unit 2



2-D Geometric Transformation

[
4.1 Introduction

Almost all graphics systems allow the programmer to define picture that include a
variety of transformations. For example, the programmer is able to magnify a picture so that
detail appears more clearly, or reduce it so that more of the picture is visible. The
programmer is also able to rotate the picture so that he can see it in different angles.

In this chapter we discuss the 2D transformations.

4.2 Two Dimensional Transformations

In this section, we describe the general procedures for applying translation, rotation,
and scaling parameters to reposition and resize the two dimensional ubjects.

4.2.1 Translation

Translation is a process of changing the position of an object in a straight-line path from
one coordinate location to another. We can translate a

y B ) two dimensional pont by adding translation
’- ---------- . ey, distances, t. and ty, to the original coordinate position
Pix . y) : (x, y) to move the point to a new position (x, y'), as
;’ ! shown in the Fig. 4.1.
”": ! X'=x+t (4]
b e y': y-ft'\ (42)
0 X The translation distance pair (ty, t,) is called a
Fig. 4.1 translation vector or shift vector.

It is possible to express the translation equations
4.1 and 4.2 as a single matrix equation by using column vectors to represent coordinate
positions and the translation vector :
Ry |

X X [tx
P.= P'= T=

y y'l Lty
This allows us to write the two dimensional translation equations in the matrix form :
P'=P+T .. (43)

(110)
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Ex.41: Transiate a polygon with coordinates A (2,5), B (7, 10} and C (10, 2) by 3 umits in x
direction and 4 unils in y direction.

Sol.:
y y
15+ 15+ B
104 8 104 AQ
A
54 Q 54 c
(o4
0 5 10 15 X o 5 10 15 X
(a) (b)
Fig. 4.2 Translatlon of polygon
A = A+T
2] [37.
= -
-54 4
-
-9.1
B =B+T
‘7} 31
= -
10] |4
107
-l4d
C =:C#+T
107 I3
= +
12] |4
e
6]

4.2.2 Rotation

A two dimensional rotation is applied to an object by repositioning it along a circular
path in the xy plane. To generate a rotation, we specify a rotation angle 8 and the position of
the rotation point about which the object is to be rotated.
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y
Pix . y) Let us consider the rotation of the object about
the origin, as shown in the Fig. 4.3.
f
Here, r is the constant distance of the point
from the origin, angle ¢ is the original angular
Pix, y) position of the point from the horizontal, and 8 is
. the rotation angle, Using standard trigonometric
) _— equations, we can express the transformed
J coordinates in terms of angles 0 and ¢ as
Fig. 4.3
x = rcos(dp +0) = rcosd cos - rsiné sin® 4)
y'=rsin(p +8) =rcos¢ sinb + rsing cosd S
The original coordinates of the point in polar coordinates are given as
X=rcos
") } .45)
y =rsini

Substituting equations 4.5 into 4.4, we get the transformation equations for rotating
point (x, y) through an angle 0 about the origin

x =xcosl - ysinl
v | - (4.6)
y =xsinf +y cosl
The above equations can be represented in the matrix form as given below
¢ o=y cosf  sinf
r = X
gt =le [ sin0 cose]
P =FR o (4.7)
where R is rotation matrix and it is given as
cos@  sind
= .. (48
[— sin® cose] @s)

Itis important to note that positive values for the rotation angle define counterclockwise
rotations about the rotation point and negative values rotate objects in the clockwise sense.

For negative values of § i.e., for clockwise rotation, the rotation matrix becomes

R = cos(—8)  sin(-0)
~ |=sin(-8)  cos(-0)

) [cose - sinO] " cos(-0)=cos® and ...{4.9)

sin  cosH sin(-8)=-sin®
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Ex.42:  Apoint(4,3)is rotated counterclockwise by an angle of 45° Find the rotation matrix and
the resultant poit.
cost  sinf cos45"  sin45°
Sol.: R= A =
-sin@  cos0 -5in45"  cos45°
V2 2
-1/N2 V2

l l[l/ﬁ /42

SYN IRV
= [4/v2-3/V2 4/\2+3J2 ]
= [z 7{42]

r

4.2.3 Scaling

A scaling transformation changes the size of an object. This operation can be carried out
for polygons by multiplying the coordinate values (x, y) of each vertex by scaling factors S,
and 5, to produce the transformed coordinates (x', y’).

x =x-5,
y'=y-S, ... (410)

Scaling factor S, scales object in the x direction and scaling factor S, scales object in the y
direction. The equations 4.10 can be written in the matrix form as given below :

and

204 5
154 154
10+ B 104 Al
A
5" 5+ Dp C'
C L o e 4 2
ol 5 10 15 o of 5 10 15 20
(a) (b)

Sy
X yl=Ixyl
0

[x-S,
P.S

0
Sy

y Sy]

.. (4.11)
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Any positive numeric values are valid for scaling factors S, and S;. Values less than 1
reduce the size of the objects and values greater than 1 produce an enlarged object. For both
S, and Sy values equal to 1, the size of object does not change. To get uniform scaling it is
necessary to assign same value for S, and Sy, Unequal values for S, and S, result in a

differential scaling.

Ex.43:  Scale the polygon with coordinates A (2, 5), B (7, 10) and C (10, 2) by fwo units in x

direction and two units in y direction,

Sol. : Here S = 2 and S = 2. Therefore, transformation matrix is given as
(2 0
S =
0 2
Xy
Al2 5‘;
The object matrix is -
B|7 10|
C|10 2}
Allxy v, (2 5
20
B [x, y,[=]7 10
0 2
C %Xy ¥, 10 2
4 10
= |14 20
20 4
y y
254 25+
20+ 204 - (
15+ 154 A0
104 A25) (7,10) 104
5% 51 C'(20,4)
' C{10,2) AT PO PP IO
ol 5 10 15 20 25 ol 5 10 15 20 25
{a) Original object {b) Scaled object

Fig. 4.5
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4.3 Homogeneous Coordinates

In design and picture formation process, many times we may require to perform
translation, rotations, and scaling to fit the picture components into their proper positions.
In the previous section we have seen that each of the basic transformations can be expressed
in the general matrix form

P'= PM, + Mz o (412)
10 ty
For translation : P o= P +
01 t

e, M) = Identity matrix

Mz = Translation vector

‘ 0
2] 2]
For rotation : P =P Spest N +
-sint  cos 0

1.2, M| = Rotational matrix

M;=0

S, 0 0
For scaling : P =P +

0o s/ [o

i.e. M; = Scaling matrix
M:=0

To produce a sequence of transformations with above equations, such as translation
followed by rotation and then scaling, we must calculate the transformed coordinates one
step at a time. First, coordinates are translated, then these translated coordinates are scaled,
and finally, the scaled coordinates are rotated. But this sequential transformation process is
not efficient. A more efficient approach is to combine sequence of transformations into one
transformation so that the final coordinate positions are obtained directly from initial
coordinates. This eliminates the calculation of intermediate coordinate values.

In order to combine sequence of transformations we have to eliminate the matrix -
addition associated with the translation termsin M; (Refer equation 4.12). To achieve this we
have to represent matrix M, as 3x 3 matrix instead of 2 x 2 introducing an additional dummy
coordinate W. Here, points are specified by three numbers instead of two. This coordinate
system is called homogeneous coordinate system and it allows us to express all
transformation equations as matrix multiplication.
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The homogeneous coordinate is represented by a triplet (Xw, Yw, W),

where
X = l(..v.‘!. and y= Y~w
w w

For two dimensional transformations, we can have the homogeneous parameter W to be
any non zero value. But it is convenient to have W = 1, Therefore, each two dimensional
position can be represented with homogeneous coordinate as (x, Vvl

Summaring it all up, we can say that the homogeneous coordinates allow combined
transformation, eliminating the calculation of intermediate coordinate values and thus save
required time for transformation and memory required to store the intermediate coordinate
values. Let us see the homogeneous coordinates for three basic transformations.

4.3.1 Homogeneous Coordinates for Translation
The homogeneous coordinates for translation are given as

1 0 0]
Ne=l® 1 0 .. {4.13)
b 6 1
Therefore, we have
1 0 0
X y"1] = [xy1)]0 1 0
by t, 1
=[x+t y+ty 1] o (4.14)

4.3.2 Homogeneous Coordinates for Rotation
The homogeneous coordinates for rotation are given as
cost sin® 0

™

R =|-sin® cos® 0 ... (4.15)
o o 1
Therefore, we have A
cos sinf 0
X y"1] = [x y 1]|-5in® cos® 0

0 0 1

[xcosO-ysin® xsin@+ycosd 1] . (4.16)
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4.3.3 Homogeneous Coordinates for Scaling
The homugeneous coordinate for scaling are given as

S, 00
S=|0 S, 0
lo o 1
Therefore, we have
S, 0 0

X y'1I=lxy1]l [0 S5 0

¢ 0 1]
=[x S y-S 1] ... {(4.17)
Note : In this text, the object matrix is written first and it is then multipled by the required
transformation matrix, If we wish to write the transformation matrix first and then the object
matrix we have to take the transpose of both the matrices and post-multiply the object
matrix e,
[x' 1 0 ] [x

Yl =10 11 ,. y
1 00 1)([1]
Ex.44: Given 3 x 3 homogencous coordinate transformation matrix for each of the following
transintions
a) Shift the image to Huwe right 3-units
U) Shift the fmaye up 2 wifs
) Moo the image down % unit and right 1 unit
d) Move the image down 2/3 unit and left 4 units

Sol.: We know that homogenous coordinates for translation are
10 0
T=10 10
t, t, 1
a)Here, ty, =3 and t, =0
1 00
T=[010
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b} Here, ti=0and ty =2
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1 0 0
T=|010
021
¢)Here, ly=1land t,=-0.5
1 0 0
T=(0 1 0
1 -05 1|
d) Here, t, = -4 and t, = - 0.66
1 0 ©
T=( 0 1 ©0
-4 -0.66 1
Ex.4.5:  Find the transformation niatrix that transforms the given square ABCD to half its size
with centre still remaining at the same position. The coordinates of the square are -
A(1,1),B(3,1),C(3,3), D(1,3)and centreat (2, 2). Also find the resultant coordinates
of square,
Sol.: This transformation can be carried out in the following steps.

1. Translate the square so that its center coincides with the origin.

2. Scale the square with respect to the origin.

3. Translate the square back to the original position.
Thus, the overall transformation matrix is formed by multiplication of three matrices.

Ty ST =

1 0 0][0o5 0 Ot 0 0O
0 1 0/[|l0 05 0/|01 0

2 -2 1) [0 0 1]|2 21
05 0 0]f1 0 0

0 05 00 1 0

-1 -1 1|2 21
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s 0 0
=10 050
(1 1 1
(AT 11 7]
[5 0 0
B 301 1))
= v 05 0
c 331
’ R
sD'. , 3 l.
1.5 1.5 1]
2919 1
25 25 1
15 25 1]
Ex.4.6:  Fiud a triansfornimtion of tripngle A (1, 0), B( 0, 1), C(1, 1) by

a) Rotating 45° about the orighn and then  translating ooe unil in x and y

irection

b) Translating one wmt i x and y direchion and  ther yotating 45° about  the

origin.
Sol.:

I'he translation matrix is

The rotation matrix is

[ cos45 sind5 0 1¥2 1/¥2 0
-sin45 cos45 0 =|-1/¥2 1/¥2 0| and
| 0 0 1 0 0 1
100

010

111




Computer Graphics 120 2-D Geometric Transformation

V2 1Yv2 ol 1 00
a) R 1‘:]—1/& ¥2 ol |0 1 0

0 0 1)1 11

N2 V2 0]
=|-1/¥2 1/¥2 0

1 1 1

Al Lo 1[v2 Yz oo
B'[=]0 1 1[|-1/¥2 1/¥2 0
c 111 1 E A
- 1 B
V2 V2
1 1

& |24l =% 3

J2 V2
1 Y241 1

1

10 0][1/¥2 142 0

b) T-R of [-/v2 1/¥2 0

]
=
—

11 af] o 0 1

(1/V2 142 0

=1-1/¥2 12 ¢

| 0 V2

Al oo 1[Nz Yv2 o] [1/VZ 342 1
B'|=10 1 1| {-1/¥2 1/¥2 0|=|-1/¥2 3/¥2 1

c'| p1r1] o V21 0 242 1
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In the above example, the resultant coordinates of a trinngle calculated in part (a) and (b)
are not same. This shows that the order in which the transformations are apphed is
impurtant in the formation of combined or concatenated or compased transformations.

4.4 Composition of 2D Transformations

We have seen what is meant by combined or concatenated or composed transformations
in the previous section, The basic purpose of composing transformations is to gain efficiency
by applying a single composed transformation to a point, rather than applying a series of
transformations, one after the other. ’

4.4.1 Rotation About an Arbitrary Point
To rotate an object about an arbitrary point, (x5, v,) we have to carry out three steps :
1. Translate point (x,, yy) to the origin
2, Rotate it about the origin and

3. Finally, translate the center of rotation back where it belongs (See Fig 4.6)

We have already seen that matrix multiplication is not commutative, i.e. multiplying
matrix A by matrix B will notalways yield the same result as multiplying matrix B by matrix
A. Therefore, in obtaining composite transformation matrix, we must be careful to order the
matrices so that they correspond to the order of the transformations on the object. Let us find
the transformation matrices to carry out individual steps.

.

Y (x. v y
o
(x, ¥} 7o
. %
%5 ¥p) 715
‘ Xy
0 x 04
. va)
(a) Rotation about an (b) Step 1 : Translate point
arbitrary point (X, yp) to the origin
y y
(x'. y')
(%, ¥) xype”
U oy (X ¥p!
L x 0 7 x
(%50 ¥l
(c) Step 2 : Rotate it (d) Step 3 : Translate back
about the origin to the original position

Fig 4.6
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The translation matrix to move point (x,, yp) to the origin is given as

i 0 0
Te=]0 L0
Xp ~Yp 1}

The rotation matrix for counterclockwise rotation of point about the origin is given as
[ st sn0 0]
t |

| |
R =1-sin0 cosv o‘ -
l 0 0 1

The translation matrix to move the center point back to its original position is given as
1o o
Ta=10 1 ol

|
Xp Y ‘J

Theretore, the overall transformation matrix for a counterclockwise rotation by an angle
0 about the point (x;, v,) is given as

1 0 0 costh sin@ O] (T O U
T,-RT, =| 0 T 0f [=sin0 cos® O] |0 1 0
-ty =y, 1 L0 0 1) |xp y, 1
cost sin@ 0 1 0 0
- -sin@ cost 0 0 1 0
| —XpcosO+y,sin0 —x sin0-y cos® 1 Xy ¥p 1
[ cosl sinf 0

= —sinl cosf 0 1o (4.18),

_-—xl,c:Las‘>()~~ypsin‘aﬂcp —xpsmo—ypcos9+yl, 1
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Ex.4.7:  Perform a counterclockuise 45° rotation of triangle A (2, 3), B{5. 5). C (4. 3) about puint

(1,1

Sol. : From equation 4.18 we have

T' 'RTZ =

cosl sint 1)

~-sinf cosh )

X cosl) +y o sinl) + Xy =X, sin -y pcosth+y # 1

Here, (1 = 45°% x;, = 1 and y,, = 1. Substituting values we get

T, RT,

=
il

4.5 Other Transformations

NZ YR o

-2 Yz
1 241 l.

2 3 17[YV2  1¥2 0
55 1 |-12 1¥2 0
4 3 1 241 1]

1 3
——1l =%1 1
2 Jei

1 —31 1

Jsi

1
—+1 —+1 1
52 N

The three basic transformations of scaling, rolating, and translating are the most useful
and most common, There are some other transformations which are useful in certain
applications. Two such transformations are reflection and shear,

4.5.1 Reflection

<

Onginal
abject

>

Refiected
oojecl

0

X

A reflecion is a transformation that
produces a mirror image of an object relative to
an axis of reflection. We can choose an axis of
reflection in the xy plane or perpendicular to the
xy plane. The table 4.1 gives examples of some
common reflections.

Fig, 4.7 Reflection about y axis
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—
Reflection Transformation matrix Original image Reflected image
|

! ui d b
Reflection about Y-axis ] (U (JI

[o o IJ

> P V7

00 A :
Rullection about X axis l 0 -1 0

lo o 1J
Reflection about origin ]l w8 U’

0 -1 0 p

0 0 1

'l' Q"'
> 4
1 01 ——_-"__ <
Reflection about line ¢ v P 587
y=x 100 R 52
’ .
(001
.\ \\
' 0 -1 0 —_— .

Reflection about line W, LY
)’ =N -l 0 0 \\\\ p \‘\

Table 4.1 Comman reflections
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4.5.2 Shear

A transformation that slants the shape of an ubjuct is called the shear transformation.
Two common shearing transformations are used. One shifts x coordinate values and other

shilts y coordinate values, However, in both the cases only one coordinate (x or y) changes
its coordinates and other preserves its values,

4.5.2.1 X shear

The x shear preserves they coordinates, but changes the x values which causes vertical
lines to tilt right or left as showh in the Fig, 4.8, The transformation matrix for x shearis given

~ 4

(a} Original object

0

(b) Object after x shear

Fig.4.8

1 00

Xsh =|Sh, 1 0
0D o1

T
" "
- %
+
192
=
-
-
o
=
[« N

.. (4.19)
4.52.2 Y shear

The y shear preserves the x coordinates, but changes the y values which causes
horizontal lines to transform into lines which slope up or down, as shown in the Fig. 4.9,
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(a) Original object

Yy
" .
X
0
(b) Object after y shear
Fig. 4.9
The transformation matrix for y shear is given as

1 Sh, 0

Ysh ={0 1 0

[0 0 1

X =xand y'=y + SN x .. (4.20)

4.5.2.3 Shearing Relative to Other Reference Line

We can apply x shear and y shear transformations relative to other reference lines. In
\ shear transformation we can use y reference line and in y shear we can use x reference line.
The transformation matrices for both are given below

1 0o
x shear with y reference line:|  Sh, 10

|-Sh, -y, 01
1 Sh, 0
y shear with x reference line : | 0 1 0
0 =Sh, l,vf 0|
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Ex.4.8:  Apply the stvaring transfornuatton to sigeare with ACQ, 0, BO1.0), CO1 Vand D0, 1) as
siven beloie

a) Shenr parameler valie of 0.5 refatie to the fine oy = -1
b) Shear parameter widie of 0.5 eelative to e ling Xog = - 1
Sol.: 0) Here Shy, = 05 and v, = -1
|'A'1 A ]
i i 00
by (B ,
i b= Sh, (]
1 C|
l—Sh,\ Vo 001
D D
0 0 1]
10 0
101
= 05 1 0
YA
us 01
01
05 0 1]
15 01
72D R
|3 3
Y Y
D(0,1) c(,n D'(1,1) c't21)
A(D.0) BU.O) _ .
0 0] A(05.0) B(1.3.0}
(a) Original square (b) Sheared square

Fig. 4.10
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b) Here Sh, =005 and xny =~ 1

i
F'Aa' rA- ‘
[T sh, 0 ;
B B
= 0 I 0
' Cc
0 ~Shy xy 1
(0] D]
0 0 1 0 05 1]
1 05 0
1 01 1 11
= 0 T 0)=s
) G A | 1L Z
0 05 1
L 011 (0 13 1]
Y
f
8 ¥y
C1.2)
Y
D(0.1.5)
B(1,1)
0{0,1) C{1.1)
A(0. 0.5)
|
| A(0. 0) 8(1.0) 2
‘ D 0
; (a) Original square (b) Sheared square
Fig. 4.11

It is important to note that shearing operations can be expressed as sequence of basic
transformations. The sequence of basic transformations involve series of rotation and
scaling transformations,

Ex.4.9:  Show how shear transformation may be expressed in terms of rotation and scaling.

Sol.: The shear transformation matrix for x and y combinely can be given as
1 Sh, 0
Shy, 1 0
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W have scaling matrix and rotation matrix as given below

S, 0 0 cos st 0
0 S, 0 R=|-sin cosl 0
0 01 0 0 1

If we combine scale matrix and rotation matrix we have,

w
bt

[ S, cos® S, sin0 0

--S). sint) S,. cost) 0

] 0 1

Comparing shear matrix and S R matrix we have

Sh,
Shy
Sycosl
Sy cosl)

Sy

Sy

— 5, s5mb
S.sind

1 and

— and
cost

1
cost

Substituting values of S, and S, we get,

Sh, = -

. sinB=-tand

cosh

. sinb= tan®

cos0

Therefore, the shear transtormation matrix expressed in terms of rotation and scales is

1 tant 0
—tan® 0 v S.co58=5,cos0=1
0 1
where 8 . angle of rotation
S, : xscaleand
S, © yscale
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4.6 Inverse Transformations

When weapply any transformation to point (x, y) we geta new point (x', y ). Sometimes
it may require to undo the applied transformation. In such a case we have to gt original
point {x, y) from the point (x, y'). This can be achieved by inverse transformation. The
inverse transformation uses the matrix inverse of the transformation mateix to pet the
vriginal puint (x, y). The inverse of a matrix is another matrix such that when the two are
multiplied together, we got the identity matrix.

IEthe inversse of matax Vs T 1, then
TT V=TT =]} 021

whore Lis the identity matrix with all elements along the major diagonal having value |,
and all other clements having value zero.

The elements for the inverse matrix T can be caleulated from the elements of T as
i
(~1) "' det M
by ettt . 14.22)
det |
where t bis the clement in the i row and I cobumn of T- 1, and M s the (n = 1) by

(n = 1) submatrix obtained by deleting the i row and i column uf the matiix A. The det M
and det T is the determinant of the My and T matrices.

The determinant of a 2 x 2 matrix is

T
d‘."! = ‘“ 'ln —ln '(2' ol (423]

|

[tz ty|

The determinant of a 3 x 3 matrix is
detT=1)) {ta tu—tntu) = ts lbr b=t ta) + 17 < [ty b= Lo b)) o (4.24)
In general form, the determinant of T'is given by
detTy = D', (— 1) det My e (4.25)
where Mij is the submatrix formed by deleting row | and column | from matrix T.

The inverse of the homogeneous coordinate transformation matrix can be Biven as

'-.\ d Uﬁl-' @ -d 3 I
i b ¢ ) = ! bd ’b a 0
I ae—

[c f I. bt-ce od-af ae—bd_‘
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It is important to note that the elements of inverse matrix T can be calculated from the
clement of Tas

g g (=1)" det M,
i = det T

In the above cquation the term det T s in the denominator. Hence, we can obtain an
inverse matrix if and only if the determinant of the matrix is nonzero.

- (4.26)

Solved Examples

Ex.4.10: Find out the final coordinates of a figure bounded by the coordinates (1, 1), (3, 4), (5, 7),
(10, 3) wihen rotated aboul o point (8. 81 by 30° in clockwise direction wird scaled by hwo
it in x-direchion and three wnits y direction.

Sol.: From fallowing cquation we have the transformation matrix for rotation
about an arbitrary point given as
cos0 sind) 0
TRT, = ~sinl cosl u

I
‘_-x', cosO+y sinbh+x, =x, sinll -y p cosO +y IJ

In this case, it is clockwise rotation therefore we take value of 0 negative.

) [, [ |
cas(=30) sinf~30) U
a4
ATR Ta= —sin(~30) cos(-30) 0
5 71
-8 xcos(-30) + $xsin{-30)+ 8 -Bxsin{-30)-¥x cos(-30)+S5 1
10 3 1]
11 ﬂ
0.866 05 0
3 41
= 05 0866 0
5 71
-2.928 5,072 1
(10 3 1] !

[-1.562 5.438 w

1.67 7.036 1

ll

4.902 B.634 1

[7.232 2,67 1
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v 362 3438 1
. 2 0 0]
1.67 7036 11
T RTS8 =
4902 8.634 |

|
[r— b —
c =
< w
- <

[7.232 2,67 1]

P33 21008 1

[-3.124 16.314 1)
|
|
|

L9804 25902 |

['14.464 8.01 1_'
Ex. 4212 Show that transformation matrix for a reflecion aboul u live Y = X is equivalent to
reflection to X- axis folloioad by counter - clockivise ratition of Y0
Sol.: The transformation matrix for reflection about a line Y = X is wiven as

o 17
!

(ool
The transformation matrix for reflection about x-axis and for counter cluckwise rotation
oh Y0 are given as

1 0 cos{90)  sin(90)
and
0 -1 =sin(90) cos(Y0)
Hence,
1 0770 1
T | ]
o -1]l-1 o]
0 1
= oo Proved
1 0

Ex. 422 Find ont fial trasisformation swatrix, when point P (x, y) 15 to e reflected about o ling

y=mx+C
Sol. : Equation of line -
y=mx+C

slope = m  yintercept=C
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74 '
Fig. 4,12
We can relate slope mto angle 0 by equation
m = tand
U = tan 'm
where (s ininclination of line with respect to X axis,
Translational matrix can be given as
10«
T=[(0 1 0
LO -c 1
Rotational matrix to match the given line with x axis can be obtained as
[cos0 —sinb 0]
R, = |sm0 cosb Ol [ Note : angle of rotation =—4 |
| v 0 IJ
Reflection matrix about x axis
1 0 0
M=[0-10
0 01

Inverse transformation matrices,
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l’cose sin0 0 1 0 0]

R, = [~sin0 cos® O T"'=f0 1 0
1

0 0 1 0 ¢ 1/

- Final transformation matrix can be obtained as
Ry = T'R,-M-R,' - T
As we have tan ) = m, using trigonometry we can obtain
m

Tt L WO |
sz +1 m? +1

" cos2B sin 20 0

Rp = | sin20  -cos20 0

‘-csin20 ¢(l +cos20) 1

By substituting valucs of sinb and cos) we have,
2

[1-m 2m 0
" ]
m -1 m°+1
2m 2
Ry = m- =1 0
! m? +1
-2cm 2
2 g 1
m°+1 m” +1 |

Ex.4.13:  Derive the appropriate 2D transformation wohich reflects a figure in point (0.5, 0.5)

Sol. : Translating given point to origin
[ 1 0 0

T=]0 1 0

-0.5 -05 1

Now obtaining reflection of the object about origin
-1 0 0

M=|0 -1 0

Translating point back to original position.
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05 0.5 1]

The transformation can be given as
Ry = T-M-T"'
"-1 0 U]
Rp=10 -1 0

RE

Ex.4.14: Findout the co-ordinates of a figire bounded by (0, 01(1, 51 (6, 3) (= 3, - 4) when reflected
along the line whose qquation is y = 25 + 4 ond sheared by 2 1onits i x divection and 2

unils in y direchion,
Sol.: Equation of the line - y = 2x + 4
slope = 2and y intercept =4
@ = 63.43°

Fig. 413

Translational matrix can be given as
1 0 0
T=(0 1 0

0 -4 1]
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For matching of given line with x axis we have
[ cos(-63.43) sin(~63.43) 0

R, = |-sin(-63.43) cos(-63.43) 0

0 0 1
[0.4472 -0.8944 0

R, = |0.8944 0.4472 0

0 0 1

L

For reflection about x axis we have

Inverse transformation matrices are
[ cos(-63.43) -sin(63.43) 0

R}

1]

+5in(—63.43) cos(-63.43) 0

[0 0 1
[0.4472  0.8944 o}

= [-0.8944 0.4472 ©

T-l

I
o
—
o

For shearing along x axis :
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For shearing along y axis

001

The resultant transformation matrix can be obtained by
Ry = TR, M:R;' -T"§, .5

Final co-ordinates of the given figure can be obtained by

T4 7%
B B
= . Rr
C: C
-D'd -DJ

Calculations are left for the students as an exercise

Ex.4.15: Show that 2D reflection through X axis followed by 2-D reflection through the line
Y ==X s equivalent to a pure rotation about the origin,

Sol.: 2D reflection about X axis

1 00
R, =10 -1 0
0 01

2D reflection about Y = = X
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- Resultant transformation matrix
l{'l - R"R'
[+1 0 0 0 -1 0

0 -1 0"
11 0o
0 01

For pure rotation about origin we have
[ cos® —sinb 0O

R, = |+sin6 cos6 0O

L 0 0 1
where 8 is angle of rotation
put 6 = 90°
010
R,=|1 00
0 01
Ry = R, Hence the result

Ex.4.16  Prove that successive 2D rofations are additive; Le.
R(B,) - Rt),}) = R (8, + 8;)

Sol.: We can write rotation matrix R(®,) as
RO, = cc'>se, sinf, and R@®,) = c?sﬁz sinf,
-sin®,  cosH, —-sinB,  cosH,
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[ cosb, sin; " [ custy  sing, ]
(-sinf),  cosO, | | -sinB, cosb, |

"

- R{©,) R@G,)
[ cosB, -cosB, +5ind, -(-sinb;)  cosh, sinb, +sind, cosll,

| ~sin®; cosB, +cosH, -(-sinB;) ~sind, -sinB, +cosb, ~cosb,
[ cos(0, +8,) sin(®, +92)]

| -sin(0; +0,) cos(0; +8;)
" since,
cos (9 + Uy) = cos 9, cos 0, - sin 0, sin 6,

sin (0, + 8,) = cos 0, sin 0, + sin 0, cos 0,
Ex.4.17  Prove that 2D rotation and scaling commule if S, = 5,010 = nnfor integral n and that

otherwise they do not. (Dec-99)
Sol.: The matrix notation for scaling along S, and S, is as given below
S, 0
S = [ .land
0 S, J

The matrix notation for rotation is as given below

costh  sinf)
R = p
[—slnt) cose] /

SR < Si 9 [ cos® sine]
- ~sin® 4]
0 s, sin cos
[S.cosB S sind
-5,sind S, cosh
S,cosfl S, sinf
= 5.=5, ..1
~9,8inb S, cosh
S, 0
or = ' @ =nn where n is integer ... 1]
0 -5
RS = cos8  sinf S 0
7 |-sin®  cos@

0 S,
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[S.cost S, 5in0 ]

~5,sinl - S, cosl)

S, cos0 S.sinU]

= w8, =5 .
[_ 5,sinl S cosl |
B
or &= 1) = where nis integer ..V
0 -S,

From cquations | and 111, and equations ILand 1V it is proved that 2D rotation and scaling
commule if 5, = S, or 0 = na for integral nand that otherwise they do not.

Ex.:4.18 A circular disc of diameter 'd” is rolling down the inclined plane starting from rest as
shown below, Assunte there is no slip and develop the set of transformation required to
produce this animation and also write a progran. (Dec-96)

Fig. 4.14

Sol.: For rolling a circular disc of diameter d down the inclined plane starting
from rest we have to consider the movement of disc in x direction and in y direction
along with the rotation of disc. As length is greater then height we increment x by 1
unit and y by h/! units ie.

x = x+1
y = y+h/l

The increment of rolling angle can be calculated by relating of a circle with the diagonal
length of inclined plane as given below

[Jh’ 412 nd)xaeo
1

It is necessary (o rotate two lines on the disc by df after increment of x and rotation is
clockwise. The rotation matrix necessary for this purpose is

de =
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5.1 Introduction

Typically}a graphics package allows us to specify which part of a defined picture is to
be displayed and where that part is to be displayed on the display device. Furthermore, the
package also provides the use of the scaling, translation and rotation techniques|described
in the previous chapterl_to generate a variety of different views of a single picturé]We can

enerate different view of a picture by applying the appropriate scaling and translation.
é\fhile doing this, we have lo identify the visible part of the picture for inclusion in the
display image. This selection process is not straight forward. Certain lines may lie partly
inside the visible portion of the picture and partly outside. These lines cannot be omitted
entirely from the display image because the image would become inaccuraté.] This is
illustrated in Fig. 5.1 The process of selecting and viewing the picture with different views is
called windowing, and a process which divides each element of the picture into its visible
and invisible portions, allowing the invisible portion to be discarded is called clipping )

\_/]
IV N £ TVT N

/]
N
& | [k 53 B
/N \ A 57\ I L ) (O .
N

e

Fig. 5.1

In this chapter we are going to discuss the concepts involved in windowing and various
clipping algorithms

5.2 Viewing Transformation

We know that the picture is stored in the computer memory using any convenient
cartesian coordinate system, referred to as world coordinate system (WCS). However,
when picture is displayed on the display device it is measured in physical device
coordinate system (PDCS) corresponding to the display device, Therefore, displaying an

(147)
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image of a picture involves mapping the coordinates of the points and lines that form the
picture into the appropriate physical device coordinate where the image is to be displayed.
This mapping of coordinates is achieved with the use of coordinate transformation known
as viewing transformation.

The viewing transformation which maps picture coordinates in the WCS to display
coordinates in PDCS is performed by the following transformations .

* Normalization transformation (N) and
* Workstation transformation (W)

5.2.1 Normalization Transformation

We know that, different display devices may have different screen sizes as measured in
" pixels. Size of the screen in pixels increases as resolution of the screen increases. When
picture is defined in the pixel values then it is displayed large in size on the low resolution
screen while small in size on the high resolution sereen as shown in the Fig. 5.2. To avoid this
and to make our programs to be device independent, we have to define the picture
coordinates in some units other than pixels and use the interpreter to convert these
coordinates to appropriate pixel values for the particular display device. The device
independent units are called the normalized device coordinates. In these units, the screen
measures 1 unit wide and 1 unit length as shown in the Fig. 5.3. The lower left corner of the
screen is the origin, and the upper-right corner is the point (1, 1). The point(0.5, 0.5) is the
center of the screen no matter what the physical dimensions or resolution of the actual
display device may be.

s ~N ~ ™

U ‘\‘:!;)/ "

(a) More resolution

o

J

(b) Less resolution

Fig. 5.2 Picture definition in pixels

(0, 1)

(0.0)

(1. 1)

(1.9)

Fig. 5.3 Plcture definition in normalized device coordinates
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The interpreter uses a simple linear formula to convert the normalized device
coordinates to the actual device coordinates
X = Xox Xw .. (5M
Yy = ynxYi . (52)
where
x - Actual device x coordinate
y Actual device v coordinate

%n - Normalized x coordinate

=

: Normalized 'y coordinate
Xy Width of actual screen in pixels
Y

The transformation which maps the world coordinate to normalized device coordinate
is called normalization transformation. [t mvolves scaling of x and y, thus it is also referred
to as scaling transformation.

=

i ¢ Height of actual sereen in pixels,

5.2.2 Workstation Transformation
The transformation which maps the normalized device coordinates to physical device
coordinates is called workstation transformation.

The viewing transformation is the combination of normalization transformation and
workstation transformations as shown in the Fig 54 [tis given as
V=NW -..(5.3)

fl Normalized Devi
L L Normalization Workstation Do
(WC) transformation § coordinates transformation (0C)
(NC)

Viewing transformation

Fig. 5.4 Two dimensional viewing transformation

We know that world coordinate system (WCS) is infinite in extent and the device
display area is finite. Therefore, to perform a viewing transformation we select a finite world
coordinate area for display called a window. An area on a device to which a window is
mapped is called a viewport. The window defines what is to be viewed; the viewport
defines where it is to be displayed., as shown in the Fig. 5.5.

The window defined in world coordinates is first transformed into the normalized
device coordinates, The normalized window is then transformed into the viewport
coordinate. This window to viewport coordinate transformation is known as workstation
transformation. It Is achieved by performing following steps
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Vw 1

You V

World coordinates

YV max

yV mn

View port

|

Ay

Xy min

Xy max

Device coordinates

Fig. 5.5 Window and viewport

1. The object together with its window is translated until the lower left corner of the
window is at the origin.

2, Object and window are scaled until the window has the dimensions of the viewport.

3. Translate the viewport to its correct position on the screen,

This is illustrated

in Fig.5.6

L.
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|
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“
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i
:
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*
.
",

e,

Transiate

Fig. 5.6 Steps in workstation transformation

Therefore, the workstation transformation is given as

W = T-5:T4

. (5.4)
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1. The object together with its window is translated until the lower left corner of the
window is at the origin.

2, Object and window are scaled until the window has the dimensions of the viewport.

3. Translate the viewport to its correct position on the screen,

This is illustrated

in Fig.5.6
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Fig. 5.6 Steps in workstation transformation

Therefore, the workstation transformation is given as

W = T-5:T4

. (5.4)
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1. The object together with its window is translated until the lower left corner of the
window is at the origin.

2, Object and window are scaled until the window has the dimensions of the viewport.

3. Translate the viewport to its correct position on the screen,

This is illustrated

in Fig.5.6
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Fig. 5.6 Steps in workstation transformation

Therefore, the workstation transformation is given as

W = T-5:T4

. (5.4)
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Fig. 5.5 Window and viewport

1. The object together with its window is translated until the lower left corner of the
window is at the origin.

2, Object and window are scaled until the window has the dimensions of the viewport.

3. Translate the viewport to its correct position on the screen,

This is illustrated

in Fig.5.6
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Fig. 5.6 Steps in workstation transformation

Therefore, the workstation transformation is given as

W = T-5:T4

. (5.4)
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The transformation matrices for individual transformation are as given below :

1 N0
T=| 0 o0
i-x“ i =Wt 3 |
5. 00
S=|0 8 0| where & =XemanTXeuin
[ oo 1} X s = Ko n
g, = Y vmax =Y v
Yownin =Y winin
i 0]
Tt=1 0 1o
;_“ nan )’ v ‘ JI

The vverall transformation matrix for W is given as

W =T8T
1 0 o] s, 0 © 1 0 U
= 0 1 ol [0 s, u] 0 1 0
Toswin: Vo ELG B U Seom Wi ¥
5, 0 o]
= 0 5 0

Xy = % min S, Yemn =~ ¥w mm'sg ]J

The Fig. 5.7 shows the complete viewing transformation.

(WC)

Viewing translormation

Fig. 5.7 Viewing transformation

Ex.5.0:  Fiud the normalization transformation window to vicwpoint, with windviw, luteer left
commerat (1, 1) and upper right conrer af (3, 5) onto a viewpoint witl loteer Ieft corner ot
(0, ) add wpper right corner at (1/2, 1723

Sol.: Given @ Coordinates for window
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Xomn = 1 Y owin =1

Xwmar = 3 Yo =5
Coordinates for view port

e = 0 Yo =)

Xeaas = 12205 Yvman= 1/2=205
W know that,

C - Xy man ~ v mmn
s, —mak . S AR

wtax X

X
0.5-0

Wi

and Sy = Y Vs )’ v in

Y wmax — Y wmin

0.5-0
5-1
0.125
Woe know thal transformation matrix is given as
[ S, 0 0
0 S, 0

TS T

L x\ mu X x\\‘ "\l"S‘ .‘ vomin - .\' wommn S\ ]

0.25 0 0l
= 0 0.125 0
[0-(1x0.25) 0-(1x0.125) 1
[ 0.25 0 0
= 0 0125 0
1-0.25 -0.125 1

5.3 2D Clipping

The procedure that identifies the portions of a picture that are either inside or outside of
a specified region of space is referred to as clipping. The region against which an objectis to
be clipped is called a clip window or clipping window. It usually is in a rectangular shape,
as shown in the Fig, 5.8.

The clipping algorithm determines which points, lines or portions of lines lie within the
clipping window. These points, lines or portions of lines are retained for display. All others
are discarded.
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P
\ Cilppiog
P11 / 10 /
/Pa

Py
{a) Before clipping (b) After clipping

Fig. 5.8

5.3.1 Point Clipping
The points are said to be interior to the clipping window if
Xwmin £ XS Xwriae and
Ywmin S Y S Ywm

The equal sign indicates that points on the window boundary are included within the
window.

5.3.2 Line Clipping

The lines are said to be interior to the clipping window and hence visible if both end
points are interior to the window, e.g., line P, P; in Fig. 5.8, However, if both end points of a
line are exterior to the window, the line is not necessarily completely exterior to the window,
e.g. line Py Ps in Fig. 5.8. 1f both end points of a line are completely to the right of, completely
to the left of, completely above, or completely below the window, then the line is completely
exterior to the window and hence invisible. For example, line P; Py in Fig, 5.8.

The lines which across one or more clipping boundaries require calculation of multiple
intersection points to decide the visible portion of them, To minimize the intersection
calculations and to increase the efficiency of the clipping algorithm, initially, completely
visible and invisible lines are identified and then the intersection points are calculated for
remaining lines, There are many line clipping algorithms. Let us discuss a few of them,

5.3.2.1 Sutherland and Cohen Subdivision Line Clipping Algorithm

This is one of the oldest and most popular line clipping algorithm developed by Dan
Cohen and Ivan Sutherland.EI'o speed up the processing this algorithm performs initial tests
that reduce the number of intersections that must be calculated. This algorithm uses a four
digit (bit) code to indicate which of nine regions contain the end point of line. The four bit
codes are called region codes or outcodes. These codes identify the location of the point
relative to the boundaries of the clipping rectangle as shown in the Fig. 5.9,
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Each bit position in the region code is used to
! ' indicate one of the four relative coordinate positions of
1008 |\ 1000 | 1010 the point with respect to the clipping window : to the
: ] left, right, top or bottom. The rightmost bit is the first
"""""" bit and the bits are set to 1 based on the following
0000 scheme
0001 | - 0010
. Set Bit 1 - if the end point is to the left of
""" ' T the window
0101 § 10100, } 0110 Set Bit 2 - if the end point is to the right of
! : the window
Set Bit 3 — if the end point is below the

Fig. 5.9 Four-bit codes for nine

regions window

Set Bit 4 - if the end point is above the window
Otherwise, the bit is set to zero.

Once we have established region codes for all the line endpoints, we can determine
which lines are completely inside the clipping window and which are clearly outside. Any
lines that are completely inside the window boundaries have a region code of 0000 for both
endpoints and we trivially accept these lines. Any lines that havea 1 in the same bit position
in the region codes for each endpoint are completely outside the clipping rectangle, and we
trivially reject these lines. A method used to test lines for total clipping is equivalent to the
logical AND operator. If the result of the logical AND operation with two end point codes is
not 000D, the line is completely outside the clipping region. The lines that cannot be
identified as completely inside or completely outside a clipping window by these tests are
checked for intersection with the window boundaries.

Ex.5.2: Consider the clipping window and the lines shown in Fig. 5.10. Find the region codes for
each end point and identify whether the line is completely visible, partially visible or
completely inmwisible.

7
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Sol .: The Fig. 511 shows the clipping window and lines with region codes,
These codes are tabulated and end point codes are logically ANDed to identify the
visibility of the line in table 5.1

1001 1000 1010
Pg.\
................ prrrzsmmarameens
4 / e
Pio
0001 P 0000 Pe 0010
o /
P /P
Py e /
................ - e
: p,/ !
' '
0101 ' 0100 ' 0110
L] '
i "
' '
Fig. 5.11
Line End Point Codes Logical ANDing Result
PiP: 0090 0000 0000 Completely visible
PrPs 0o 0001 0001 Completely mvisible
Ps Py 0001 0000 0000 Partially vistble
Py Py 00 oo10 GOon Partially visible
Py Pu 1000 0o10 0000 Partially visible
Table 5.1

The Sutherland - Cohen algorithm begins the clipping process for a partially visible line
by comparing an outside endpoint to a clipping boundary to determine how much of the
line can be discarded. Then the remaining part of the line is checked against the other
boundaries, and the process is continued until either the line is totally discarded or a section
is found inside the window,

This is illustrated in Fig. 5.12.
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Fa

Py Py

{a) (b) {c)

(d) (e}
Fig. 5.12 Sutherland-Cohen subdivision line clipping

As shown in the Fig. 5.12, line Pi Py isa partially visible and point Py is outside the
window, Starting with point Py, the intersection point Pjis fuund and we get two line
segments [ = 1 and P-Pa. We know that, far Py - P! one end point e Py is outside the
window and thus the line segment Py - P is discarded. The line is now reduced to the section
from P| to Pa. Since P: is outside the clip window, it is checked against the boundarics and
intersection Foint P, is found. Again the line segment is divided into two segments giving
[ - P, and P; — P>. We know that, for P~ P2one end puint Le. Pz is outside the window and
thus the line segment P;— P is discarded. The remaining line segment P - Piis completely
inside the clipping window and hence made visible,

The intersection points with a clipping boundary can be calculated using the
slope-intercept form of the line equation. The equation for line passing through points
Py {xs, yi) and Pa (xa, ya) 18

m(x-x)+y or y=m(x=x:)+y: .. (5.5)
Y2a—Yi

Kz =%

Y

where m = (stope of the line)

Therefore, the intersections with the clipping boundaries of the window are given as:
Left @ x,y = mXp=X)+y, ; mM#®
Right : xr ¥ mxg=x1)+y) ; mFx

x| +(l)(yr—)'|] ;o mz0
m

Top : ynx

Bottom: ys, X x.+(-’~)(yu-ya): m ={
m
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Sutherlund and Cohen subdivision line clipping algorithm :

Pa

(W, Wy, ) /
A

By

Wz, Wyy)

&

Fig. 5.13

Read two end points of Lhe line say Py (x}, vy) and Py (x,, y, )

Read two corners Heft-top and right-bottem) of the window, say (Wx;, Wy, and Wy,
sz).

Assign the region codes for two endpoints Py and Py using fullowing steps -
Initialize vode with hits 0000

Set Bitl -~ 0 tx< Wy

Set Bit2 — if (x> Wxy)

Set  Bitd - il (y < Wy

Set Bitd4 - if (y>Wy)

Check lor visibility of line Py Py

a) I region codes for both endpoints Py and P are zero then the line is completely
visible. Hence draw the line and go to step 9.

b} If region codes for endpuints are not zerv and the logical ANDing of them is also
nonzero then the line is completely invisible, so reject the line and go to step 9.

¢) M region codes for two endpoints do not satisly the conditions in 4a) and 4b)the
line is partially visible.

Determine the intersecting edge of the clipping window by inspecting the region

codes of two endpoints.

a) If rogion codes for both the end points arc non-zero, find intersection points P,'
and P, with boundary edges of clipping window with respect to point P| and
point Py, respectively

b) Ifregion code furany vne end point is non zero then find intersection point P,' or
P, with the boundury edge of the clipping window wilh respect to it.

Divide the line segments considering intersection points,

Reject the line segment I any one end point of it appears outsides the clipping
window.

Draw the remaining line segments,
Stop,
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k= (float)pi.z+{float) (y-pl.yr/m;
LiEinp , X= ¥,

LR, S S

Furdl=u7igcq; i)
tenp.code (L) =pl.oedelil;
reLurn{cemp);

1

f)]se
rerurn(pl);
j
5.3.2.2 Midpoint Subdivision Algorithm

We have seen that, the Suthertand Cohen subdivision line clipping algorithm requires
the calculation of the intersection of the line with the window edge. These calculations can
be avoided by repeatatively subdividing the line at its midpoint.

Like previous algorithm, initially the line is tested for visibility. If line is completely
visible it is drawn and if it is completely invisible it is rejected. If line is partially visible then
it is subdivided in two equal parts. The visibility tests are then applied to each half. This
subdivision process is repeated until we get completely visible and completely invisible line
segments. This is illustrated in Fig. 5.14. (see on next page)

SRR -

T E&—-

As shown in the Fig. 5.14, line P P2is partially visible. Itis subdivided in two equal parts
P, P and D1 Ps (see Fig. 5.14(b)). Both the line segments are tested for visibility and found to
be partially visible. Both line segments are then subdivided in two equal parls to goet
midpoints Py and Ps (see Fig. 5.14 (c)). It is observed that line segments PPy and PPz are
completely invisible and hence rjected. However, line segment PiPs is complelely visible
; and hence drawn, The remaining line segment PyPy is still partially visible. It s then
b subdivided to get midpoint P,. It is observed that PPy is completely visible whereas Pyl 1s
partially visible. Thus PiPs line segment is drawn and PPa line segment 1s further
subdivided into equal parts to get midpoint Pz. Now, it is obsurved that lime segment P4P7 is
completely invisible and line segment PPy is completely visible (sec Fig. 5.14 (f)), and there
is no further partially visible segment

0h i b e gt S

Midpoint Subdivision Algorithm :
1. Read two endpoints of the line say Pylx,, y1) and Py (xy, yo).

2. Read two corners (left-top and right-bottom) of the window, say (Wx,, Wy, and Wx,,
WYQ)

3. Assign region codes for two ead points using following steps :

Initialize code with bits 0000
Set Bit 1-if (x < Wx,)

Set Bit 2 - if (x > Wx,)
Set Bit 3 -if(y < Wyy)
Set Bit 4 -1t (y > Wyo)

o ——

.,.'.-12 .
’

ot

P:.
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(a) (b}

".PI
Py .o
P4 ~ Pll
'./
o
P'I
{c) (<)
Ps Py
P‘ / k
« PG P PG
4
{e) {f)
/
Py

(g)

Fig. 5.14 Clipping line with midpoint subdivision algorithm
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4 4. Cheek lor visibility of line
a) I reglon codes fur both endpoints are zero then the line is completely visible,
Henee draw the line und go Lo step 6.
by I region codes for endpoints are nol zers and the logicul ANDing of them is also
nonzero Lhen the line is completely invisible, so reject the line and go to step 6.
¢} Il region codes for two endpoints do not satisfy the conditions in 4a) and 4b) the
line is partially visible.

'Q'!

Divide the partially visible line segmuent in equal purts and repeat steps 3 through 5
‘ for both subdivided line segments intil you get completely visible and completely
f invisible line sepgments,

]

6. Slop.
i 'C' code for Midpoint Subdivision Line Clipping Algorithm

(Sottcopy of this program is available at viubooks.com)

finclude<undic. e

9 fincludesounio.

Minclude<sualibihie

finclude<aon b

Fincludermath. h:

{ pincludesgraphiocn >

/* Defining strusture for ownd pulns ot Line *4
b typedel struct coorfifnary

E (

| int %,y
il char codal4];
j tel:

void drawwindowl);

void drawline (PT pl,PT pZ,1nt =Ly
2 stteode (PT p);
tnt -visibility (PT pl,PT p2z):
P'l' resetendet (PY pl,PT p2);
maini{)
| {
L int gd=DETECT, gm,v:
PT pl,p2,ptemp;
initgraph (4gd, &gm, " ");
cleardevice(};
printf ("\n\n\t\tENTER END-POINT 1 {x,¥}: ")
-~ scanf (“5d, 5d", &pl.x,5pl.y);
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Thus, the two intersection points to line P, are [1.2 18] and [5 2.75] with edges V,V,
and V.V, respectively.

5.3.2.4 Liang-Barsky Line Clipping Algorithm

In the last section we have seen Cyrus-Beck line clipping algorithm using parametric
equations. It is more efficient than Cohen-Sutherland algorithm. Liang and Barsky have
developed even more efficient algorithm than Cyrus-Beck algorithm using parametric
cquations. These parametric equations are given as

X X, + tAx
¥y = y;+ 14y, 0=zl
where Ax = xy=-x,and Ay =y, -y,

The point clipping conditions (Refer section 5.3.1) for Liang-Barsky approach in the
parametric form can be given as

Keemin = Xp o+ EAX € x000
Yomin € Y1+ Y Sy 0
Liang-Barsky express these four inequalities with two parameters p and q as follows :
tp, = g i=1,23,4
where parameters p and q are defined as
Py = —AX. ) =X~ Xymin
P2 = Ax, 92 = Xyemax = %3

and

Py = =AY, @ =¥~ Yimin
Ps =8y Q=Yuwmu~N
Following observations can be easily made from above definitions of parameters p and
! fp,=0 = Line is parallel to left clipping boundary.
Ifp,=0 ¢ Line is parallel to right clipping boundary.
Ifp,=0 ¢ Line is parallel to bottom clipping boundary.
Ifp,=0 ¢ Line is parallel to top clipping boundary.
Ifp, =0, and for that value of i,
lfg <0 - Lineis completely outside the boundary and can be eliminated,
[fq =0 : Lineisnside the clipping boundary.
Ifp, <0 ¢ Line proceeds from outside to inside of the clipping boundary.
Ifp,>0 ¢ Line proceeds from inside to outside of the clipping boundary.

Therefore, for nonzero value of p, the line crosses the clipping boundary and we have to
find parameter t. The parameter t for any clipping boundary i can be given as

=3 {9,034
Pi

Liang-Barsky algorithm calculates two values of parameter t : t, and t, that define that
part of the line that lies within the clip rectangle. The value of t, is determined by checking



|
!
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the rectangle edges for which the line proceeds from the outside to the inside (p < (). The
value of t, is taken as a largest value amongst various values of intersections with all edges.
On the other hand, the value of t, is determined by checking the rectangle edges for which
the line proceeds from the inside to the outside (p > 0). The minimum of the calculated value

is taken as a value for t,.

Now, if t; > t,, the line is completely outside the clipping window and it can be rejected,
Otherwise the values of t, and t; are substituted in the parametric equations to get the end

points of the clipped line.
Algorithm
1. Read two endpoints of the line say p, (x,, y,) and p; (x,, y,).
2. Read two corners (left-top and right-bottom) of the window, say (X, ine Ywmue
Xwmax? ywmln)
3. Calculate the values of parameters p, and q; for i = 1, 2, 3, 4 such that
Pp==& Q=% = Xyumip
Py =% 92 = Xwmax — %1
qy=-4 qQz3=¥1~ Yumin
qy = 8y 94 = Ywmax = Y1
4. ifp; =0, then

e ® o

The line is parallel to i boundary.

Now, if q; < 0 then

[ line is completely outside the boundary, hence
discard the line segment and goto stop.

|

else

| Check whether the line is horizontal or vertical and accordingly
check the line endpoint with corresponding boundaries. If line
endpoint/s lie within the bounded area then use them to draw
line otherwise use boundary coordinates to draw line. Go to stop.

Initialise values for t; and t, as

ty=0andt; =1

Calculate values for g/p, fori=1,2 3,4

Select values of q/p, where p, < 0 and assign maximum out of them as t,.
Select values of qi/p; where p; > 0 and assign minimum out of them as t,.
If(t, <t,)

Calculate the endpoints of the clipped line as follows !

XX) =Xy + 5 AX
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XXy = %q + Ly AX
Yy =yt Ay
Ya=Y) + Ay
Draw line (xx,, yy,, X%y, yyy)
|
10. Stop.

'C’ code for Liang-Barsky Line Clipping Algorithm
iSoftcopy of this program is available at vtubooks.com)
Vinciude<strdio iz
linclude<graphics.h>
flnclude<math,.h>
maini)
|
Lnt 1,9d,gm;
int »1,yl,x2,y2,xmin, Xmax, ymin, ymax, xx1,xx2, yyl, yy2;
floac ©i,c2,pl4],g(4),cemp;
detectgraphiégd, égm);
initgraph{&qd, kgm, ") ;
x1=10;
y1=10;
x2=60;
y2=30;
xmin = 15;
xmax = 257
ymin = 15
ymax = 257

rectangle (xmin, ymin, xmax, ymax};
pl0) = —(x2-x1)¢

pil) = (x2-x1):

pi2) = -ly2-yl):

pl3] = (y2-y1);

a(0) = {xl-xmin);

gll] = (xmax-x1);

qf2] = (yl-ymin};

q[3) = lymax-yl):
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|
temp = qlil/pli};

1ti(pli] < O)

|
ifitl <= temp)
|
tl = temp;
|

|

alse

|
Lf(L2 > temp)
!
£2 = temp;
)

|
1E(cl<k2)
(
xxl = xI 4+ t1 ¢ p[1};
xx2 = %1 4+ t2 ¢ pl1};
¥yl = yl + 1 * pl3});
y¥2 = yl + t2 * p[3);
line (xx1,yyl, xx2, yy2);
|
geteh()
closegraph();
I

Advantages

1.1t is more efficient than Cohen-Sutherland al

are reduced,

gorithm, since intersection calculations

2.1t requires only one division to update parameters 1, and t,.

3. Window intersections of the line are computed only once.

Ex.5.5  Find the clipping coordinates for a line p,p, where Py = (10, 10) and p, (60, 30), against
window with (X, i Yound = (15, 15) and EXiass Vo= (25; 25).

Sol.: Here,
X =10 Xymin = 15
n= 10 ywmln =15



Computer Graphics 178

2-D Vlewlng and CliEglng

X, = 60 Xemax = 29

y; =30 Yoman =29

Py = =30 G =-3 pi/q =01
p2 =350 q =15 p/qs = 0.3
P;=-20  qy=-5 Py/qy = 0.25
py =20 qq = 15 Pi/q, = 0.75

t, = max (0.25, 0.1) = 0.25
t; = min (0.3, 0.75) = 0.3

since for these values p < 0
since for these values p > 0

Here, t, < t; and the endpoints of clipped line are :

XXy

YYa

YY¥2

5.4 Polygon Clipping

Xy + by AX

10 +0.25% 50
225

y; +t) Ay
10+ 0.25x 20
15

X| + 1y Ax
10+ 0.3 x50
25

YitAay
10+0.3x%20
16

In the previous sections we have seen line clipping algorithms. A polygon is nothing but
the collection of lines, Therefore, we might think that line clipping algorithm can be used
directly for polygon clipping. However, when a closed polygon is clipped as a collection of
lines with line clipping algorithm, the original closed polygon becomes one or more open

polygon or discrete lines as shown in
algorithm to clip polygons.

the Fig. 5.19. Thus, we need to modify the line clipping

(a) Before clipping

(b} After clipping

Fig. 5.19 Polygon clipping done by line clipping algorithm
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We consider a polygon as a closed solid area. Hence after clipping it should remain
closed. To achieve this we require an algorithm that will generate additional line segment
which make the polygon as a closed area. For example, in Fig. 520 the lines a-b,c-d,d-e,
f-g and h-iare added to polygon description to make it closed.

(a) (b)

Fig. 5.20 Modifying the line clipping algorithm for polygon

Adding lines ¢ — d and d - e is particularly difficult. Considerable difficulty also accurs
when clipping a polygon results in several disjoint smaller polygons as shown in the
Fig. 5.21. For example, the linesa~b,c~d,d -eand g - f are frequently included in the
clipped polygon description which is not desired.

Fig. 5.21 Disjoint polygons In polygon clipping

5.5 Sutherland - Hodgeman Polygon Clipping

A polygon can be clipped by processing its boundary as a whole against each window
edge. This is achieved by processing all polygon vertices against each clip rectangle
boundary in turn. Beginning with the original set of polygon vertices, we could first clip the
polygon against the left rectangle boundary to produce anew sequence of vertices, The new
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set of vertices could then be successively passed to a right boundary clipper, a top boundary
clipper and a bottom boundary clipper, as shown in Fig. 5.22. At each step a new set of
polygon vertices is generated and passed to the next window boundary clipper. This is the
fundamental idea used in the Sutherland - Hodgeman algorithm.

Original polygon Left ciipped Right clipped

Top clipped Hottom clipped

Fig. 5.22 Clipping a polygon against successive window boundaries

The output of the algorithm is a list of polygon vertices all of which are on the visible side
of a clipping plane. Such each edge of the polygon is individually compared with the
clipping plane. This 1s achieved by processing two vertices of each edge of the polygon
around the clipping boundary or plane. This results in four possible relationships between
the edge and the clipping boundary or plane. (See Fig. 5.23).

1. 1f the first vertex of the edge is outside the window boundary and the second vertex of
the edge is inside then the intersection point of the polygon edge with the window
boundary and the second vertex are added to the output vertex list (See Fig. 5.23 a).

2. If both vertices of the edge are inside the window boundary, only the second vertex s
added to the output vertex list. (See Fig. 5.23 b).

3. If the first vertex of the edge is inside the window boundary and the second vertex of
the edge is outside, only the edge intersection with the window boundary isadded to
the output vertex list. (See Fig. 5.23 c).

4. If both vertices of the edge are outside the window boundary, nothing is added to the
output list. (See Fig. 5.23 d).

Once all vertices are processed for one clip window boundary, the output list of vertices
is clipped against the next window boundary. :
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Femcm—mmamssmee= o=
|
|
vii Va
Yy
'
\
1
| S0 =2 s S o
V, - Quisile
Vy — Insice
Save V) and V;

(a)
TS = B
|
]

\
Vy
Vs : Vi
1
)
:
Vy - Inside
VZ - Qutside
Save V)
(e)

IR ———— R

Vi Inskle
V, = Ieside
Save V,

(b}

Fig. 5.23 Processing of edges of the polygon against the left window boundary
Going through above four cases we can realize that there are two key processes in this

algorithm,

1 Determining the visibility of a point ov vertex {Inside - Outside test) and
2, Determining the intersection of the polygon edge and the clipping plane.

One way of determining, the visibility of a point or vertex is described here. Consider
that two points A and B define the window boundary and point under consideration is V,
then these three points define a plane. Two vectors which fie in that plane are ABand AV_If
this plane is considered in the xy plane, then the vector cross product AV < AB has only a 2
component given by (xy = Xa) (Ya - Ya) = ¥y — ¥a) (x4 — x,). The sign of the z component
decides the position of point V with respect to window boundary
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lizis: Positive — Pointison the right side of the window boundary
Zero — Point is on the window boundary
Negative — Point is on the left side of the window boundary

Ex.5.6: Consider the clipping boundary as shown in the Fig. 5.24 and determine the positions of
points V', and V,.

Fig. 5.24
Sol.: Using the cross product for V, we get,
(xy = Xa) (Y= Ya) = (yv = ¥a) (xg=X4)
=(1-2)(5-1)-(3-1(@2-2)
(-1)@)-0
= -4

The result of the cross product for V, is negative hence V, is on the left side of the
window boundary.

Using the cross product for V, we get, (4 - 2)6-1)-(3-1)(2-2)
=(2)4)-0
= 8
The result of the cross product for V, is positive hence V, is on the right side of the
window boundary.

The second key process in Sutherland - Hodgeman polygon clipping algorithm is to
determine the intersection of the polygon edge and the clipping plane. Any of the line
intersection (clipping) techniques discussed in the previous sections such as Cyrus-Beck or
mid point subdivision can be used for this purpose.

Sutherland-Hodgeman Polygon Clipping Algorithm

1. Read coordinates of all vertices of the polygon.

2. Read coordinates of the clipping window
3. Consider the left edge of the window
4

Compare the vertices of each edge of the polygon, individually with the clipping
plane
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5 Save the resulting intersections and vertices in the new list of vertices according to

four possible relationships between the edge and the clipping boundary discussed
earlier.

6. Repeat the steps 4 and 5 for remaining edges of the clipping window. Each time the
rosultant list of vertices is successively passed to process the next edge of the
clipping window.

7. Stop.
Ex.5.7: Forapolygon and clipping window shown (n Fig. 5.25 give the list of vertices after cach
boundary clipping

Va

Clipping window

Fig. 5.25

Sol.: Original polygon vertices are Vy, Vg, Vi, Vi, Vi After clipping each boundary
the new vertices are given in Fig. 5.26

Fig. 5,26
After left clipping Vi Vi, Vi Va Vi Vs
After right clipping ¢ Vi, Vie Va, Vi Vo Vs
After top clipping ¢ Vo Vi, Va2, Va V3,V Vs

After bottom clipping : V3, Va, Vi V3 Vi Vs Vi
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The Sutherland-Hodgeman polygon clipping algorithm clips convex polygons

correctly, but in case of concave polygons, clipped polygon may be displayed with
extraneous lines, as shown in Fig. 5.27.

{b)

Fig. 5.27 Clipping the can cave polygon in (a) with the Sutherland-Hodgeman algorithm produces
the two connected areas in (b)

The problem of extrancous lines for concave polygons in Sutherland-Hodgeman
polygon clipping algorithm can be solved by separating concave polygon into two or more
convex polygons and processing each convex polygon separately.

5.6 Weiler-Atherton Algorithm

The clipping algorithms previously discussed require a convex polygon. In context of
many applications, e.g., hidden surface removal, the ability to clip to concave polygon is
required. A powerful but somewhat more complex clipping algorithm developed by Weiler
and Atherton meets this requirement. This algorithm defines the polygon to be clipped as a
subject polygon and the clipping region is the clip polygon.

The algarithm describes both the subject and the clip
T R R e .Cy polygon by a circular list of vertices. The boundaries of
' the subject polygon and the clip polygon may or may not
! intersect. If they intersect, then the intersections occur m
! pairs. One of the intersections occurs when a subject
i polygon edge enters the inside of the clip polygon and
i | one when it leaves. As shown in the Fig. 5.28, there are

E four intersection vertices 1, Iy , 1; and I, In these

¢ intersections 1, and |, are entering intersections, and I,
c, %, | and Iy are leaving intersections, The clip polygon
vertices are marked as C,, C,, C,and C,

Fig. 5.28

In this algorithm two separate vertices lists are made one for clip polygon and one for
subject polygon including intersection points. The Table 53 shows these two lists for
polygons shown in Fig. 5.28,
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For subject polygon For clip polygon
Vi <,
v, le

Start Iy Iy Finish
Vy /‘ P
Vi 5y Finish
I Cs
Vg Cy

Start I Cq
Ve
I
Vy

Table 5.3 List of polygon vertices

The algorithm starts at an entering intersection (1,) and follows the subject polygon
vertex list in the downward direction (ie. [, Vy, V,, 1,). At the occurrence of leaving
intersection the algorithm follows the clip polygon vertex list from the leaving intersection
vertex in the downward direction (i.e. I, I,). At the occurrence of the entering intersection
the algorithm follows the subject polygon vertex list from the entering intersection vertex.
This process is repeated until we get the starting vertex. This process we have to repeat for
all remaining entering intersections which are not included in the previous traversing of
vertex list, In our example, entering vertex I, was not included in the first traversing of
vertex list,. Therefore, we have to go for another vertex traversal from vertex I,.

The above two vertex traversals gives two clipped inside polygons. There are :
Ly Vi, Vo I Land I, Vi, 1, 1,

5.7 Generalized Clipping

We have seen that in Sutherland - Hodgeman polygon clipping algorithm we need
separate clipping routines, one for each boundary of the clipping window. But these
routines are almost identical. They differ only in their test for determining whether a point is
inside or outside the boundary. It is possible to generalize these routines so that they will be
exactly identical and information about the boundary is passed to the routines through their
parameters. Using recursive technique the generalized routine can be ‘called’ for each
boundary of the clipping window with a different boundary specified by its parameters,
This form of algorithm allows us to have any number of boundaries to the clipping window,
thus the generalized algorithm with recursive technique can be used to clip a polygon along
an arbitrary convex clipping window.
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5.8 Interior and Exterior Clipping

So far we have discussed only algorithms for clipping point, line and polygon to the

interior of a clipping region by eliminating every thing outside the clipping region.
However, itis also possible to clip a point, line or polygon to the exterior of a clipping region,

i-e, the point, portion of line and polygon

which lie outside the clipping region. This is
referred to as exterior clipping.

Window 2 Exterior clipping is important in a
multiwindow display environment, as
shown in Fig. 5.29. The Fig. 5.29 shows the
overlapping windows with window 1 and
window 3 having priority over window 2.
The objects within the window are dlipped
to the interior of that window, When other

higher-priority windows such as window 1

Window 1

Ch

Window 3

&

Fig. 5.29 Clipping in multiwindow environment

and /or window 3 overlap these objects, the

objects are also clipped to the exterior of the
overlapping windows,

Solved Examples

Ex.58:

Use the Cohen-Sutherland outcode algorithm to clip two lines P, (40, 15) - P, (75, 45)
and Py (70, 20) - P, (100, 10) against a window A (50, 10), B (80, 10), C (80, 40),
D(50,40).

Sol.: Line 1: P, (40, 15) P, (75, 45) W,, =50 W, =40
W,,=80 W, =10
Point Endcode ANDing
P; 0001 0000 Partially visible
P, 0000
6 45-15 ¢
=X = =—(50-40 15 S —_——
i =mx -x)+y 7( )+ o s
=:23.57
X = l(y1 —y)+x=>z(40—15)+40=69.16
m 6
= —-X) +
P,(75. 45) n=g a1 %9
{50, 40) *1£/ (80, 40) =;(80-40)+15
=49.28
1
Y1 Xp=—(yg-y)+x
P,(40, 15 ;n
(50, 10) (80, 10) = 3 (10-15) + 40
Fig. 5.30 =3416
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Line 2 ; P, (70, 20) P, (1K), 10)

Point End code ANDing Position
LS buvn vouo Partially visible
i 0uio

0-20 -10 -1

100-70 30 3

]

Stope m’

yr = m(x -x)+y=_—31(50-70)+20
= 26.66

s i(y1.-y,+x=-3(4u-20)+7o
=10

ya = m(xu—x)+y=:3—l(80-7())+20
= 16.66

o %‘(y“_y)”:—s(w-zo)no

100

(50.40) (80.40)

o ¥2(80,16.66)
(50,10) (sm

Fig. 5.31

Ex.5.9: Fiud the normalization transformation ivindow to viewport, with window, lower left
corner at (1, 1) and upper right corner at (3, 5) ento a wewport, for entire normalized

device screen.
SO'.: xw min = ] Y wWonan - ]
Xow max = 3 Yoman =2
Entire normalized screen
x\' ma s 0 y\' mmn = 0
xU max = ] Y\ max = ‘
_ Xemax "~ Xy nin
5, = —man vy
Xwmax — Xw min
1-0




