have any bits left over. The string can be uniquely decoded. In fact, Code 5, while 

it is certainly not instantaneous, is uniquely decodable.  
We have been looking at small codes with four letters or less. Even with these, it is not 

immediately evident whether the code is uniquely decodable or not. In deciding whether larger 

codes are uniquely decodable, a systematic procedure would be useful. Actually, we should 

include a caveat with that last statement. Later in this chapter we will include a class of variable-

length codes that are always uniquely decodable, so a test for unique decodability may not be 
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that necessary. You might wish to skip the following discussion for now, and come back to it 

when you find it necessary.  
Before we describe the procedure for deciding whether a code is uniquely decodable, let’s 

take another look at our last example. We found that we had an incorrect decoding because we 
were left with a binary string (1) that was not a codeword. If this had not happened, we would 
have had two valid decodings. For example, consider the code shown in Table 2.4. Let’s encode 
the sequence a1 followed by eight a3s using this code. The coded sequence is 
01010101010101010. The first bit is the codeword for a1. However, we can also decode it as the 
first bit of the codeword for a2. If we use this (incorrect) decoding, we decode the next seven 
pairs of bits as the codewords for a2. After decoding seven a2s, we are left with a single 0 that 
we decode as a1. Thus, the incorrect decoding is also a valid decoding, and this code is not 
uniquely decodable. 

 
 
 

T A B L E 2 . 4 Code 6. A code that is not 
 uniquely decodable. 
  

Letter Codeword 
  

a
1 0 

a2 01 
a

3 10 
 
 
 

A Test for Unique Decodability 
 
In the previous examples, in the case of the uniquely decodable code, the binary string left over 

after we had gone through an incorrect decoding was not a codeword. In the case of the code that 

was not uniquely decodable, in the incorrect decoding what was left was a valid codeword. 

Based on whether the dangling suffix is a codeword or not, we get the following test [7,8].  
We start with some definitions. Suppose we have two binary codewords a and b, where a is k 

bits long, b is n bits long, and k < n. If the first k bits of b are identical to a, then a is called a 

prefix of b. The last n − k bits of b are called the dangling suffix [7]. For example, if  
a = 010 and b = 01011, then a is a prefix of b and the dangling suffix is 11.  

Construct a list of all the codewords. Examine all pairs of codewords to see if any codeword 

is a prefix of another codeword. Whenever you find such a pair, add the dangling suffix to the 

list unless you have added the same dangling suffix to the list in a previous iteration. Now repeat 

the procedure using this larger list. Continue in this fashion until one of the following two things 

happens: 
 

1. You get a dangling suffix that is a codeword. 
 

2. There are no more unique dangling suffixes. 
 
If you get the first outcome, the code is not uniquely decodable. However, if you get the second 

outcome, the code is uniquely decodable.  
Let’s see how this procedure works with a couple of examples. 

 

Example 1: 

Consider Code 5. First list the codewords: 
 

{0, 01, 11} 
 
The codeword 0 is a prefix for the codeword 01. The dangling suffix is 1. There are no other 

pairs for which one element of the pair is the prefix of the other. Let us augment the codeword 

list with the dangling suffix:  
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{0, 01, 11, 1} 
 
Comparing the elements of this list, we find 0 is a prefix of 01 with a dangling suffix of 1. But 

we have already included 1 in our list. Also, 1 is a prefix of 11. This gives us a dangling 

suffix of 1, which is already in the list. There are no other pairs that would generate a dangling 

suffix, so we cannot augment the list any further. Therefore, Code 5 is uniquely decodable. 

Example 2: 
 

Consider Code 6. First list the codewords: 
 

{0, 01, 10} 
 

The codeword 0 is a prefix for the codeword 01. The dangling suffix is 1. There are no other 

pairs for which one element of the pair is the prefix of the other. Augmenting the codeword list 

with 1, we obtain the list  
{0, 01, 10, 1} 

 
In this list, 1 is a prefix for 10. The dangling suffix for this pair is 0, which is the codeword 
for a1. Therefore, Code 6 is not uniquely decodable. 

 
Prefix Codes: 
 

The test for unique decodability requires examining the dangling suffixes initially generated by 

codeword pairs in which one codeword is the prefix of the other. If the dangling suffix is itself a 

codeword, then the code is not uniquely decodable. One type of code in which we will never 

face the possibility of a dangling suffix being a codeword is a code in which no codeword is a 

prefix of the other. In this case, the set of dangling suffixes is the null set, and we do not have to 

worry about finding a dangling suffix that is identical to a codeword. A code in which no 

codeword is a prefix to another codeword is called a prefix code. A simple way to check if a 

code is a prefix code is to draw the rooted binary tree corresponding to the code. Draw a tree 

that starts from a single node (the root node) and has a maximum of two possible branches at 

each node. One of these branches corresponds to a 1 and the other branch corresponds to a 0. In 

this book, we will adopt the convention that when we draw a tree with the root node at the top, 

the left branch corresponds to a 0 and the right branch corresponds to a 1.   
      Note that apart from the root node, the trees have two kinds of nodes , nodes that give rise to    

     other nodes and nodes that do not. The first kind of nodes are called internal nodes 

 

                                      


