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Hidden Surface Elimination Methods
I

8.1 Introduction

For generation of realistic graphics displays, we have to identify those parts of a scene
that are visible from a chosen viewing position. There are many algorithms called visible
surface algorithms developed to solve this problem. [n early days of computer graphics
visible surface algorithms were cailed hidden line or hidden surface algorithms.

Ina given set of 3D objects and viewing specificabion, we wish to determine which lines
orsurtaces of the objects are visible, so that we can display only the visible lines or surfaces.
Ihis process is known as hidden surfaces or hidden line elimination, or visible surface
determination. The hidden line or hidden surface algorithm determines the lines, edges,
surfaces or volumes that are visible or invisible to an observer located at a specific point in
space. These algorithms are broadly classified according to whether they deal with object
definitions directly or with their projected images. These two approaches are called
object-space methods or object precision methods and image-space methods,
respectively.

Object-space Method : Object-space method is implemented in the physical coordinate
system in which objects are described. It compares objects and parts of objects to each other
within the scene definition to determine which surfaces, as a whole, we should label as
visible. Object-space methods are generally used in line-display algorithms.

Image-Space Method : Image space method is implemented in the screen coordinate
system in which the objects are viewed. In an image-space algorithm, visibility is decided
point by point at each pixel position on the view plane. Most hidden line/surface
algorithms use image-space methods

In this chapter we are going to study various visible surface detection or hidden line
removal algorithms, algorithms for octrees, algorithms for curved surfaces, and
visible-surface ray tracing.
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Computer Graphics 249 Hidden Surface Elimination Methods

8.2 Techniques for Efficient Visible-Surface Algorithms

We have scen that there are two basie approaches used for visible surface detection -
Object precision algorithm and image precision algorithm, In both the algorithms we
require to perform a number of potentially costly operations such as determination of
projections of objects, whether or not they intersect and where they intersect, closest object
in case of intersection and so on. To create and display picturein minimum time we have o
perform  visible surface algorithms more cfficiently. The technigques W perform
visible-surface algorithms efficiently are discussed in the following sections.

8.2.1 Coherence

The coherence is defined as the degree tu which parts of an environment or ils projection
exhibit local similarities. Such as similaritics in depth, colour, texture and so on. To make
algorithms more efficient we can exploit these similarities (coherence) whoen we eose
calculations made for one part of the environment or a picture for other nearby parts, vither
without changes or with some incremental changes. Let us see different kinds af coberence
we can use in visible surface algorithms,

* Object coherence : If one abject is entirely separate from another, comparisons imay
need to be done only between the two objects, and not between thueir components
faces or edges.

* Face coherence : Usually surface propertics vary smoothly across a face, This allows
the computations for one part of face to be used with incremuental changes to the other
parts of the face.

» Edge coherence: The visibility of edge may change only when it crosses a visible edye
or penctrates a visible face.

* Implied edge coherence : If one planar face penetrates another their line of
intersection can be determined from two points of intersection.

* Area coherence : A group of adjacent pixel is often belongs to the same vasible face

* Span coherence: It refers to a visibility of face over a span of adjacent pixels anascan
line. It is special case of arva coherence.

* Scan line coherence : The set of visible object spans determined lor one scan fine ot an
image typically changes very little from the set on the previous line.

* Depth coherence : Adjacent parts of the same surface are typically same orvery close
depth. Therefore, once the depth at one point of the surface 15 deternuned the depth
of the points on the rest of the surface can often be determined by at the muost simple
incremental calculation.

* Frame Coherence : Pictures of the same scene at two successive paints in time are
likely to be quite similar, except small changes in objects and view ports. Thuerefore,
the calculations made for one picture can be reused for the next picture ina sequence.

8.2.2 Perspective Transformation

Visible-surface determination is done in a 3D space prior to the projection into 2D that
destroys the depth information needed for depth comparisons, and depth comparisons are
typically done after the normalizing transformation. Due to this projectors are parallel to the
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know that scan line algorithm maintains the active edge list. This active edge list
u ns only edges that cross the current scan line, sorted in order of increasing x. The scan
line method of hidden surface removal also stores a flag for each surface that is set on or off
to indicate whether a position along a scan line is inside or outside of the surface. Scan lines
are processed from left to right. Al the leftmost boundary of a surface, the surface flag is
turned ON; and at the rightmost boundary, it is turned OFF.

The Fig. 8.9 illustrates the scan line method for hidden surface removal. As shown in the
Fig. 8.9, the active edge list for scan line 1 contains the information for cdges AD, BC, EH and
FG. For the pusitions along this scan line between edges AD and BC, only the flag for surface
5, is ON, Therefore, no depth calculations are necessary, and intensity information for
surface S, is entered into the frame buffer. Similarly, between edges EH and FG, only the
flag for surface S, is ON and during that portion of scan line the intensity information for
surface S, is entered into the frame buffer.

vk For scan line 2 in the Fig. 8.9, the
active edge list contains edges AD,
EH, BC and FG, Along thescan line2
from edge AD to edge EH, only the
flag for surface S, is ON. However,
between edges EH and BC, the flags

, for both surfaces are ON. In this
AU Scanline2 | portion of scan line 2, the depth
D c calculations are necessary. Here we
have assumed that the depth of 5, is
x less than the depth of S, and hence
the intensities of surface S, are
loaded into the frame buffer. Then,
for edge BC to edge FG portion of
scan line 2 intensities of surface S, are entered into the frame buffer because during that
portion only flag for 5, is ON.

8.4.3 Z-Buffer Algorithm

One of the simplest and commonly used image space approach to eliminate hidden
surfaces is the Z-buffer or depth buffer algorithm. It is developed by Catmull. This
algorithm compares surface depths at each pixel position on the projection plane. The
surface depth is measured from the view plane along the z axis of a viewing system. When
object description is converted to projection coordinates (x, y, z), each pixel position on the
view plane is specified by x and y coordinate, and z value gives the depth information. Thus
object depths can be compared by comparing the z- values.

— . = Sean fine 1

Fig. 8.9 lllustration of scan line method of hidden
surface removal

The Z-buffer algorithm is usually implemented in the normalized coordinates, so that 2
values range from 0 at the back clipping plane to 1 at the front clipping plane. The
implementation requires another buffer memory called Z-buffer along with the frame buffer
memory required for raster display devices. A Z-buffer is used to store depth values for each
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Yy (x, y) position as surfaces are

" processed, and the frame buffer stores

P A% the intensity values for each position.
V 5 At the beginning Z-buffer is initialized

to zero, representing the z-value at the
back clipping plane, and the frame
buffer s initinlized to the background
colour. Each surface listed in the
display file is then processed, one scan
line at a time, calculating the depth
(z=value) at each (x, y) pixel position.
The calculated  depth value s
Fig. £.10 compared to thu_ value previously
stored in the Z-buffer at that position.
If the calculated depth values is greater than the value stored in the Z-buffer, the new depth
value is stored, and the surface intensity at that position is determined and placed in the
same Xy location in the frame butfer.

Forexample, in Fig. 8.10 among three surfaces, surface S, has the smaliest depth at view
position (x, y) and hence highest z value. So it is visible at that position.

Z-buffer Algorithm
1 Initialize the Z-buffer and frame buffer so that for all buffer positions
Z-buffer (x, y) = D and frame-buffer (x, ¥) = | mnt

2. During scan conversion process, for ench position on each polygon surface, compare depth
values to previously stored values in the depth buffer to determine visibility

Caleulate z-value for each (x, y} position on the polygon
If z > Z-buffer (x; y), then set
Z-buffer (x, y) = z, frame-buffer (x, y) = 1,00 (5 V)
3. Swp
Note that, L.\ is the value for the background intensity, and L, ;. is the projected
intensity value for the surface at pixel position (x, y). After processing of all surfaces, the

Z-buffer contains depth values for the visible surfaces and the frame buffer contains the
corresponding intensity values for those surfaces.

To calculate z-values, the plane equation
Ax+By+Cz4+D =0

is used where (x, y, z) is any point on the plane, and the coefficient A, B, C and D are
constants describing the spatial properties of the plane. (Refer Appendix A for details)

Therefore, we can wrile
_ —Ax-By ~-D
C
Note, if at (x, y) the above equation evaluates to z,, then at (x + Ax, y) the value of z, is
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A
2y = = (A
e

Only one subtraction is needed to caleulate z(x + 1, y), given 2(x, y), since the quotient
A/C is constant and  Ax = 1. A similar incremental calculation can be performed to
determine the first value of 2 on the next scan line, decrementing by B/C for each Ay,

Advantages

I, Itis casy to implement.

2. It can be implemented in hardware to overcome the speed problem.

3. Since the algorithm processes objects one at a time, the total number of polygons ina
picture can be arbitrarily large.

Disadvantages

1. It requires an additional buffer and hence the large memory.

2. It is a time consuming process as it requires comparison for each pixel instead of for
the entire polygon,

8.4.4 Warnock's Algorithm (Area Subdivision Algorithm)

An interesting approach to the hidden-surface problem was developed by Warnock. He
developed area subdivision algorithm which subdivides each area into four equal squares.
At each stage in the recursive-subdivision process, the relationship between projection of
cach polygon and the area of interest is checked for four possible relationships

1. Surrounding Polygon - One that completely encloses the (shaded) area of

interest (see Fig. 8.11 (a))
2. Overlapping or Intersecting Polygon - One  that is partly inside and partly
outside the area (see Fig. 8.11 (b))
3. Inside or Contained Polygon - One that is completely inside the area
(see Fig. 8.11 (c)).

4. Outside or Disjoint Polygon - One that is completely outside the area
(see Fig. 8.11 (d)).

ER.N
N E B

{a) Surrounding (b} Overiapping (c) Inside or Contained  (d) Outside or Disjoint

Fig. 8.11 Possible relationships with polygon surfaces and the area of interest
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After checking four relationships we can handle cach refationship as follows -

1. If all the polygons are disjoint from the area, then the background colour is displayed
in the area.

2.1f there is only one intersecting or only one contained polygon, then the arca is first
filled with the background colour, and then the part of the polygon contained in the
area is filled with colour of polygon.

3. M there is a single surrounding polygon, but no interseeting or contained polyg:ms.
then the area is filled with the colour of the surrounding polygon.

4. 1f there are more than one polygon intersecting, contained in, or surrounding the area
then we have to do some more processing,
See Fig, 812 In Fig 8,12 (a), the four intersectiuns of surrounding polygon are all closer

to the viewpoint than any of the other intersections. Therefore, the entire area is filled with
the colour of the surrounding polygon.

X - 8
: * : :
*Q i Contained polygon ¢ Intersacting
: * = polygon
i @
é H : Surrounding
: . Intersecting ¢ :
¢~ polygon ' :
3 é Area of mterest
A s et i
—— poiygon
Area of interest
i z

(a) (b)

Fig. 8.12

However, Fig. 8.12 (b) shows that surrounding polygon is not completely in front of the
intersecting polygon. In such case we cannot make any decision and hence Wamock’s
algorithm subdivides the area to simplify the problem. This is (llustrated in Fig, 8.13, As
shown in the Fig. 8.13 (a) we can not make any decision about which polygon is in front of
the other. But after dividing area of interest polygon 1 is ahead of the polygon 2 in left area
and polygon 2 is ahead of polygon 1 in the right area. Now we can fill these two areas with
corresponding colours of the polygons.

The Warnock's algorithm stops subdivision of area only when the problem is simplified
or when area is only a single pixel.
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Advantages

1t follows the divide-and-conquer strategy, therclore, parallel computers can be used
to speed up the process.

2 Extra memory buffer is not required.

8.4.5 Back-Face Removal Algorithm

We know that a polygon has two
surfaves, a front and a back, just as a
picee of paper does. We might picture

our polygons with one side painted
4 b light and the other painted dark. But
the question s "how to find which
surface iy light or dark”™ When we are
looking — at the light surface, the
Fig. 8.14 Drawing directions polvgon will appear to be drawn with
counter clockwise pen motions, and
when we are looking at the dark
surtace the polygon will appear to be
drawn with clockwise pen motions,
as shown in the Fig, 8.14.

Let uy assume that all solid
objects are to be constructed out of
polygons in such a way that only the
light surfaces are open to the air; the
dork faces meet the material inside
the object. This means that when we
look atan object face from the outside,
it will appear to be drawn
N=(aBo) | V b ;t:untcrclnckwisc. as shown in the

—_— g.8.15

It a polygon is visible, the light

surface should face towards us and

Fig. 8.16 the dark surface should face away

from us. Therefore, if the direction of

the light face is pointing towards the viewer, the face is visible (a front face), otherwise, the
face is hidden (a back face) and should be removed.

Fig. 8.15 Exterior surfaces are coloured light
and drawn counter clockwise

The direction of the light face can be identified by examining the result
N.V.> 0
where

N: Normal vector to the polygon surface with cartesian components
(A, B,C).
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Polygon 2

Area of interest

Fig. 8.13

Algorithm

L
2.

5.

Initialize the area to be the whole screen.

Create the list of polygons by sorting them with their z-values of vertices, Don't
include disjoint polygons in the list because they are not visible,

Find the relationship of each polygon.

Perform the visibility decision test

a) If all the polygons are disjoint from the area, then fill area with background
colour.

b) If there is only one intersecting or only one contained polygon then first fill entire
area with background colour and then fill the part of the polygon contained in the
area with the colour of polygon.

¢) If there is a single surrounding polygon, but no intersecting or contamned
polygons, then fill the arca with the colour of the surrounding polygon.

d) If surrounding polygoen is closer to the viewpoint than all other polygons, so that
all other polygons are hidden by it, fill the area with the colour of the surrounding
polygon.

e) If the area is the pixel (x, y), and neither ab,c, nor d applies, compute the z

coordinate at pixel (x, y) of all polygons in the list. The pixel is then set to colour of
the polygon which is closer to the viewpoint.

If none of the above tests are true then subdivide the area and go to step 2.

Hidden Surface Elimination Methods
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\ A vedtor an the viewing direction from the eye for “camera®) position
(Reter Fig. S5.16)

W know that, the dot product of two vector gives the product of the lengths of the two
vectors times The cosine of the angle between them. This cosine factor is important 1o us
becavse i he vectars are in the same direction (0 20 < /2), then the cosine is positive and the
overall dot product is positive. However, if the directions are opposite (/2 < (1 < a1, then the
cosinue and Hhe overall dot product is negative (Refer Fig. 8.17),

N
N
1
0 \(\
—— v
costh>0 ¥ cosh<(

Fig. .17 Cosine angles between two vectors

IT the dot product 15 positive, we can say that the polypon faces towards the viewer;
atherwise it faces away and should be removed.

I case, il object deseription has been converted to projection coordinates and our
viewing direction is parallel to the viewing 7, axis, then V = (0, 0, V,) and

V-N=V,C

So that we only have to consider the sign of C, the Z component of the normal vector N
Now, if the 2 compaonent is positive, then the polygon faces towards the viewer, if negative,
it faces away,

Review Questions

L Explain the two approaches used to determine hidden surfaces.
2. Discuss the techniques for efficient visible-surface algoritiims.

3 Wit is coherence 7 Discuss vartous tvpes of coberence that can be used to make visible
surface algorithms more efficient,

4 Write ashort note on
a) Perspective transtormation
b} Extents and bounding volumes -
¢) Back-face culling
5. Explain the Robert's visible line algorithm,
o Explain the Appel's visible line algorithm.
7 Explain the Haloed line algorithm.
8. Explam the painter's algorithm for hidden surface removal.
Y. LExplain the scantine algorithm for hidden surface removal.,
10, Explan the Z-buffer algorithm for hidden surface removal.
11 List the advantages and disadvantages of Z-buffer algorithim.
12, Explain any vne area subdivision algorithm for visible surface detection,
13. Describe the back face removal algorithow
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9.2.2 Interpolation

In the last section we have seen limitations of tue o e gencration approach.
Furthermore in practice we have to deal with some complex cum es for w hich o dineet
mathematical function s available, Such curves an be drswn ising approsination
methods. If we have set of sampic points which lic on the required carve, ten we can draw
the required curve by filling portions of the curve with the picces of knowi curves which
pass through nearby sample ponts. The gap between the sample points can by tilled by
linding the co-ordinates of the points alung the known approxinmating curve ad connedting
these points with line segments as shown m the g 9.2,

/\/\ Unikiown Cure

“nown sample ponts

o
<
o
o

Fit a region with
a known curve

] ) Calculale more poinls
o from the known curve

e

o

(]
o

o

Actually draw straigh|
o kne segments connecting
points

Fig. 9.2 The interpolation process
The main task in this process is to find the suitable mathematical expression for the
known curve. There are polynomial, trigonometric, exponentinl and other classes of
functions that can be used to approximate the curve. Usually polynomial functions in the



Computer Graphics 268 Curves

parametric form are preferred. The polynomial functions in the parametric form can be
given as

x = [{u)
v = f(u)
¢« = flu)

We can realise from above equations that the difference between 2 and 3 dimensions is
just the addition of the third equation for z. Furthermore the parametric form treats all the
three dimensions equally and allows multiple values (several values of y or z for a given x
value). Due to these multiple values curves can double back or even cruss themselves, as
shown in Fig. 9.3,

Fig. 9.3 Representation of curves with double back or crossing themselves

We have seen that, we have to draw the curve by determining the intermediate points
between the known sample points. This can be achieved using interpolation techniques.
Let's see the interpolation process.

Suppose we want a polynomial curve that will pass through n sample points..

(0 ¥ 2 (X Yoo Z2be o0 O Yoo 20
We will construct the function as the sum of terms, one term for each sample point.
These functions can be given as

ffu) = 5: x, B,(u)
=1

flu) = 2 y; By(u)
il

fu) = Z z, B{w)
=

The function B, (u) is called 'blending function. For each value of parameter u, the
blending function determines how much the i"* sample point affects the position of the
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curve, In other words we can say that cach sample points tries to pull the curve in its
direction and the function B(u) gives the strength of the pull. If for some value of u, B(u) =1
for unique vatue of i (i.e. B (u) = O for uther values of i) then i" sample puint has complete
control of thecurve and the curve will pass through i sample point. For different value of u,
some other sample point may have complete control of the curve. In such case the curve will
pass through that point as well. In general, the blending functions give control of the curve
to cach of the sample points in turn for different values of u. Let's assume that the first
sample point (x,, y,, z,) has complele control when u = - 1, the second when u =4, the third
whenu= 1, and so on. i.e

when u=-=-l=Buw=landforu=0,1,2, ... ,n-2
when =0 =Bw=lmdlforu==1,1, ...,n-2
when u=Mm-D=>B(uw=landCtoru==1,0, _.,n=1

'I'b get Bilu)=Tatu=—land Utoru=0,1,2, .., n-2, the expression for 3, (u) con be
given as
ulu=1)(u-2) . lu=(n-2)|

(=1)(-2).... (1 -n)

where denuminator term is a constant used. In general form i blending function

which is 1 at u =i - 2 and 0 for other integers can be given as :
B(u) = (w+1{u) (u=1). Ju-(i-3) u—{i-1)].... lu=(i-2)]
' (=1 (=2)(i=3).... () (=1)...li-n)
The approximation of the curve using above expression is called Lagrange

interpolation. From the above expression blending functions for four sample points can be
given as

Bi(u) =

ufu=1)(u-2)

By(u) =
(-1)(-2)(-3)
B.(u) = fus lu=-T1){u-2y
- 1(-1)(-2)
@) = MrDulu-2)
O TYEY
By(u) = (U_HMJ;”_
(3(2)(1)

Using above blending functions, the expression for the curve passing through sam pling
points can be realised as follows :
X = %y By(u) + x, By(u) + x; By(u) + x, By(u)
Y = Y1 By(u) + y; By(u) + y, By(u) + y, Byu)
z = z, By(u) + 2, By(u) + 2, By(u) + 2, By(u)
[tis possible to get intermediate points between two sampling points by taking values of
u between the values of u related to the two sample points under consideration. For
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example, we can find the intermediate pomts bulween second and third sample points for
which values of ware 0 and 1, respectively; by taking values of u between O and 1. This is
shownn Fig. 9.4

Fig. 9.4 Determining intermediate points
for approximation of curve

The subsequent intermediate points can be obtained by repeating the same procedure.
Finally the points obtained by this procedure are juined by small straight line segments to
get the approximated curve

Initially, sample points (1, 2,3, 4) are considered and intermediate points between (2, 3)
are obtained. Then sample point atone end is discarded and sample point at the other end is
added to get new sample points (2, 3, 4, 5). Now the curve between sample points (3, 4) iy
approximated. The subsequent intermediate points can be obtained by repeating the same
procedure. The initial and final portions of the curve require special treatment. For the first
four points (1, 2, 3, 4) we have to draw region between points (1, 2) with u values between = 1
and 0.

Similarly the blending function for very last step of the curve should be evaluated with
u values between 1 and 2.

Interpolating Algorithin

Get the sample points.

Getintermediate values of u to determine intermediate points.
Calcutate blending function values tor middle section of the curve.

Calculate blending function values for first section of the curve.

¥ el s

Calculate blending function values for the last section of the curve

Multiply the sample points by blending functions to give points on approximation curve
Connect the neighbouring points using straight line segments

Stop.

® N>

9.3 Spline Representation

To produce a smooth curve through a designated set of points, a flexible strip called
spline is used. Such a spline curve can be mathematically described with a piecewise cubic
polynomial function whose first and second derivatives are continuous across the various
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curve sections. We can specify a spline curve by giving a set of coordinate positions, called
control points, which indicates the general shape of the curve, When polynomial sections
are fitted so that the curve passes through all.control points, as shown in the Fig. 4.5 (), the
resulting curve is said to interpolate the set of control points. On the other hand, when the
polynomials are fitted to the path which is not necessarily passing through all control points,
the resulting curve is said to approximate the set of control points. This is Hlustrated in the
Fig. 9.5 (b).

(a) Interpolation spline (b} Approximation spline

Fig.9.5
9.3.1 Geometric and Parametric Continuity

To ensure a smooth transition from one section of a piecewise parametric curve to the
next, we can impose various continuity conditions at the connection points. We see
parametric continuity and geometric continuity conditions,

In geometric continuity we require parametric derivatives of two sections to bo
proportional to each other at their common boundary instead of equal to each other
Parametric continuity is set by matching the parametric derivatives of adjoining two curve
sections al their common boundary. In zero order parametric continuity, given as C%, it
means simply the curve meet and same is for zero order geometric continuity. In first order
parametric continuity called asC' means that first parametric derivatives of the coordinate
functions for two successive curve sections art equal at the joining point and geometric first
order continuity means the parametric first derivative are proportional at the intersection of
two successive sections. Second order parametric continuity or C? continuity means that
both the first and second parametric derivatives of the two curve sections are same at the
intersection and for second order geometric continuity or C* continuity means that both the
first and second parametric derivatives of the two curve sections are proportional at their
boundary. Under C? continuity curvature of the two curve sections match at the joining
positions.

Two curves

) = (F-2,1)

n(t) = (F+1,t+1)
¢' and G' are continuous at r(1) = n (0)
Derivative ) = 2t-2,1

rl) = 2-2,1

0,1
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Derivative nit)
n(l)
N r{1) n (U), two curves are continuous.
Ex.9.1:  Show that bwo curves it = (1" + 21 -2, Edad r(th =8 + 20 +-1, t + 1) are both C and G
continuous where they jorn at uf 1) = v, Do they meet C'and G' continyity.
Sol.: nt) =(F + 21 -2, 9
o) = (F4+2te1,t+1)

Zero order parametric continuity, described as C continuity, means simply that the
curves meet, That is, the values of x; y and 7 evaluated at u, for the first curve section are
equal, respectively, to the values of x, v and z evaluated at u, for the next curve section, The
zero-order geometric continuity described as G continuity, is the same as zero-order

2t, 1
0,1

parametric continuity. :
We have,
() = (17+2-2,19)
= (1, 1)
i) = (O +0+1,0+1)
= (L1

Therefore, we con say that both curves are C' and G' continuous at n{1) and r(0), Ta
check for C'and G' continuity we have to take first derivative of both the curves -
Derivative n{t) = (2t + 2, 2t)
Derivativer(t) = (2t +2,1)

n(l) = (2+2,2)
= (4,2)
£(0) = (2,1)

Since n(1) = r(0), the two curves are not C' and G' continuous at n(1) and r(0).

9.3.2 Spline Specifications
There are three basic ways of specifying spline curve :
* We can state the set of boundary conditions that are imposed on the spline
* We can state the matrix that characteristics the spline or
* We can state the set of blending functions that caleulate the positions along the curve
path by specifying combination of geometric constraints on the curve,
Why to use cubic polynomials ?

Palylines and polygons are first-degree, piecewise linear approximation to curves and
surfaces, respectively. But this lower degree polynomials give too little flexibility in
controlling the shape of the curve. The higher-degree polynomials give reasonable design
flexibility, but introduce unwanted wiggles and also require more computation, For this
reason the third-degree polynomials are most often used for representation of curves. These
polynomials are commonly known as cubic polynomials.
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We can describe the parametric cubie polynomual that is to be fitted between cach pair of
auntral points with the following set of equations :

x{u) = axu'+bxu’4exu+ dx

y(u) = ayu’+ by ' +cy u+dy
z{u) = azut+bzut+ceu+ds <u<l) o (9.6)
For cach of these three equations, we need o determine the values of the four
cocflicients a, b, ¢ and d in the polynomial representation fur vach of the n curve sections
betwoeen the n + 1 control points. We do this by selting enough buundary conditions at the
juints between curve sections so that we cian obtain numerical values (or all the cocfficient,

Let us see the common methods for setting the boundary conditions for cubic interpolation
splines.

9.4 Bezier Curves

Bezier curve is an another approach for the construction of the curve. A Bezier curve is
determined by a defining polygon. Bezier curves have a number of properties that make
them highly useful and convenient for curve and surface design. They are also casy to
implement, Therefore Bezier curves are widely available in various CAL systems and in
general graphic packages. In this section we will discuss the cubic Bezier curve. The reason
fur choosing cubic Bezier curve is that they provide reasonable design (lexibility and also
avoid the large number of caleulations.

Properties of Bezier curve
1. The basis functions are real.
2. Bezier curve always passes through the first and last control points ie. curve has
same end points as the puiding pulygon.

3. The degree of the polynomial defining the curve segment is one less than the
number of defining polygon point. Thercfure, tor 4 contral points, the degree of the
polynomial is three, i.¢. cubic polynomial,

4. The curve generally follows the shape of the defining polygon.

The direction of the tangent vector at the end points is the same as that of the vector
determined by first and last segments.

6. The curve lies entirely within the convex hull formed by four control points.

7. The convex hull property for a Bezier curve ensures that the polynomial smaoothly
follows the control points,

8. The curve exhibits the variation diminishing property. This means that the curve
does not oscillate about any straight line more often than the defining polygon.

9. The curve is invariant under an affine transformation,

In cubic Bezier curve four control points are used to specify complete curve, Unlike the
B-spline curve, we do not add intermediate points and smoothly extend Bezier curve, but
we pick four more points and construct a second curve which can be attached to the first.
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The second curve can be attached to
the first curve smoothly by selecting
appropriate control points.

Fig. 9.6 shows the Bezier curve
and its four control points. As
shown in the Fig. Y.6, Bezier curve
begins at the first control point and
endsat the fourth control point. This
means that if we want to connect
two Bezier curves, we have to make
the first control point of the second
Bezier curve match the last contral
point of the first curve. We can also
observe that at the startof the curve,
the curve is tangent to the line
connecting first and second control
points, Similarly at the end of curve,
the curve is tangent to the line
connecting the third and fourth
5 control point. This means that, to
. join two Bezier curves smoothly we
Fig. 9.6 A cublc Bezier spline have to place the third and the
fourth control points of the first

curve on the same line specified by the first and the second control points of the second

-~
e
-
-
-
-
-~
-

-~
-

curve,

The Bezier matrix for periodic cubic polynomial is
-1 3 -3 1

3 6 30
My =
-3 3 00
0 0 0

Plu) = U MG,

where Gy = P
a

and the product P(u) = U.My.G is
P(u) = (1-u)* P, + 3u(l - u)* P, + 3u* (1~ u) P + u’P,

Construct the Bezier curve of order 3 and with 4 polygon vertices A(1, 1), B(2, 3), Cl4, 3)
and D(6, 4).

Ex.9.2
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Sol. : The equation for the Bezier curve is piven as
Plu) = (1=w)' P +3u0 -u)’ P+ 3u (1wl +u'l
forti<u<sl
where P(u) is the pointon the cueve 0y, 8, 15, P

Let us take u = 1), l—, 3

4 4
l’(IJ
'l

P

POy = £ =, 1) )
=z meagli-g g [ -gislg)

27 27 9 1
= = (L) =423 (4D 4 - (6,4
M[ R )'M( )+M(v)

= 2-7xl oglelix‘to ’—xb, 27rl+-2—zv-3+ ix'h—'-x-l]
o4 64 o4 (4

o4 [ o4 4
{193 EEJ

o1 64
= (19218, 2.1718)

PR Iy it Ay A 1 1y
o) = (1-5) mead(-3) a3 ) (-3 m+(3)
= S 22D 3 o6 d)

lx1?§X2+§x-‘+lx6, lz]¢§x3+§x3+lx4}
8 B 8 8 8 8 8 8

[5-5]
8" 8

= (3.125, 2.875)
3

3Y 3r, 3y 3V, 3 3y
= [1-3) R +33(1 ‘E} l’2+3(z] (1-3)1’3 4[;) P
| 7.,

9
= al”, +apz +ar’_~| '06—4'P4

1 9 27 27
= — ya (4,3 +— (6,4
64(1»1)*64(2,3)*'64(4 3) = (6,4)

[—l—-xl+—9-x2+zx4+£7-x6, -]—xl+—9-x3~17—x3+-22-x4}
64 64 64 64 64 04 64 64

_ 1289 217
&%
= (45156, 3.375)
P(1) = 13 =(6,4)
The Fig. 9.7 shows the calculated points of the Bezier curve and curve passing through it
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Fig. 9.7 Plotted Bezier curved

Anather approach to construct the Bezier curve is called midpoint approach. In this
approach the Bezier curve can be constructed simply by taking midpoints. In midpoint
approach midpoints of the lines connecting four control points (A, B, C, D) are determined

D

A

Fig. 9.8 Subdivision of & Bezier spline

(AB, BC, CD). These midpoints are
connected by line segments and their
midpoints ABC and BCD are determined.
Finally these two midpoints are connected
by line segments and its midpoint ABCD
is determined. This is illustrated in
Fig. 9.8.

The point ABCD on the Bezier curve
divides the original curve into two
sections. This makes the points A, AB,
ABC and ABCD are the control points for
the first section and the points ABCD,
BCD, CD and D are the control points for
the second section. By considering two
sections separately we can get two more
sections for each separate section i.e. the
original Bezier curve gets divided into
four different curves. This process can be
repeated to split the curve inta smaller
sections until we have sections so short
that they can be replaced by straight lines
or even until the sections are not bigger
than individual pixels.
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11 {qu<0)

{

pUTE {"CANNOT DETECT A MNEAFHICS CARL™)

px1til);

J
initgraph (bgd, sam, " \\tc")
|

main()
|
int 17
float templ, temp?d;
igraphi}:

/% Read rwo ond points arngd tw control polnes of the curve

.......................................................... !/
for(1=0;1<4;11v)
{
printf ("Enter (x,y) coordinates of pointid @ ", 141);
scanf(".T,%f", srempl, dremp?) ;
xxxfi]10! ~ templ;
xxx{1i]111] = tempZ:
)
bezier (xxX[11(0] , xxx[11[1],xxx{2170), %xxxT23 (1], xxx[3][0], xxx
(3)1111,8)7
getchi};
closeqraphl):
1

9.5 B-Spline Curves

We have seen that, a curve generated by using the vertices of a defining polygon is
dependent on some interpolation or approximation scheme to establish the relationship
between the curve and the polygon. This scheme is provided by the choice of basis function.
The Bezier curve produced by the Bernstein basis function has a limited flexibility. First the
number of specified polygon vertices fixes the order of the resulting polynomial which
defines the curve. For example, polygon with four vertices results a cubic polynomial curve.
The only way to reduce the degree of the curve is to reduce the number of vertices, and
conversely the only way to increase the degree of the curve is to increase the number of
vertices. The second limiting characteristics is that the value of the blending function is
nonzero for all parameter values over the entire curve. Due to this change in one vertex,
changes the entire curve and this eliminates the ability to produce a local change with ina
curve,
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There is another basis function, called the B-spline basis, which contains the Bernstein
basis as a special case. The B-spline basis is nonglobal. It is nonglobal because each vertex B,
is associated with 2 unique basis function. Thus, each vertex affects the shape of the curve
only over a range of parameter values where its associated basis function is nonzero. The
B-spline basis also allows the order of the basis function and hence the degree of the
resulting curve is independent on the number of vertices. Itis possible to change the degree
of the resulting curve without changing the number of vertices of the defining polygon.

If P(u) be the position vectors along the curve as a function of the parameter u, a B-spline
curve is given by
n=1
Plu) = Y BN, (uuy, Su<uy,, 2sksn+l .(97)
el
where the B, are the position vectors of the n + 1 defining polygon vertices and the N, ,
are the normalized B-spline basis functions, For the i'™ normalized B-spline basis function of
order k, the basis function N, | (u) are defined as

1 iF X fu<x;,

Na,l(“) 5 -
0 Otherwise
- %y)N -u)N
and N.‘*(U) & (u X|) I,k l(u)+(x|ok u) i+ 1k -l(u)".(g.s)
Xisk-p = %5 Xiok ~Xis

The values of x; are the elements of a knot vector satisfying the relation x; < x; ,,. The
parameter u varies from u, to u,,, along the curve P(u). The choice of knot vector has a
significant influence on the B-spline basis functions N, | (u) and hence on the resulting
B-spline curve. There are three types of knot vector : uniform, open uniform and
nonuniform.

In a uniform knot vector, individual knot values are evenly spaced. For example,
[01234]

For a given order k, uniform knot vectors give periodic uniform basis functions for
which
N._u(u) = N. ay, k(u —1) = Niol.i(u 'fl)
An open uniform knot vector has multiplicity of knot values at the ends equal to the
order k of the B-spline basis function. Internal knot values are evenly spaced. Examples are,

k=2[001233]
k=3[00012333]
k =4[000012222)
Generally, an open uniform knot vector is given by,
x; =0 1<isk
x; = i-k k+l<isn+l

t
X, =n-k+2 n+2<i<n+k+1 - (9.9)
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The curves resulted by the use of open uniform basis function are nearly like Bezier
curves. In fact, when the number of defining polygon vertices is equal to the order of the
B-spline basis and an open uniform knot vector is used, the B-spline basis reduces to the
Bernstein basis. Hence, the resulting B-spline curve is a Bezier curve.

Ex.93  Calculate the four third-order basis function N, (), i=1,2, 3. 4withan apen uniform
knot vector.

Sol.: We have to calculate four basis functions, therefore n = (4 - 1) = 3 and it is of order
three, therefore k = 3. From equation 9.9 the open uniform knot vector is given as

[X] = [0001223]
Now, from equation 9.8, the basis functions for various parameters are as follows :
0su<l :

Ny jlwy=1; N, (u)=0, i3
Npa(u)=1-w; Nja(ul=u, N ,(u)=0 i#2,3
N, ) =(1-u); ;s (u)=u (1 -uy 2,
u? -
NJJ("):'{: N, 3{u)=0; i#1,2 3
1€u<2
N (w=1; N, (wW)=0, i«4
Nja(u)=(2-4); Ny =(u-1); N, (u)=0,i23, 4
S F
N;,;(U)=(2 2u) ; N;;J(t):u(zz u)0(2—u) (u-1);
Ny a(w) =(u-1)% Nos(u)=0; i#2,3,4

Ex.94  Construct the B-spline curve of order 4 and with 4 polygon vertices A(1,1), B(2, 3)
C(4, 3) and Di8, 2).

Sol.:  Heren =3 and k =4 from equation 9.9 we have open uniform knot vector as
x=[00001111]and from equation 9.8 we have basis functions are

Dzu<l

Ny(uy=1; N (u)=0, i=d

Ny ,(u)=(1-u) Ng 2(u)=u, N;,(u)=0, 173, 4

N, 3 (u)=(1-u); Ny s(u)=24 (1-u);

N, s(u)=u®; N, s(u)=0; i#2 3 4

N, () =(1-1)? Na () =u(l~u)? +2u(1 - u)? =3u(l-u)’;

Nj 4w =2u*(1-u)+(1-u)u® =30 (1 -u); N, , (u) = u®
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Using equation 1 the parametric B-spline is

= PL)

d

1

4

P =

]:

P(U) - AN.A (U) + BNz__‘(u) +CN 3.4(,") + DN;J(“)
P) = (1-u)*A +3u(l - u)?B+3u?(1 - uw)C+u’D

( (13
%J"'*(%J“*(%)C*(é]"

27 Y 1
—(1,1) + 5(2.3) + a(4.3) + o (6,2)]

64

[g—x]+zzx2+-2-x4+l-x6, -2—7><]+?Zx3+—9—x3+-1—x2]
64 64 O4 64 64 64 64 64
2,27

64 ' 64

[1.9218, 2.14]

3 2 2 3
[1-1] A+3l(|-l) 8*3(1](1—1)C+(l) D
2 a2 > 2 2
Las2p+3c4ip

8 T8 8 B

1 3 3 1
20, 1) +2(2, 3 +2(4,3) +=16.2
L8 ) B(z' : 8( ) 8( )]

-

-1-x1+§x2+§x4+-l-x6,lx]+§~x3+-3—:<3+-l-x2:l
L8 8 8 8 8 2] 8

[ 8 8

[3.125, 2.625]|

B L (GO

—I—A+—9-B+EC+2—7-D

64 64 64 64

1 9 27 27

—(1, )+ —(2, 3)+—(4,3) +—(6,

64( ) 64( ) 64( ) 64( 2)
[lx1+ix2+zzx4+2x6,-1—>t1+-?—x3+2'~7x3+£x2]
64 64 64 64 64 64 64 64
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[4.5156, 2.5468]
L P(1) = D=16,2]
The Fig. 9.9 shows the calculated points of the B-spline curve and curve passing through
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Fig. 9.9 Plotted B-spline curve
Properties of B-spline curve

* Thesum of the B-spline basis functions for any parameter value u is 1.
na )

Lo z N, ((u)=1

(O |

* Each basis function is positive or zero for all parameter values, e, N, , 2 0.

* Except for k = 1 each basis function has precisely one maximum value.

* The maximum order of the curve is equal to the number of vertices of defining
polygon,

* The degree of B-spline polynomial is independent on the number of vertices of
defining polygon (with certain limitations),

* B-spline allows local control over the curve surface because each vertex affects the
shape of a curve only over a range of parameter values where its associated basis
function is nonzero,

* The curve exhibits the variation diminishing property. Thus the curve does not
oscillate about any straight line move often than its defining polygon.

* The curve generally follows the shape of defining polygon.

* Any affine transformation can be applied to the curve by applying it to the vertices of
defining polygon,
* The curve line within the convex hull of its defining polygon.
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9.6 Parametric Bicubic Surfaces

Parametric bicubic surfaces are a generalization of parametric cubic curves. In
section 9.3 we have seen the general form of parametric cubic curve

Pu) = U-M-G
If we now allow the points in G to vary in 3D along some path that is parameterized ont,
we have
G, (‘)1
G, (1)
Py, t) = U-M.Gt)=U-M- G, () -..(9.10)
Gy(t)

Now, different values of t between 0 to 1 we get different curves. For slight different
values of t we get slightly different curves. The set of all such curves arbitrarily close to each
other for values of t between 0 and 1 defines a surface. If the G (t) are themselves cubics, the
surface is said to be a parametric bicubic surface, and G(t) can be represented as

G(t) = U-M-G, . (911)
where G, = lgy 82 8a g’ and
g is the first element of the geometry vector for curve G, (t).
The transpose of equation (9.11) can be given as
G = GT-MT-U" - (A-B-Q)'=C".BT-AT
Substituting the above result in equation (9.10)
We have

I\

u-M-GT MUY
U-M-[gy 82 81 Bl MT-UT
BEn Bz Bi Bu

u.M.| B2 B2 B B2 | T .UT ..-(9.12)
guw Bn Bm By
Bat Ba2 Baz Bau

U-M-G-M' U where 0<u,t<1 . (9.13)

Put)

In terms of x, y, z separately the above equation can be written as
x(ut = UM-G, M -U"
y(ut = UM-G, M -U
z(ut) = U-M.G, M'-U" .. (9.14)
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9.6.1 Hermite Surfaces
The parametric bicubic equation for Hermite surface can be given as
B(t)
P(u,t) = U-My-Gylt) =U-M,- | W . (9.15)
DR (Y
DP, (1)
811 |
where Pi(t) = U-M,, |57
Bi3
[B1a |
(81 ]
Pit) = U-M, |52
g2
1521 |
[
DP,(t) = U-M,,-|®®
&3
B
B4t |
DP(t) = U-M,,-{8®
B
B4 |
The above four equations can be rewritten together as
[Py{t) Pyt) DP(t) DP(t)=U-M; Gk ... (8.16)
where,
(811 B2 Bu Bu
G- Bu Bn Bu Bn
Ban Bn Bxn Bm
| Bat B Bax Bu
Taking transpose of both sides we have
P | [8n 82 81 Bu |
Pet) | [Bn B2 B2 8 MY, U =Gy M U . (9.17)

DP(t) | |83 B8x B1 Bx
DP(t)] [Ba1 Baz 84 Bu
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Substituting the equation (9.17) in equation (9.15) we have,

P(u,t) = U:M,,-G;;-M], -U" ... (9.18)
In terms of x, y, z separately the above equation can be written as

x(u, t) = UMy Gy, - My, U

y(u, ) = UMy Gy, -Mj, -UT

z(u, 1) = U-M,, Gy, M}, -U" .. (9.19)

9.6.2 B-Spline Surfaces
Applying similar procedure as that of Hermite surface we can represent B-spline surface
as
x(u, 1) = U:Mgg-Gyg, - Mg -UT
ylu, t) = U-Mys-Ggg, - Mpg - U”
z(u, 1) = U-Myg-Gge,- Mg -UT ... (9.20)

9.6.3 Bezier Surface

Applying similar procedure as that of Hermite surface we can represent Bezier surface
as
x(u, 1) = U-My-Gg, -M}, - U”
ylu, ) = U-My Gy, -Mj-UT
z{u, t) = U-My Gy, Mj-UT . (9.21)

Review Questions

1. Explain the true curve generation algorithm.

2. List the problems in true curve generation algorithm.

3. What is interpolation ? Explain Lagrangian interpolation method.

4. What is spline ?

5, Differentiate between interpolation spline and approximation spline.
6. Give the various methods for specifying spline curve.

7. Why to use cubic polynominals ?

8. Write a short note on B-spline curve.

9. List the properties of B-spline curve.

10. Write a short note on Bezier curve,

11. Explain the properties of Bezier curve,

University Questions

1. Write detailed note on cubic B-splines (Dec-96, May-97, May-2001)
2. What do you understand by cubic B-splings? Discuss with suitable mathematical models.
(Dec-97)




Light Shading

10.1 Introduction

So far we have seen how to construct three-dimensional objects, parallel and perspective
projections of the objects, and removal of hidden surfaces and lines. In this chapter, we will
see the shading of the three-dimensional objects and its model. The shading model is also
called illumination model or lighting model. This model is used to calculate the intensity of
light that we should see at a given point on the surface of an object.

Later part of this chapter gives the information about the colour models
10.2 Diffuse lllumination

An objects illumination is as important as its surface properties in computing its
intensity. The object may be illuminated by light which does not come from any particular
source but which comes from all directions. When such illumination is uniform from all
directions, the illumination is called diffuse illumination. Usually, diffuse illumination is a
background light which is reflected from walls, floor, and ceiling,

When we assume that going up, down, right and left is of same amount then we can say
that the reflections are constant over each surface of the object and they are independent of
the viewing direction. Such a reflection is called diffuse reflection. In practice, when object
is illuminated, some part of light energy is absorbed by the surface of the object, while the
rest is reflected, The ratio of the light reflected from the surface to the total incoming light to
the surface is called coefficient of reflection or the reflectivity. It is denoted by R. The value
of R varies from 0 to 1. It is closer to 1 for white surface and closer to 0 for black surface. This
is because white surface reflects nearly all incident light whereas black surface absorbs most
of the incident light. Reflection coefficient for gray shades is in between 0 to 1. In case of
colour object reflection coefficient are various for different colour surfaces.

Lambert's Law

We have seen that, the diffuse reflections from the surface are scattered with equal
intensity in all directions, independent of the viewing direction. Such surfaces are
sometimes referred to as ideal diffuse reflectors. They are also called Lambertian reflector,
since radiated light energy from any point on the surface is governed by Lambert's cosine
law. This law states that the reflection of light from a perfectly diffusing surface varies as the

(288)
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cosine of the angle between the normal
to the surface and the direction of the
reflected ray. This is illustrated in
Fig. 10.1,

Thus if the incident light from the
source is perpendicular to the surface at
a perpendicular point, that point is fully
illuminated. On the otherhand, as the
angle of illumination moves away from
the surface normal, the brightness of the
point drops off; but the points appear to
be squeezed closer together, and the net
effect Is that the brightness of the
surface is unchanged. This is illustrated
in Fig. 10.2. In other words we can say
that the reduction in brightness due to
cosine of angle gets cancelled by
increase in the number of light-emitting
points within the area of view.

A similar cancellation effect can be
observed as the surface is moved farther
from the view point. As we move
farther from the view port, the light
coming from the surface spreads over a
large area. This area increases by the
square of distance, thus the amount of
light reaching the eye decreases by the
same factor. This factor is compensated
by the size of the object. When object is
moved farther from the viewport, it
appears smaller. Therefore, eventhough

Light Shading
Normal
Light
0
mnnnmnnﬂnmmmgv:l;;
Surface
Fig. 10,1 The direction of light is measured from the
surface normal

v

Fig. 10,2 Surface brightness

there is less light, it is applied to a smaller area on the retina and hence the brightness of the

surface remains unchanged.

The expression for the brightness of an object illuminated by diffuse ambient or

background light can be given as

Lnvait = ko L

where 1, is the intensity of the ambient light or background light, k, is the ambient
reflection coefficient and I, 4 is the intensity of diffuse reflection at any point on the
surface which is exposed only to ambient light. Using above equation it is possible, to create
light or dark scenes or gray shaded objects. Bul in this simple model, every plane on a
particular object will be shaded equally. The real shaded object does not look like this. For
more realistic shading model we also have to consider the point sources of illumination.
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10.3 Point-Source lllumination

Point sources emits rays from a
single point and they can approximate
real world sources such as a small
incandescent bulbs or candles. A point
source is a direction source, whose all 77
the rays come from the samedirection, (a) Surface facing light source receives more light
therefore, it can be used to represent
the distant sun by approximating it as
an infinitely distant point source.

The modelling of point sources
requires additional work because their
effect  depends on the surface's
orientation. If the surface is normal
(perpendicular) to the incident light
rays, it is brightly illuminated. The
surfaces turned away from the light
source (oblique surfaces) are less

brightly  illuminated.  This s ) _
illustrated in Fig. 10.3. (b} Surface turned away from light source receives less light

For  oblique surfaces, the §19.99:9
tlumination decreases by a factor of
cos I, where | is the angle between the
direction of the light and the direction
normal to the surface plane. The angle ! e
I is know as angle of incidence. (See
Fig. 10.4)

Normal

The factor cos [ is given as 7

cosl= N-L Fig. 10.4 The angle of incidence

where L is the vector of length 1 units pointing towards the light source and N is the
vector of length 1 in the direction normal to the surface plane.

Considering both diffuse illumination and point source illumination, the shade of the
visible surface of an object is given as
Law = ka1, + Kyl (cosT)
=k, L+ kI, (N L)
where k, I, is the intensity of light coming from visible surface due to diffuse
tlumination,

I; is the intensity of light comes from the point source, k; is the diffuse reflectivity
coefficient and vector dot product (L.N) gives the cosine of the angle of incidence.
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10.4 Specular Reflection

When we illuminate a shiny surface such as polished metal or an apple with a bright
light, we observe highlight or bright spot on the shiny surface. This phenomenon of
reflection of incident light in a concentrated region around the specular reflection angle is
called specular reflection. Due to specular reflection, at the highlight, the surface appears to
be not in its original colour, but white, the colour of incident light,

The Fig. 105 shows the specular reflection direction at a point on the illuminated
surface. The specular reflection angle equals the angle of the incident light, with the two
angles measured on  opposite
sides of the unit normal surface
vector N, As shown in the
Fig. 10.5, R is the unit vector in the
direction of ideal specular
reflection, L is the unit vector
directed toward the point light
source and V is the unit vector
pointing to the viewer from the
surface position. Fig. 10.5 Specular reflection

The angle$ between vector Rand vector V is called viewing angle. For an ideal reflector
{perfect mirror), incident light is reflected only in the specular reflection direction. In such
case, we can see reflected light only when veclor V and R coincide, e, ¢ =0,

10.4.1 The Phong lllumination Model

Phong Bui-Tuong developed a popular illumination model for nonperfect reflectors. It
assumes that maximum specular retlection occurs when ¢ is zero and falls off sharply as ¢
increases. This rapid fail-off is approximated by cos" ¢, where n is the specular reflection
parameter determined by the type of surface. The valueg of n typically vary from 1 to several
hundred, depending on the surface material. The larger values (say, 100 or more) of n are
used for very shiny surface and smaller values are used for dull surfaces, For a perfect
reflector, n is infinite. For rough surface, such as chalk, n would be near to 1. Fig. 10.6 and
Fig 10.7 show the effect of n on the angular range of specular reflection.

N
L L
Shiny surface Dubl surface
(Large n) (Stnall n)

Fig. 10.6 Effect of n on the angular range of specular reflection
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Fig. 10.7 Different values of cos" ¢ used in the Phong illumination model

The amount of incident light specularly reflected depends on the angle of incidence 6,
material properties of surface, polarization and colour of the incident light. The model is
approximated for monochromatic specular intensity variations using a specular-reflection
coefficient, W(B), for each surface. We can write the equation for Phong specular reflection
model as

Lo = WEO)1, cos
wherel, is the intensity of the light source and § is the angle between viewing vector and
specular reflection vector R

W(8) is typically set to a constant k_, the material's specular-reflection coefficient, which
ranges from between 0 to 1. The value of k, is selected experimentally to produce
aesthetically pleasing results. Note that V and R are the unit vectors in the viewing and
specular-reflection directions, respectively. Therefore, we can calculate the value of cos ¢
with the dot product V-R. Considering above changes we can rewrite the equation for
intensity of the specular reflection as

Lpec = KI; (V-R)"

The vector R in the above equation
can be calculated in terms of vector L
and N. This calculation requires
mirroring L about N. As shown in
Fig. 10.8, this can be accomplished with
some simple geometry. Since N and L
are normalized, the projection of L onto
N is N cos . Note that R = N cos 8 + S,
where |S| is sin 6. But, by vector
subtraction and congruent triangles, S
is just N cos 0 - L. Therefore,

Fig. 10.8 Calculating the reflection vector

N cos @ + N cos 0 -L
= 2Ncosf-L
Substituting N - L for cos 8 we have,
R =2N(N-L)-L

R
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10.4.2 The Halfway Vector

More simplified way of furmulation of Phong's illumination model is the use of halfway
veetor H It is called haltway vector because its direction is halfwav between the direetions
uf the light source and the viewer as shown in the Fig. 10.4.

Fig. 10.9 Halfway vector H

It we replace V- Rin the Phong model with the dot product N H, this simply replaces
the empirical cos ¢ calculation with the empirical cos o caleulation (Refer Fig, 10.9), The
halfway vector is given as

.+ ¥
His 2
[+ V]

When the light source and the viewer are both at infinity, then the use of N - H offers a
computational advantage, since H is constant for all surface points. Substituting N -1 in
place of VR the intensity for specular reflection is given as

L"l’l' = k~ll (N ' H)"
For given light-source and viewer positions, vector H gives the orientation direction tor

the surface that would produce maximum specular reflection in the viewing dirgction Thus,
H is also referred to as the surface orientation direction for maximum highlights.

10.5 Combined Diffuse and Specular Reflections

For a single point light source, the combined diffuse and specular reflections from any
point on the illuminated surface is given as

b= laus l...“
=k, L+k I (N L)+ k) (N-H)
For a multiple point light source the above equation can be modified as
1=Kk 1+ il: I Tkg (NCL+ kg (N-H()" ]
I=1

Therefore, in case of multiple point light sources the light reflected o0 anv surface point is
given by summing the contributions from the individual sources,



ter Graphics 294 Light Shading

hading Algorithms

Frown tie previous discussion it is clear that we can shade any surface by calculoting the
surtace normal al caclt visible point and applying the desired ilumimation model at that
point. Unfortunately, this shoding method is expensive, In this section, we discuss maore
eliiwient shading, methuds for surlaces defined by pulvgons. Fach polygon can be drawn
with a single intensity, or with ditferent intensity obtaimed at vach point on the surface. Lot
us see varions shading methaods.

10.6.1 Constant-Intensity Shading

The fast and simplest method Tor N,
shading polygon is constant shading,
also known as faceted shading or flat
shading. In this method, illumination N,
moded i applied only once for cach
polvgon o determinge single intensity
value. The entire polygon is then
displayed with the single  intensity
value

N3

This method is valid  for  the

¢ - . Fig. 10.10 Polygons and their surface normals
following asstmptions

[ The light source is at infinity, so N - L is constant across the polygon face.

2. The viewer is at infinity, so V - R is constant over the surface.

3. The polygon represents the actual surface being modeled, and is not an
approximation to a curved surface.

I cither of the first bwo assumptions arc not true still we can use constant intensity

shading approach; however, we require some method to determine a single value for ¢ach of
Land Vyeetors.

10.6.2 Geuraud Shading

In this method, the intensity interpolation technique developed by Gouraud is used,
hence the name. The polygon surface is displayed by linearly interpolating intensity values
across the surface, Here, intensity values for each polygon are matched with the values of
adjacent polygons along the common edges. This eliminates the intensity discontinuities
that can occur in flat shading.

By performing following caleulations we can display polygon surface with Gouraud
shading .

1. Determine the average unit normal vector at each polygon vertex
2. Apply anillumination model to each polygon vertex to determine the vertex intensity.
3 Lincarly interpolate the vertex intensities over the surface of the polygon.

We can obtain a normal vector at each polygon vertex by averaging the surface normals
of all polygons sharing that vertex. This is illustrated in Fig. 10.11
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As shown in the Fig 1011, there are three surface normals N, Ny and N, of polygon
sharing vertex V. Therefore, normal vector at vertex Vs given os

_ N +N; + N,
TN N2+ N

In general, for any vertex positon V, we
can obtain the unit vertex normal by
eyuation

5w

where noiy the number of surface vector at polygon vertex V
nurmals of polygons sharing thal vertex

sz'

Fig. 10.11 Calculation of normal

The next step in Gouraud shading is to
find vertex intensities. Once we have the
vertex normals, their vertex intensitivs can 3
be determined by applying tllumination
madel to each polygon vertex, Finally, cach

polygon is shaded by linear interpolating of 1
vertex intensities afong each edge and then
Letween edges along each scan line. This is p Scan line
illustrated in Fig. 10.12. a\/)
For each scan line, the intensity at the 2

intersection of the scan line with a polygon
edge is linearly interpolated from the
intensities at the edge endpoints. For
example, in Fig. 10.12, the polygon edge Fig. 10.12

with endpoint vertices 1 and 2 is intersected

by the scan line at point ‘a". The intensity at point 'a’ can be interpolated from intensities 1,
and I, as

1 _)'.l-.v- Vi=Y.a 1,

A -‘I"
) et - Yi— Y=

Similarly, we can interpolate the intensity value for right intersection (point b) from
intensity values I, and I, as

2 ¥a=V¥3 Iy +)'.1 Y 1

Ya=Ya Ya=¥a2

Once the intensities of intersection points a and b are calculated for a scan line, the
mtensity of an interior point {such as P in Fig 10.12) can be determined as

L
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Xy X Xy

During the scan conversion process, usually incremental caleulations are used to obtain
the successive edge intensity values between the scan lines and ta oblain succuessive
intensity along a scan line, this climinales the repeatative calculations,

If the intensily at edge position (x, y) is interpolated as

LT A
Yu=ys ) MR &

then we can obtam the mtensity along this edge for the next scan line, y = 1 as (see

Fig, 10.13)

L™=z —_—
Yo e
¥
3
1
< Scan ling
g1 ! BN lines
o
Uy
' 2
L]
[
U}
[y M
X x+1

Fig. 10.13 Caiculation of incremental interpolation of intensity values along a polygon edge for
successive scan lines

Similarly, we can obtain intensities at successive horizontal pixel positions along cach
scan line (sev Fig. 10.14) as
I, -1
['s et 4
xb ~ Xd
Advantages
1. It removes the intensity discontinuities exists in constant shading model,

2. It can be combined with a hidden surface algorithm to fill in the visible polygons
along each scan line.
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Fig. 10.14 Calculation of incremental interpolation of Intensity values along a scan line

Disadvantages
1. Highlights on the surface are sometimes displayed with anomalous shapues.

2. The Jincar intensity interpolation can result bright or dark mtensity streaks to
appear un the surface. These bright or dark intensity streaks, are ealled Mach
bands. The mach band effectcan be reduced by breaking the surface into a greater

number of smaller palygzons

3. Sharp drop of intensity values on the polvgon surface can nal be displayed.
10.6.3 Phong Shading

Phony shading, also known as normal-vector interpolation shading, interpolates the
surface normal vector N, instead of the intensity. By performing following steps we can
display polygon surface using Phong shading,

1. Determine the average unit normal vector at each polygon vertex.
2. Linearly interpotate the vertex normals over the surface of the polygon,

3. Apply an illumination model along each scan line to determine projected pixel
intensities for the surface points.

The first steps in the Phoag shading is same as first step in the Gouraud shading. in the
second step the vertex normals are linearly interpolated over the surface of the polygon. This
is lustrated in Fig. 10.15. As shown in the Fig. 10.15, the normal vectar N for the scan line
intersection point along the edge between vertices 1 and 2 can be obtained by vertically
interpolating between edge endpoint normals :

N = Y—¥a N‘+YI-Y NZ
Yi—Ya2 Y =Y
Like, Gouraud shading, here also we can use incremental methods to evaluate normals
between scan lines and along each individual scan line. Once the surface normals are
evaluated the surface intensity at that point is determined by applving the lumination
maodel.
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&

Y1

Y2

x

Fig. 10.15 Calculation of interpolation of surface normals along a polygon edge
Advantages

1. It displays more realistic highlights on a surface. (See Fig. 10.16 d)
2. It greatly reduces the Mach-band effect.
3. [t gives more accurate results,

Disadvantage

1. It requires more calculations and greatly increases the cost of shading steeply.

Fig. 10.16 shows the improvement in display of polygon surface using Phong shading
over Gouraud shading.

{a) (b) (<) (d)
Gouraud shading Phong shading Gouraud shading Phong shading

Fig. 10.16
Method of Speeding Up Phong Shading Technique

Phong shading is applied by determining the average unit normal vector at each
polygon vertex and then linearly interpolating the vertex normals over the surface of the
polygon. Then apply an illumination model along each scan line to calculate projected pixel
intensities for the surface points, Phong shading can be speeded up by the intensity
calculations using a Taylor- Series expansion and triangular surface patches. Since phong
shading interpolates normal vectors from vertex normals, we can express the surface normal
N at any point (x, y) over a triangle as

N=A+B+C
where A, B, C are determined from three vertex equations
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Ny =Axy + By, + C k=12 3with (x, y,) denoting a vertex positions. Discarding the
reflectivity and attenuation parameters, the calculations for light source diffuse reflection
from a surface pont (x, y) as

LN L-(A,+B, +()
LT IN| IL] A, +B, +C]
_ (LAY x+(L-B)y4+ L C

(L1 1AL +B +CJ

Laiir (%, y)

Now the expression can be rewritten in the form as
ax - by

Land%y ¥): =i mmmm——s eshmesay

(dx™ + exy + fy = + gx4 hy + i)~
Where parameters a, b, ¢ and d are used to represent the various dot products. We can
express the denominator as a Taylor - series expansion and retam terms up to second degree
inxand y. S :
L (6 ¥) = Tox® + Toxy + Tyy * 4 Toxa Ty T

where cach T, is a functions of parameter a, b, ¢ and so forth

Using forward differences, we can evaluate above equation with only two additions for
each pixel position (x, y) once the initial furward difference parameters have been evaluated.
Thus the fast phong shading technique reduces the calculations and speed up the process.

10.6.4 Halftone Shading

Many displays and hardcopy devices are bilevel They can only produce two intensity
levels. In such displays or hardeopy devices we can create an apparent increase in the
number of available intensities. This is achieved by incorporating multiple pixels positions
into the display of each intensity value. When we view a very small area from a sufticiently
large viewing distance, our eyes average fine details within the small arca and record only
the overall intensity of the ar¢a. This phenomenon of apparent increase in the number of
available intensities by considering combine intensity of multiple pinels s known as
halftoning The halftoning is commuonly used in printing black and white photographs in
newspapers, magazines and books, The pictures produced by halftoning process are called
halftones.

In computer graphics, halftone reproductions are approximated using rectangular pixel
regions, say 2x 2 pixels or 3x3 pixels. These regions are called halftone patterns or pixel
patterns. Fig. 10.17 shown the halftone patterns to create number of intensity levels.

Y O Y%
N NN/
& ™ B &
h_ A N
0 1 F3 3 4

0<1<02 02<1<04 04<1<06 06<I1<08 08<1<10

Fig. 10.17 (a) 2 x 2 Pixel patterns for creating five intensity levels
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Fig. 10.17 (b} 3 « 3 Pixel patterns for creating ten intensity levels
10.6.5 Dithering Techniques

Dithering refers to techniques for approximating halftones without reducing resolution,
as pixel goid patterns do. The term dithering is also applied to halftone approximation
methods using pixel grids, and sometimes it is used to refer to colour halftone
approximations only.

Random values added to pixel intensities to break up contours are often referred as
dither noise. Number of methods are used to gencrate intensity variations, Ordered dither
methods generate intensity variations with a one-to-one mapping of points in a scene to the
display pixels. To obtain n” intensity levels, itis necessary to setupannxn dither matrix D
whose elements are district positive integers in the range of 0 ton™ = 1. For e.g. itis possible to
genvrate four intensity levels with

D,

3
[0 ;] and it is possible to generate nine intensity levels with

7
3

[« -Ja =~ 2a S8}

6
1
5

The matrix elements for D, and D, are in the same order as the pixel mask for setting up
2 x 2 and 3 x 3 pixel grids respectively. For bilevel system, we have ta determine display
intensity values by comparing mput intensities to the matrix elements. Each input intensity
is first scaled to the range 0 <1< . If the intensity 1 is to be applied to screen position (x, y),
we have to calculate row and column numbers for the either matrix as

= {(x mod n)+1, j=(ymodn)+1
If1>D, (i) the pixelat position (x, y) is turned on; otherwise the pixel is not turned on,

Typically, the number of intensity levels is taken to be a multiple of 2. High order dither
matrices can be obtained from lower order matrices with the recurrence relation.
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assuming n = 4. Parameter u, ., is the unity matrix.

Another method for mapping a picture with m x n points to a display area with mxn
pixels is error diffusion. Here, the error between an input intensity value and the displayed
pixelintensity levelata given position is dispersed, or diffused to pixel positions to the right
and below the current pixel position.

10.7 Transparency

fn the shading models we have not considered the transparent objucts A transparent
surtace. in general, produces both reflected and transmitted light. It has a transparency
coefficient T as well os values for reflectivity and specular reflection, The coefficient of
transparency depends on the thickness of the object because the transmission of light
depends exponentially on the distance which the light ray must travel within the object The
expression for coefficient of transparency 1s given as

T =t

Where t s the coefficient of property of
material which determines how much of the light
is transmitted at the surface instead of reflected, o
is thecoetficient of property of material which tells
how quickly the material absorbs or attenuates the - *\
light, d is the distance the hght must travel in the ™

s Transparant d's
object abject M

id
Lr;:l ent Reliection

directon

When light crosses the boundary between two be
media it changes the direction as shown in the \
Fig. 10.18. This effect is called refraction. The
effect of refraction is observed because the speed
of light is different in different materials resulting Fig. 10.18 Refraction
different path for refracted light from that of incident light. The direction of the refracted
light is specified by the angle of refraction (@), It is the function of the property materials
called the index of refraction (n). The angle of refraction 8, is calculated from the angle of

incidenced,, the index of refraction n, of the incident material (usually air), and the index of
refraction n, of the refracting material according to Snell's law -

sinf), = 2 gin B,
n'

In practice, the index of refraction of a material is a function of the wave length of the
incident light, so that the different colour components of a light ray refracts at different
angles. The transparency and absorption coefficients are also depend on colour. Therefore,
when we are dealing with colour objects we require three pairs of transparency and
absorption coefficients,
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o | 0 /Refracton
direction

T direction

Fig. 10.19 Refraction direction and angle of refraction )

For modeling of transparent surface we have to consider contributions from the light
reflected from the surface and the light coming from behind the object. If we assume fora
given surface that

*« The transparency coefficient for the object is a constant

« Refraction effects are negligible and

* No light source can be seen directly through the object,

then the light coming through the vbject is given as,

v=ov oty

where v is the total amount of light,

v, is the amount of light reflected from the surface,

tis the transparency covfficient and,

v, is the light coming from behind the object.

To get more realistic images we have to consider the angular behavior of the reflection
v, transmission at the surface and also the attenuation due to thickness. The simple
approximation for this behavior can be given as

b= (‘n\.\x =X lmln) (N E)“ t tmiﬂ

whore (N- E)" is the cosine of the angle between the eye and the surface normal raised to

the power. This angle decides the distance the light must travel through the object. When
viewed straight on, angle is 0 i.e. cosine of angle is 1 (highest) and the distance travelled by
light is minimum. When viewed at a glancing angle, cosine is less than 1 and the distance
travelled by light is more. Therefore, we can say that cosine of angle is maximum when
surface is viewed straight on and it drops off for glancing views. The power of angle
represented by o enhances the effect. The values of i of 2 or 3 give reasonable effects.

10.8 Shadows

A shadowed object is one which is hidden from the light source. It is possible to use
hidden surface algorithms to locate the areas where light sources produce shadows. In order
to achieve this we have to repeat the hidden-surface calculation using light source as the
viewpoint. This calculation divides the surfaces into shadowed and unshadowed groups.
The surfaces that are visible from the light source are not in shadow; those that are not
visible from the light source are in shadow. Surfaces which are visible and which are also
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visible from the light source are shown with both the background illumination and the
ght-suurce illumination. Surfaces which are visible but which are hidden from the light
source are displayed with only the background illumination, as shown in the Fig, 10.20.

Light

S e

Flg. 10.20 Shadow
Another wav to locate shadow areas is the use of shadow volumes. A shadow volume is

Viewere=====

defined by the light source and an object and is
bounded by a set of invisible shadow polygons,
as shown in the Fig. 1021, This volume is also
known as polygon's shadow volume. By
comparing visible polygon with this volume we
can identify the portions which lie inside of the
volume and which are outside of the volume.
The portions which lic inside of the volume are
shadowed, and their intensity calculations do
not include a term from the light source. the
polygons or portions of polygons which lie
outside the shadow volume are not shaded by

this polygon, but might be shaded by some other

Fig. 10.21 polygon su they still must be checked against the
other shadow volume.

10.9 Ray-Tracing

If we consider the line of sight from a pixel
’ position on the view plane through a scene, as

’ in Fig. 10.22, we can determine which objects in

Aw‘ . the scene (if any) intersect this line, From the

intersection points with different object, we can
identify the visible surface as the one whose
intersection point is closest to the pixel. Ray
tracing is an extension of this basic idea. Here,
instead of identifying for the visible surface for
each pixel, we continue to bounce the ray
around the picture, This is illustrated in
Fig. 10.23. When the ray is bouncing from one
surface to another surface, it contributes the

Fig. 10.22 A ray along the line of sight from a
pixel position through a scene
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Light path backward intensily for that surfaces. This is a
from pixel 10 scene simple  and  powerful  rendering

i

Y

Pixel
posilion on
projection plane

Projection
rele.runco
point

Fig. 10.23 Bouncing of ray around the scene

technique for obtaining global retiection
and transmission effects

As shown in the Fig. 10.23, usually
pixel positions are designated in the xy
plane and projection reference point lic
an the 7 axis, e the pisel screen area s
contered on Viewing courdinate origin.
With  this  coordinate  system the
contributions to a pixelis determined by
tracing a light path backward from the
pixel to the picture

For cach pixel ray, cach surface is
tested an the picture to determine if it is

intersected by the ray, If surface is intersected, the distance from the pixel to the surfacy
intersection poinl s caleulated. The smallest calculated intersection distance identifies the
visible surface for that pixel. Once the visible surface is identified the ray is reflected off the
visible surface along a speeular path where the angle reflection equals angle of incidence. 1t
the surface is transparent, the ray is passed through the surface in the refraction direclion.
The ray reflected from the visible surface or passed through the transparent surface in the
refraction direction is called secondary ray. The ray after reflection or refraction strikes
another visible surface This process is repeated recursively W produce the next generations
of reflection and refraction paths. These paths are represented by ray tracing tree as shown
in the Fig. 10.24.

Fig. 10.24 Binary ray-tracing tree

As shown in the Fig. 10.24, the left
branches in the binary ray tracing trog
are used to reproesent reflection paths,
and right branches are used to represent
transmission paths. The recursion depth
for ray tracing tree is determined by the
amount of storage available, or by the
user, The ray path is terminated when
predetermined depth is reached or if ray
strikes a light source. As we go from top
to bottom of the tree, surface intensities
are attenuated by distance from the
parent surface, The surface intensities ot
all the nodes are added traversing the
ray tree from bottom to top to determine
the intensity of the pixel.
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IFpixel ray does not intersect to any surface then the intensity value of the background is
assigned to the pixel 1f a pixel ray intersects a nonreflecting light source, the pixel can be
assigned the intensity of the source, although light sources are usually placed beyond the
path ot the mitinl ravs.

Reflucted The Fig. 10.25 shows o surface intersected by a
oy '/, | ray and unit vectors needed for the reflected
/ light-intensity  calculations, Merd, u is the unit

L veclor in the direction of the ray path, N is the unit

7 S surface normal, R is the unit reflection vector, L is

_ the unit vector pointing to the light source, and H iy
. =N the unit vector halfway between V (viewer) and 1,
- (light source).
-~ H .
Incoming ray
Fig. 10.25 Surface intersected by a ray Rellected
and the unit voctors ray

1T any object intersects the path along L between
the surface and the point bght source, the surface is in
shadow with respect to that source. Hence a path Il
along L is refereed to as shadow ray. Ambient light at -
the surface is given as K| | |, diffuse relection due to
the surface is proportional to K, (N.L), and the
specular-reflection component is proportional to K,
(H.N)"™ . We know that, the specular eeflection

direction for R depends on the surface normal and

the incoming ray direction. It is given as
R=u=-(2u.N)N Fig. 10.26 Refracted ray through the

transparent material

Incaming ray

Ina transparent material light passes through the
material and we have to calculate intensity contributions from light transmitted through the
material. Referring the Fig, 10.26, we can obtain the unit transmussion vector from vectors u
and N as

T = D y—(cost, -2 cost), )N
Ny ny

where 1, and ), are the indices of relfection in the incident material and the refracting
meterial, respectively, The angle of refraction 8, is given by Snell’s law

2
cosh, = Jl-[l] (1-cos?0,)

N,

10.9.1 Ray Surface Intersection Calculations
The ray cquation is given as
P = Py+su
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Where I’ is the initial position of ray, I” is any point along the ray path at distance s from
I, and u is the unit direchion vector. The ray equation gives the coordinates of any paint I
along the ray path at a distance s from Py, Initially, Py is set to the position of the pixel on the
projuection plang, or it is chosen as a projection reference point. Unit vector u is initially
oblained from the position of the pixel through which the ray passes and the projection
reference point

P
Pl e

B
) » |
l |t ‘ ey

Viectors Pjand uare updated for the secondary rays atthe ray-surface intersection paint
at each intersected surface. For the secondary rays, reflection direction for uwis R and the
transmission direction is T We can locate the surface intersections by simultancously
solving the ray equation and the surface equation for the individual objects in the scene.

The simplest object to ray trace is sphere, e, we con casily identify that whether the ray
does intersect the sphere or not: and if it interseels we can casily obtam the surface
mtersection coordinates from the ray equation. Considur the sphere of radio r and center
position P, as shown in Fig. 10.27. I is any point on the sphere which satisfies the sphere
eyation ¢

Q b
P=P) -r" =0
Substituting the value of PP from ray equation we can write above equation as

Py +5, ~ R =0 = 0

Fig. 10.27 A ray intersecting a sphere having radius r centered on position P¢
If we assume AP = P- = P, and vxpand the dot product, we get the quadratic equation
S-2(u-aPys+ (AP -r’) =0
By solving quadratic equation we get,
s = u-AP#+ \I(u-A P -1a PP +r?
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In the above equation it the discriminant is negative we can sy that the ray does niot
mtersect the sphere; othenwise the surface interseetion coordinates can be obtained from the
av equation

In case of polyhedra more processing is
required to locate the surface intersections.
= Far this reason instead ol doing intersection
calculations directly, tirst the intersection
test is corvied oul on bounding volume, as
shown in Fig. 10.28; and if the ray inlersiects
the bounding volume further tests and
infersection caleulations are carried out. As
shown in Fig, 10.28, the polvhedron s
bounded by o sphere. 1T a ray does nol
intersect the sphere, we do not aced ta do
any further testing on the polvhedron: But if
ray doey intersect the sphere, we have to
lucate front Faces sith the Lest

Fig. 10.28 Palyhedron bounded by a sphere

u-N < (
Where N s a surface normal, For cach face of the pulvhedron that satisties inequality in
above equation, we have to solve the plane equation as
NI = =D
for surlace position I that also satisfies the ray equation. With these initial caleulations
we can say that the position [Mis bath on the plane and on the ray path it
NAP +5u) = =D
and the distance from the initial ray position to the plang is
D+ NP,
N-u
The above calculations gives us a position on the infinite plane that contain the polvgon
face. however they do not satisfy that the position 15 inside or outside the polvgon

boundaries, Therefore, to determine whether the ray intersected this face af the polyhedron,
we have to perform an inside-outsidoe tost discussed in section 3.5.

In casc of other objects, such as quadric or spline surfaces we have to follow the same
procedure to caleulate ray-surface intersection positions.

N =

10.9.2 Reducing Object-Intersection Calculations

When scene contains more than one objects, most of the processing time for each ray is
spent in checking obijects that are not visible along the ray path. Theretore, as discussed
carlier, adjacent objects are enclosed in groups within a bounding volume, such as a sphere
or a box. We can then proceed tor intersection caleulations only when the ray intersects the
bounding volume. This approach can be extended to include a hierarchy of bounding
volumes. That is, we enclose several bounding volumes within a larger volume and carry
out the intersection test hierarchically, In this, wa first lest the outer bounding volume and
then if necessary test the smaller inner bounding v olumes and so on.
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Another  method  known as
space-subdivision method is also used
Lo reduce intersection calealations. fn this
method, the scene is enclosed within a
cube and o cube then successively
subdivided until cacli subregion (eell)
contains no more than a preset maximum
number of surfaces, For example, one
surface pur cell. We Lhen trace rays
through the individual cells of the cube,
performing intersection Lests only within

—_— —

Cully <

iy

Fig. 10.29 Subdivision of cube into cells those cells containing .surfaats. Thereisa
trade-ofl between the cell size and the

number ot surfaces por cell. 1F we set the maximum number of surfaces pereell too low, cell
siz¢ can become o small and cell number can buecame too large increasing cell-traversal
Processing,

N, Initially, we have to determinge the intersection point on
the front face of the cube. It can be determined by checking
™~ the intersection coordinates against the cell boundan
L] positions. We then need to process the ray through the cells
Pt by determining the entry and exit points as shown in the
B N, o SN ' X - AV >
/ Fig. 1030, for cach cell traversed by (he ray until ray intersect
and object surface or exit the cube.

2

N,

If a ray direction is v and a ray entry pointis P fora cell,
Fig. 10.30 Traversal of ray the potential exit faces are those for which
through a cell

where Ny are the normal vectors. If these vectors are aligned with coordinate axes,
then
(£1,0,0)
N, = {(0,21,0)
h&&xn
and to determine the three condidate exits plane we have to check only the sign of each

component of u. The exit position on each candidate plane can be obtained from the ray
equation as

Pmn,k = Pm + S& u
where S, is the distance along the ray from P to P, . Substituting the ray equation into

the plane equation for each face uf the cell we have,
Ny l’ulil.l =-D
Now, the ray distance to each candidate exit face can be given as
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-D- Ny B,

N; u
We have to select smallest S, The above calculations are simple when the normal

vectors are aligned with the capdidate axes. For example, if a candidate normal vector is
(0,1, 0), then for that plane we have

- Xy — X
b‘ = k i
u

5; =

¥
where u = (u,, uy, u,), and x, is the value of the right boundary face fur the cell.

10.9.3 Antialiased Ray Tracing

Traditional ray tracing systems suffer from aliasing artifacts. The term aliasing in
computer graphics is loosely defined. It can mean almost anything unwanted in the
rendered image. Typically aliasing is used to describe jagged edges. In the real world things
are not quite as perfect as in a computer generated world-cdges and boundaries are not as
sharp, reflections are not as perfect, and things can be in and out of focus. If a renderer is
being used to approximate reality then these things must be taken into account.

Three basic techniques are used to perform antialiased ray tracing. These are super
sampling, adaptive sampling and stochastic sampling. In these sampling methods, the pixel
is treated as a finite square area instead of a single point.
10.9.3.1 Super Sampling

In supersampling, multiple,

/ evenly spaced rays (samples) are
= taken over vach pixel area, The
[~ Fig 1031 shows a simple

~] \\ / supersampling procedure with

T four rays per pixel, one at each

~ \</ pixel corner. To determine the

¢ e overall pixel intensity, the

PN pudank intensity of these pixel rays are

[ SORCton prans averaged. However, if the

intensities for the four rays are

T not appropriately equal, or if

Projection some small object lies between
reference: point the four rays, we have to divide

Fig. 10.31 Super sampling procedure the pixel area into subpixels and

repeat the process. This is

illustrated in Fig. 10.32. Here, pixel area divided into nine subpixels using 16 rays, one at
each subpixel corner.

Fig. 10.32 Subdivision of pixel into nine subpixels
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10.9.3.2 Adaptive Sampling

In adaptive sampling, muitiple, unevenly spaced rays (samples) are taken in some

rc;,mm of the |nxcl arca. Fur example, more rays can be taken near object edges to obtain a

ar i the pixel intensitics. Again, to determine the overall pixel intensity where

multiple rays are used, the intensily of rays from subpixels are averaged. However, the

subpixels that do not have nearly equal intensity rays are further subdivided until each

subpixel has approximately equal intensity rays or an upper bound, say, 256, has been
reached for the number of rays per pixel.

10.9.3.3 Stochastic Sampling / Distributed Ray Tracing

Distributed ray tracing is a stochastic sampling method. It

2 e | | isnotray tracing on a distributed systenm. It is a ray tracing

21 ® muthod based on randomly distributed rays over the pixel

. * | . area (Refer Fig, 10.33) used to reduce aliasing effect. In this

L method, the mulliple samples are taken and averaged

® ” together. The location of where the sample is random so that

® x the resulting average in an approximation of a finite area
. . covered by the samples.

. -

Fig. 10.33 The random

distribution of rays The random distribution of a number of rays over the

pixel surface is achieved by the technque called jittering. In
this technique, initially, pixel area is divided into the 16 subareas as shown in the Fig, 10.33.
Then random ray positions are obtained by jittering the center coordinates of each subpixel
area by small amounts say 8x and 8y, where both 6x and 8y are assigned values in the
inverter (= 0.5, 0.5), Therefore, if center position of a cell is specified as (x, y) then the jitter
position is (x + dx, y + 8y).

10.9.3.4 Advantages of Distributed Ray Tracing

The intensity of a point in a scene can be represented analytically by an integral over the
illumination function and the reflectance function. The evaluation of this integral, while
extremely accurate, is too expansive for most graphics applications. Traditional ray tracing
makes assumptions about the components of this integral to simplify evaluation. For
example, the Phong model assumes that diffuse light is reflected equally in all directions,
and specular light is at full intensity in the reflected direction and falls off exponentially with
the cosine of the angle away from this direction. In addition, light sources are modeled as
single points, so the light that emanates from a source and hits a surface can be represented
by a single ray.

Distributed ray tracing uses a slightly better approximation for the illumination and
reflectance integrals. The idea is based in the theory of oversampling. Instead of
approximating an integral by a single scalar value, the function is point sampled and these
samples are used to define a more accurate scalar value. The practical benefits of this are :
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* Gloss (fuzzy reflections)
* Translucency

* Softshadows

* Depth of field

* Motion blur

Gloss

Traditional ray tracing is good at representing perfect reflecting surfaces, but poor at
representing glossy or partially reflecting surfaces, Only when surfaces aw perfect mirrors
do the reffections look identical to the scene they are reflecting. More often surfaces are
glossy and reflect a blurred image of the scene, This is due o the light scatlering propertivs
of the surface. Reflections in traditional ray tracing are always sharp, even partial
reflections. Glossy surfaces are generated in distributed ray tracing by randomly
distributing rays reflected by a surface. Instead of casting a single ray out in the reflecting
direction, a packet of rays arce sent out around the reflecting direction. The actual value of
reflectance can be found by taking the statistical mean of the values returned by each of these
rays.

Translucency

Traditional ray tracing is good at representing perfectly transparent surfaces, but poor at
representing translucent surfaces. Real surfaces that are translucent generally transmit a
blurred image of the scene behind them. Distirbuted ray tracing achieves this type of
translucent surface by casting randomly distributed rays in the general direction of the
transmitted ray from traditional ray tracing. The valuc computed from each of these rays is
then averaged to form the true translucent component.

Soft Shadows

Shadows in traditional ray tracing are discrete. When shading a point, each light source
is checked to see if it is visible. If the source is visible it has a contribution to the shading of
the point, otherwise it does not. The light source itself is modeled by a single point, which is
fairly accurate for sources that are a great distance away, but a poor representation for large
sources or sources that are close. The result of this discrete decision making is that the edges
of shadows are very sharp. There is a distinct transition from when poinls are visible to the
light source to when they are not. Shadows in the real world are much softer. The transition
from fully shadowed to partially shadowed is gradual. This is due to the finite area of real
light sources, and scattering of light of other surfaces. Distributed ray tracing attempts to
approximate soft shadows bz' modeling light sources as spheres. When a point is tested to
see if it is in shadow, a set of rays are cast about the projected area of the light source. The
amount of light transmitted from the source to the point can be approximated by the ratio of
the number of rays that hit the source to the number of rays cast. This ratio can be used in the
standard Phong lighting calculations to scale the amount of light that hits a surface,

Depth of Field

Both the human eye and cameras have a finite lens aperture, and thercfore have a finite
depth of field. Objects that are two far away or two close will appear unfocused and blurry.
Almost all computer graphics rendering techniques use a pinhole camera model. In this
model all objects are in perfect focus regardless of distance. In many ways this is
advantageous, blurring due to lack of focus is often unwanted in images. However,
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simulating depth of fiekd can lead to more realistic looking images because it more
accurately models true optical systems, Distributed ray tracing creates depth of field by
placing an artificial lens in front of the view plane. Randomly distributed rays are used once
agoin to simulate the blurring of depth of field. The first ray cast is not modified by the lens.

Itis assumed that the focal point of the lens is at a fixed distance along this ray. The rest of the
rays sent out for the same pixel will be scattered about the surface of the lens. At the point of
the lens they will be bent to pass through the focal point. Points in the scene that are close to
the focal point of the lens will be in sharp focus. Points closer or further away will be blurred.

Motion Blur

Animation in computer graphics is produced by generating a sequence of still images
and then playing them back in order. This is yet another sampling process, but it is temporal
rather than spatial. [n movie cameras, each frame represents an average of the scene during
the time that the camera shutter is open. If objects in the scene are in motion relative to the
camera, then they will appear blurred on the film, Distributed ray tracing can simulate this
blurring by distributing rays temporally as well as spatially. Before cach ray is cast, objects
are translated or rotated to their correct position for that frame. The rays are then averaged
afterwards to give the actual value. Objects with the most motion will have the most
blurring in the rendered image

10.10 Colour Models

A colour model isa specification of a 3D colour coordinate system and a visible subset in
the coordinate system within which all colours in a particular colour range lie. For example,
RGB colour model is the unit cube subset of the 3D Cartesian coordinate system. The colour
model allows to give convenient specification of colours in the specific colour range or
gamut. There are three hardware oriented colour models : RGB, used for colour CRT
monitors, YIQ used for the broadcast TV colour system, and CMY (Cyan, Magenta, Yellow)
used for some colour printing devices. However, these models are not easy to use because
they does not relate directly to intuitive colour notions of hue, saturation, and brightness.
Therefore, another class of colour model has been developed. These include HSV, HLS and
HVC models. In this chapter we are going to study RGB, CMY, HSV and HLS models.

10.10.1 Properties of Light

A light source produced by a sun or electric bulb emits all frequencies within the visible
range to give white light. When this light is incident upon an object, some frequencies are
absorbed and some are reflected by the object. The combination of reflected frequencies
decides the colour of the object. If the lower frequencies are predominant in the reflected
frequencies, the object colour is red. In this case, we can say that the perceived light has a
dominant frequency at the red end of the spectrum. Therefore, the dominant frequency
decides the colour of the object. Due to this reason dominant frequency is also called the hue
or simply the colour.

Apart from the frequency there are two more properties which describe various
characteristics of light. These are : brightness and saturation (purity). The brightness refers
to the intensity of the perceived light. The saturation describes the purity of the colour.
Pastels and pale colours are described as less pure or less saturatéd: When the two
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properties purity and dominant frequency are used collectively to describe the colour
characteristics, are referred to as chromaticity.

We know that two different colour light sources with suitably chosen intensities can be
used to produce a range of other colour. But when two colour sources are combined to
produce white colour, they are referred Lo as complementary colours. Red and cyan, green
and magenta, and blue and yellow are complementary colour pairs. Usually, the colour
model use combination of three colours to produce wide range of colours, called the colour
gamut for that model. The basic colours used to produce colour gamut in particular mudel
are called primary colours,

10.10.2 CIE Chromaticity Diagram

Matching  and  therefore
defining a coloured light with 3
combination of three fixed primary
colours is desirable approach o
specify  colour I 1931 the
Commission  Intermationale  de
1" Eclairage  (CIE)  defined  three
standard primarivs, called X, Y and
Z to replace red, green and blue
Here, X, Y and Z represent vectors
in a three-dimensional, additive
0 400 500 800 200 Anm) colour space. The three standard
primaries are imaginary colours.
They are defined mathematically
with  positive  colour-matching
functions, as shown in Fig. 1034,
They specify the amount of each primary needed to describe any spectral colour.

Colour matching CIE amount

Wavelength

Fig. 10.34 Amounts of CIE primaries needed to display
spectral colours

The advantage of using CIE primaries is that they eliminate matching of negative colour
values and other problems associated with selecting a set of real primaries,
Any colour (C, ) using CIE primaries can be expressed as
C;_ = XX+YY+ZZ

where X, Y and Z are the amounts of the standard primaries needed to match C; and X,
Y and Z represent vectors in a three-dimensional, additive colour space.

With above expression we can define chromaticity values by normalizing against
luminance (X + Y + Z). The normalizing amounts can be given as

x:—x— y = X Z= Z
X+Y+2" X+Y+2Z' X+Y+2Z

Notice that x + y +z=1,Thatis, x, y and zare on the (X + Y + Z = 1) plane. The complete
description of colour is typically given with the three values x, y and Y. The remaining
values can be calculated as follows :
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7=l-k—)‘. X==Y, Z=

01'02 03 0¢ 05 06 07 08 X

Fig. 10.35

Chromaticity values depend
only on dominant wavelength and
saturation and are independent of
the amount of luminous energy. By
plotting x and y for all visible colours,
we obtain the CIE chromaticity
diagram shown in Fig. 10.35, which is
the projection onto the (X, Y) plane of
the (X +Y +Z=1) plane.

The interior and boundary of the
tonguc-shaped region represent all
visible chromaticity values. The
points on the boundary are the pure
colours in the electromagnetic
spectrum, labeled according to
wavelength in nanometers from the
red end to the violet end of the
spectrum, A standard white light, is

formally defind by a light source illuminant C, marked by the center dot. The line joining the
red and violet spectral points is called the purple line, which is not the part of the spectrum.

The CIE chromaticity diagram is useful in many ways :

* lItallows us to measure the dominant wavelength and the purity of any colour by
matching the colour with a mixture of the three CIE primaries.

* It identifies the complementary colours.

* Itallows to define colour gamuts or colour ranges, that show the effect of adding

colours together.

Fig. 10.36 Complementary colours on chromaticity
diagram

The Fig. 10.36 represents the
complementary colours on the
chromaticity diagram. The straight
line joining colours represented by
points D and E passes through point
C (represents white light). This
means that when we mix proper
amounts of the two colours D and E
in Fig. 10.36, we can obtain white
light. Therefore, colours D and E are
complementary colours, and with
point C on the chromaticity diagram
we can identify the complement
colour of the known colour.



