ASHUTOSH PANDEY COMPUTER GRAPHICS (NCS-403)

NOTES

 SUBJECT: COMPUTERGRAPHICS

SUBJECT CODE:NCS-403

BRANCH: CSE
SEM: 4th
SESSION: 2016-17

Evaluation Scheme

	
Subject
Code
	
Name of
Subject
	
Periods
	
Evaluation Scheme
	
Subject
Total
	
Credit

	
	
	
L
	
T
	
P
	
CT
	
TA
	
TOTAL
	
ESC
	
	

	
NCS-403
	
Computer
Graphics
	
2
	
1
	
0
	
15
	
10
	
25
	
50
	
75
	

Asst. Prof. ASHUTOSH PANDEY (CSE Department)
SIET,JHALWA,ALLAHABAD

CONTET

	
S. No.
	
Topic

	
UNIT I
	

	
1.1
	
Types of Computer Graphics

	
1.2
	
Graphic Displays- Random scan displays, Raster scan displays

	
1.3
	
Frame Buffer and Video Controller

	
1.4
	
Points and Lines,Line Drawing Algorithms

	
1.5
	
Circle Generating Algorithms

	
1.6
	
Mid point Circle Generating Algorithm

	
1.7
	
Parallel version of these Algorithms

	
UNIT II
	

	

2.1
	
Basic Transformation and Matrix Representation: Translation,Scaling,Rotation,Reflection ans Shearing

	
2.2
	
Homogenous Coordinates

	
2.3
	Composite Transformations

	
2.4
	
Viewing Pipeline

	
2.5
	
Viewing transformations

	
2.6

2.6.1

2.6.2
	
2-D Clipping algorithms-

Line clipping algorithms such as Cohen Sutherland line clipping algorithm. Liang Barsky algorithm

	
2.7
	
Line clipping against non rectangular clip windows

	
2.8
2.8.1
2.8.2
	

Polygon clipping –
Sutherland Hodgeman polygon clipping
Weiler and Atherton polygon clipping,

	
2.9
	
Curve clipping

	
2.10
	
Text clipping

	
UNIT III
	

	
3.1

3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6
3.1.7
	
Three- Dimensional Concepts: Three Dimensional Display Methods

Parallel Projection Perspective Projection Depth Cueing
Visible Line and Surface Identification
Surface Rendering
Exploded and Cutaway Views
Three-Dimensional and Stereoscopic views

	
3.2

3.2.1
3.2.2
3.2.3
3.2.4
	
3-D Object representation

Polyfon Surfaces Polygon Tables Plane Equations Plane Meshes

	
3.3
	3-D Geometric primitives and Modeling Transformation
Translation, Rotation, Scaling, Reflection, Shearing

	
3.4

3.4.1
3.4.2
3.4.3
	
3-D Viewing

Viewing Pipeline
Viewing Cordinates
Transformation from world to viewing Coordinates

	
3.5

3.5.1
3.5.2
	Projections:

Parallel Projection, Perspective Projection

	
3.6
	
3-D Clipping

	
UNIT IV
	

	
4.1
	
Quadric Surfaces, Spheres, Ellipsoid, Blobby Objects

	
4.2
	
Introductory concepts of Spline,

	
4.3
	
Bezier curves and surfaces

	
4.4
	
Bspline curves and surfaces

	
4.5
	
Hidden Lines and Surfaces: Back Face Detection algorithm

	
4.6
	
Depth Buffer Method

	
4.7
	
A- Buffer Method

	
4.8
	
Scan line Method

	
4.9
	
Basic Illumination Models – Ambient light ,Diffuse reflection, Specular reflection and Phong model, Combined approach, Warn model

	
4.10
	
Intensity Attenuation

	
4.11
	
Color Consideration

	
4.12
	
Transparency and Shadows

ASHUTOSH PANDEY COMPUTER GRAPHICS (NCS-403)

SYLLABUS:

Pre-requisites: Mathematical Fundamentals.

L T P
2 1 0

Objectives :To study the concepts of Computer Graphics like graphics displays, the various areas where CG is applicable, brief idea about Line and circle algorithms. This course also explains about the 2D and 3D and Transformation, Curves and surfaces, which is the emerging area of computer science and IT..

Unit – I
Introduction and Line Generation: Types of computer graphics, Graphic Displays- Random scan
displays, Raster scan displays, Frame buffer and video controller, Points and lines, Line drawing algorithms, Circle generating algorithms, Mid point circle generating algorithm, and parallel version of these algorithms.

Unit – II
Transformations: Basic transformation, Matrix representations and homogenous coordinates,
Composite transformations, Reflections and shearing.Windowing and Clipping: Viewing pipeline, Viewing transformations, 2-D Clipping algorithms- Line clipping algorithms such as Cohen Sutherland line clipping algorithm, Liang Barsky algorithm, Line clipping against non rectangular clip windows; Polygon clipping – Sutherland Hodgeman polygon clipping, Weiler and Atherton polygon clipping, Curve clipping, Text clipping.

Unit – III
Three Dimensional: 3-D geometric primitives, 3-D Object representation, 3-D Transformation,
3-D viewing, projections, 3-D Clipping.

Unit – IV
Curves and Surfaces: Quadric surfaces, Spheres, Ellipsoid, Blobby objects, Introductory
concepts of Spline, Bspline and Bezier curves and surfaces.Hidden Lines and Surfaces: Back Face Detection algorithm, Depth buffer method, A- buffer method, Scan line method, basic illumination models – Ambient light, Diffuse reflection, Specular reflection and Phong model, Combined approach, Warn model, Intensity Attenuation, Color consideration, Transparency and Shadows.

References:
1. Donald Hearn and M Pauline Baker, “Computer Graphics C Version”, Pearson Education
2. Amrendra N Sinha and Arun D Udai,” Computer Graphics”, TMH
3. Donald Hearn and M Pauline Baker, “Computer Graphics with OpenGL”, Pearson Education
4. Steven Harrington, “Computer Graphics: A Programming Approach” , TMH
5. Rogers, “ Procedural Elements of Computer Graphics”, McGraw Hill

ASHUTOSH PANDEY COMPUTER GRAPHICS (NCS-403)

Introduction:

Unit –I

Computer Graphics is an area of computer science and engineering which play a very important role in almost every applications of computer software and use of computer science. Computer Graphics involves display, manipulation and storage of pictures and experimental data for proper visualization using a computer. Typically a graphics system comprises of a host computer which must have a support of a fast processor, a large memory and frame buffer along with a few other crucial components. The first of them is the display devices. Color monitors are one example of such display device. We need a set of input devices. Typical examples are the mouse, keyboard, joystick, touch screen, trackball etc. Through these input devices you provide input to the computer and display device is an output device which shows you the image.There are other examples of output devices like LCD panels, laser printers, color printers, plotters etc. We can have interfacing devices for a computer graphic system such as video input output to a system or an interface to the TV. So these are some of the basic requirements necessary to build a computer graphic system.

Fig: Computer Graphics and components of Graphics System

1.1 Types of Computer Graphics

The four major areas of Computer Graphics are display of information, design and modeling , simulation and user interface. These are the four major areas where people work and also do research in the field of Computer Graphics. Computer Graphics system are of two types
1) Active Computer Graphics System
2) Passive Computer Graphics System
In both cases the input to the system is the scene description and the output is a static or

in case of active systems the user controls the display with the help of a graphical user interface using an input device and that is only possible in active system. In passive system you do not have any control, you have to watch whatever is shown to you.
A typical example of a passive system, whatever you see in your TV, you can change the channel but you stick to the particular channel, you are forced to see whatever is broadcasted by that particular channel. You can switch off the TV and go to another channel but you do not have control of what is being viewed on the screen or what is being telecasted on the screen or projected on the screen by the channel broadcaster. So that is the example of a passive system.
Example of an active system is very easy, the video games where almost you can decide where you want to go by giving an input through the mouse, through the keyboard, through the joystick is the example of an active system where the user play a prominent role and the pictures are shown depending upon the inputs given to the user. Although, the sequence is pre decided but you can provide many options for the games and quite a bit of randomness in the animation and the task which the video games will actually ask the user to do.

Applications of Computer Graphics

There are lots of applications of Computer Graphics.
1) Graphical User Interface or GUI : A graphical interface is basically a piece of interface or a program which sits between the user and the graphics application program. It helps the graphics system to interact with the user both in terms of input and output. Let us see few examples.
2) Plotting in business we need to plot various curves in the form of pi-charts or 2D or 3D graphs.And probably in business applications you need to show the growth rate of the company, the expenditure, the profit and the various other types of work forces that you have been using, various economical types of data for business applications so you need plotting.
3) Office automation is another area which are the standard packages of Word in Microsoft and
the Microsoft Excel and PowerPoint. These are examples of office automation. Almost all software has Graphical User Interface along with desktop publication for designing documents, for designing PowerPoint slides.
4) Plotting in science and technology, we discussed about plotting in business and plotting in science and technology. It is absolutely necessary in almost all areas of study, any branch of science and engineering and technology and I was talking of 2D or 3D graphs in the form of line drawings, surface plots, contour plots, ISO contour plots, pi charts, so various types of plotting are necessary in science and technology. And probably we cannot do without computer graphic systems which has replaced the traditional draftsmen that is to take the help
about one or two decades ago for the help of plotting.
5) Web business, commercial publishing and advertisements: you need to design very good advertisements on the web or on the TV shows and for commercial shootouts may be you post certain banners outside the city and you do take the help of Computer Graphics to make your advertisement very attractive and with that you can get a wide amount of publicity.
6) Engineering applications of CAD/CAM design. When we expand those terms it means
Computer Aided Design and Computer Aided Manufacturing. A typical example of
 (
a
ni
m
a
t
e
d

s
ce
ne

t
o

be

d
i
sp
la
y
e
d.

Y
our

i
nput

i
s

t
he

s
ce
ne

d
e
s
cr
i
pt
i
on

a
n
d

t
he

ou
t
put

i
s

s
o
m
e p
i
c
t
u
re
,

a

s
t
a
t
i
c

p
i
c
t
u
r
e

or

a
ni
m
a
t
e
d

p
i
c
t
u
r
e
.

T
h
e
n

w
h
a
t

i
s

t
he

d
i
f
fe
r
e
n
c
e
?

The

d
i
ffere
n
c
e

i
s

t
h
a
t
)
CAD/CAM is a vast scope in many fields of engineering and technology. But I have taken three examples in this case. VLSI: Very Large Scale Integration constructions in the area of architecture and civil engineering and circuits designs in the area of electrical engineering. These are the areas of CAD/CAM designs where we actually manufacture a particular chip

in VLSI or a printed circuit board. Let us say, in a circuit or an architecture, a bridge or road or it could be a building or a complex, a multi-storey complex we would like to design it in a computer graphic system to have a view and provide the interface and show what sort of design you have come up with. So there are various utilities of CAD/CAM designs in Computer Graphics which play a very crucial role.
7) Scientific visualization is almost similar to what we talk of plotting in science and technology. But we need to visualize something we can say as multi-dimensional data, something which requires animation. Let us say you would like to visualize the effect of a nuclear explosion so those sorts of visualizations are there and you need to understand certain patterns in data, it could be in genetic engineering, biological sciences or mechanical sciences or anywhere else. You would also like to have a visualization of the scientific data and you demonstrate the activity which is going on in a system using a typical Graphical User Interface.
8) Entertainment, very very important, it is a huge market in the industry where you need Computer Graphics system to design movie, TV advertisements, video games. In fact almost a majority of the market economy in computer graphic systems probably revolves around the entertainment world where we create not only animation or carton movies but we also make real time movies in between the real time characters. You make advertisements with the help of real characters and merge it with various types of steel frames, cartoon characters and things like that to create good advertisements. And of course, video games is a very lovely market not only for young children but even adults get attracted to lots of video games and similar kinds of entertainment.
9) Simulation studies and simulators, I will put both of these together. Well, this is another application I will say close to scientific visualization where you need to create a system with a good graphical interface for various applications. Simulation studies and simulators include areas such as computation, fluid dynamics, heat and mass transfer, various other mechanical and chemical processors, it could include even studies about nuclear explosion and disaster management, damage prediction in a certain area, flight simulators. If we talk of simulators, flight simulators car racing, docking of a naval ship or a space shuttle, you would like to train your pilots and engineers before going on to a particular mission and you can use simulators to really test the skill of a particular person. It could be even in the field of sports one would like to use simulators to study the reaction time of a particular individual.
10) Cartography is an area which is connected to drawing, manipulation and creation of maps. It is an area in civil engineering, geology, geography, applied geophysics and Cartography is involved in the design of maps, creation of maps in geographical engineering systems and for other geographical applications. Basically it has to do with the creation of maps.
11) Multimedia is vast area again it combines text, audio images, video, Computer Graphics everything together and the presentation must be very very synchronized and Computer Graphics is a very important and integrated part of any multimedia presentation.
12) Virtual reality, well we discussed about video games. That is probably a very classical example of virtual reality. Or even animation movies or movies synthesized with the help of
computer graphic systems which takes you to a completely different world and you can
acquire big set of movies which have come out in the last decade based on virtual reality. Either the movie shows itself or it can help you to design good simulators and training kids for people before like the pilot of an aircraft, before they go on to actually test a system you can test their skills using virtual reality systems.
13) Process monitoring again in chemical and mechanical processors you can have a large plans where several activities are going simultaneously. We can have sensors fitted at various points

which monitor the health and the flow of a particular assembly line. Or when a system is going on we need online monitoring to find out that the entire team is working true and in a correct

form. The sensors are giving feedback simultaneously from different locations and if there is any wrong signal coming out from the sensor you can generate an alarm using a Graphical User Interface and alert the person who is probably monitoring it. So GUI could be used for process management as well.
14) Digital management processing is a vast area by itself. But I will probably like to mention
areas connected to Computer Graphics which involves manipulations, storage and editions of pictures, enhancing the quality of the pictures, the contrast of the pictures, removing the noise, the blurriness and all those types of manipulations of digital pictures, saving them in different types of formats starting from ENP, PGN,TIF, JPEG you name it sort of a thing as all are coming under the field of Computer Graphics.
15) It is also playing a major role in education and training not only in giving lecture series
topicwise but for any sort of education and training to individuals, professionals, students and may be even bureaucrats and politicians mainly where Computer Graphics systems could really become very helpful in training certain professionals and educating people. So we come out of Computer Graphics applications and move over to certain application packages and standards available in Computer Graphics.

Computer Graphics packages and standards have evolved over time .The standard core graphics was the traditional standard of Computer Graphics and then we had the GKS and then the SRGP, I will expand these terms and then we had PHIGS SPHIGS AND PEX 3D and currently we have the OpenGL with or without ActiveX and Direct3D and the OpenGL is also available on X11 based system on Linux operating system.

1.2 Graphics Displays

These are actually CRT display devices or cathode ray tube display devices.

Fig: Various Computer Graphics Devices

ASHUTOSH PANDEY COMPUTER GRAPHICS (NCS-403)

The most commonly used display devices is CRT Monitors. Of course there are other better types of display devices which are coming out based on solid state technology,it could be the flat panel devices, or the plasma devices, the organic LEDs and other devices but most commonly in the world and specifically in our country most of the display devices are based on CRT monitors. So, what are the different types of CRT display devices which have been there or available.

Fig: Types of CRT display devices.

ASHUTOSH PANDEY COMPUTER GRAPHICS (NCS-403)

CRT Based Monitors

Fig: Cathode Ray Tube

This is a typical diagram that illustrates the operation of a CRT or a CRT based monitor. It is an operation which shows how an electron gun with an accelerating anode is used to generate an electron beam which is used to display points or pictures in the screen. On the left hand side of the CRT you have a heating filament which is responsible to heat up the cathode element of the CRT and that is what generates the electrons. After the heating element is heating this cathode the electron simply boils off from the cathode and it is guided by a set of devices which are all essential cylindrical in nature and it helps to guide this electronic beam path towards the screen.
We have three functions here; a control grid, a focusing anode and an accelerating anode. These are essentially three cylindrical devices which are struck inside the cylindrical CRT device and three of these have three independent tasks. What does the control grid do? Well when we observe a picture on a screen some part of the picture may be bright some pictures may be dark. This brightness or darkness or illumination or the intensity on the screen is basically controlled by the intensity of the beam which strikes a particular point on the screen. This intensity of the screen is controlled by controlling the intensity of the electron beam which is coming out of the cathode. If we look at the picture once again; the electron beam is coming out of the cathode and the intensity of the beam is controlled by the control grid. The electron beam consists of electrons which are negatively charged. The control grid is a cylindrical device which is also negatively charged. It is a high negative voltage which is applied to the control grid. Now, if the electrons are also negatively charged and the control grids are also negatively charged both of them repel each other. So the amount of the voltage

pass through cylindrical control grid will be controlled by the negative voltage in the control grid. So if you reduce the amount of voltage in the control grid it means the negative voltage is reduced and you are allowing more electrons to pass through it where the intensity of the beam will be higher and the amount of intensity on the screen will also be higher.
The control grid had a negative voltage because it had to repel or stop a few electrons from going through it necessarily depending upon the intensity of the beam which is required to strike on the screen. The focusing anode and the accelerating anode have two different tasks but essentially they have positive voltage. Essentially the focusing anode is responsible to focus the beam on to a particular point on the screen. It is similar to a lens focusing a beam of light on a particular point on the screen instead of focusing light we are actually focusing the electrons on to a particular spot or point on the on the screen. So that is the job of the focusing anode. We can say it is an electrostatic lens that means it is focusing on the electron beams unlike an optical lens which focuses the beams and the light beam on to a surface.
obtained for an electron beam.

Direct View Storage Tubes(DVST)

Direct view storage devices have very limited applications. That is they have very serious drawback and the first drawback is that modifying any part of the image requires redrawing the entire modified image. If you want to modify any part you have to modify the entire image so animation is almost ruled out when you are using Direct View Storage Tube. That is the first drawback.
The second is, changing in the image requires generating a new charge distribution in the DVST. That means we were saying that we have phosphor coating screen on the front and the beam is allowed to go and strike at any point and deflection is attained by deflection coils or electrostatic fields. And whenever the phosphor is struck by the electron beam it emits light. That is the mechanism that you draw the picture or the picture is visible. Now, when we need
to modify some part the beam has to go and do that on the entire screen and that is why the
change in the image requires you to generate a new charged distribution in the phosphor coated screen in the case of DVST and the process is usually very slow. That is my next point. It is a slow process of drawing; it typically takes a few seconds to draw a very complex picture. DVST requires a few seconds to draw quite a good amount of complex picture. You can erase the picture erasing takes about 0.5 seconds and all lines and characters must be erased in this
screen. Remember, characters are also drawn by short strokes or short lines in the DVST. And
you can say virtually no animation is possible when you are using a DVST mechanism which is something like static picture which is visible, you can erase and redraw it again something like what you see in a cathode ray oscilloscope, a CRO for electronic experiments you almost get a static picture of course with variations but it is redrawn.

Calligraphic or Random Scan display system

It is also called a vector, vectored, stroke or line drawing displays. Characters for the random scan, we will henceforth call this as random scan display or a line drawing display, Calligraphic term is also used but we will call it as a random scan. Characters are also made of sequence of strokes or short lines.It is probably closer to color TV we use today, not exactly the same.

ASHUTOSH PANDEY COMPUTER GRAPHICS (NCS-403)
 (
a
t

t
he

c
on
t
r
ol

g
r
i
d

w
ill

e
ss
e
nt
i
a
l
l
y

a
l
l
ow

a

cer
t
a
i
n

a
m
ount

of

t
he

e
l
ec
t
r
ons

of

t
he

e
l
ec
t
r
on b
ea
m

t
o

p
a
ss

t
h
r
ou
g
h

i
t

a
nd

t
he

a
m
ount

of

e
l
ec
t
r
on

b
e
a
m

or

t
he

a
m
o
unt

of

e
l
ec
t
r
on

w
h
i
c
h
)
You cannot draw a complete character without drawing short lines that is what it basically means. It is also called vectored because the electron beam is deflected from one end point to

and hence it is called due to the vector type of movement and definitions of the picture in terms of lines, characters made of lines and so on it is also called a vector system. It is also called a random scan because there is no strict order.
The order of deflection of the beam is basically dictated by the arbitrary order of the display commands. Since there is no strict order, the order could be in any random form that is why it is also called a random scan because the order of deflection has no strict rule and the order of the display commands is based on which the beam is deflected. The phosphor is different, the phosphor on the screen in the case of random scan is different from that of a Direct View Storage Tube or DVST because the DVST had a long persistence phosphor. In this case the DVST has a short persistence and the illumination of the phosphor, the light which it emits once the electron beam strikes a phosphor in order to know it emits light.
The amount of time over which the phosphor emits light after the electron beam is withdrawn is called as short persistence, we will come to that definition. But that decay of the amount of light which it emits, in the case of a random scan the decay is very fast whereas in the case of a DVST which has long persistence the light was on for a very long time and that is why once it is drawn it used to be there for quite a long time. And the decay in the case of random scan is in the order of about 10 -100 microseconds typically in the order of about fraction of a millisecond is what you can say that the phosphor has a short persistence. So that means the picture must be redrawn. The beam must comeback to that point otherwise that point will stop emitting light. There is a need for refresh, this is the first thing we are getting that the display must be refreshed.
Each point the beam must come back to that point after a very short time otherwise the picture will simply vanish from the screen. And it is true for all the points in the screen for a random scan display. So display must be refreshed at regular intervals of time and the minimum recommendation 30 hertz or 30 frames per second fps.

ASHUTOSH PANDEY COMPUTER GRAPHICS (NCS-403)
 (
a
no
t
h
e
r

a
nd

t
hose

s
e
q
u
e
n
c
e

of

c
om
m
a
nds

w
h
i
c
h

h
e
l
ps

t
he

e
le
c
t
r
on

b
e
a
m

t
o

m
ove

f
r
om

o
n
e po
i
nt

t
o

a
no
t
h
e
r

i
n

o
r
d
e
r

t
o

d
ra
w

sho
r
t

s
t
r
ok
e
s

or

l
i
n
e
s

a
r
e

c
a
l
l
e
d

v
ec
t
or

t
y
pe

o
f

m
ov
e
m
e
n
t
)
Fig: Working of Random Scan display system

Fig: Architecture of Random Scan Display System

The picture processor here which was actually just after the host CPU in the previous figure has come down after the display buffer or after the display controller, that is possible. It depends upon what sort of framework you want to have. Sometimes it is necessary to put the picture processor after the display buffer or display controller which will interpret the commands and do the processing very fast and do not want the host CPU to be overloaded with computer graphics commands or computer graphics algorithm too much. You need to just say, I want these kinds of pictures with certain output primitives. The picture processor has to interpret these commands from the display buffer and generate correspondingly, short and short descriptions for the vector character generator. If you see this screen, now the picture processor interprets from the controller and sends signals to the vector corrector generator to generate corresponding signals to the CRT.
Display controller generates analog voltages which are necessary for deflecting the plates. Display Processor need to send not only point coordinate values but a digital value for the intensity. That is what is given to the vector generator by the display processor after interpreting the command. The vector generator converts the digital coordinate values to analog voltage for the beam deflection circuits because it must know from which point x1y1 to which point x2y2 it must draw so the beam has to be deflected first, switched off and deflected to the point x1y1 then switched on with a particular intensity and the deflection voltage must be set in such a manner that the beam is deflected slowly in a linear manner to another point x2 y2. So the vector generator does all such tasks, generates in fact this, analog voltages from digital coordinate values and digital intensity values. The beam deflection circuits display the electron beam for writing on the CRTs phosphor coating that is true.

Raster Scan Display Systems

ASHUTOSH PANDEY COMPUTER GRAPHICS (NCS-403)
 (
Arc
hi
te
c
t
u
re
 of

R
a
nd
om

S
c
an

D
i
s
pl
ay
S
ys
t
em
)
It is different from the Random Scan in the sense that Random Scan was a line drawing device or a line drawing system like the device DVST or Direct View Storage Tube. The refresh is basically a point plotting device. Things appear to be very tough but it gives you a lot of advantage. If you draw points here unless like drawing lines in the case of random scan that is the essential difference you must keep in mind. The raster display stores the display

We have the central processing unit which typically does all the tasks of monitoring the system as well as computer graphic commands if necessary if you do not have separate graphics processor. We have a system memory refresh buffer could be a part of the system memory. The video controller could take commands through the CPU, through the system bus from the CPU the commands are all in the system memory or frame buffer and the video controller is the one which converts the line drawing primitives and draws it on the screen or the monitor. So that is the typical architecture of a simple raster system which does not have a graphics processor.
In this case using the refresh buffer we use points to draw raster scan raster scan as given in this slide raster scan are drawn with the help of points, random scan is drawn with the help of lines and we also need a few more functionalities or a modified or advanced architecture of a graphics system with the use of frame buffer, with the use of picture processor separately to draw a screen.

Fig: Architecture of Raster Graphics Display System

In the case of a refresh raster scan display system this concept or this drawback does not exist in the case of DVST or Random Scan display systems, we will see with an example. The last point is a terminology which says that the refresh buffer or the frame buffer as these terms are again used interchangeably. It is also called a bit- plane. In the special case it is called a bit-plane but you can generally call it as a bit- plane or refresh buffer or frame buffer or refresh frame buffer. So, we know that raster scan display system draws a discrete set of points and this is done with the help of an example like this.

ASHUTOSH PANDEY COMPUTER GRAPHICS (NCS-403)
 (
p
r
imit
i
v
e
s l
i
ke

l
i
n
e
s,
c
h
arac
t
er
s, sh
a
d
e
d
a
r
ea
s
o
r

p
a
t
t
ere
d

ar
e
a
s
i
n
t
he

r
efre
sh b
u
ff
e
r
.
)
Fig: Working of Raster Scan Display System

1.3 Frame Buffer and Video Controller

A framebuffer is a video output device that drives a video display from a memory buffer containing a complete frame of data.The information in the memory buffer typically consists of color values for every pixel (point that can be displayed) on the screen. Color values are commonly stored in 1-bit binary (monochrome), 4-bit palettized, 8-bit palettized, 16-bit high color and 24-bit true color formats. An additional alpha channel is sometimes used to retain information about pixel transparency. The total amount of the memory required to drive the frame buffer depends on the resolution of the output signal, and on the color depth and palette size.
The job of a video controller is very important. It basically gets the input from the frame buffer and drives the monitor. What do you need to drive to the monitor? You need to give input to the monitor two things, where the beam should be and what should be the intensity of the beam. The beam is been scanned from left to right each scanline from top to bottom back again to the top, that is fine. So at each point you must know where the beam should go, automatically the video controller will do that. So at any point of contact with the memory screen the video controller must know whether the electron beam must be switched on or it should be remained off as it is or if it is switched on with how much intensity, what should be the strength of the electron beam such that the desired intensity level which is in the frame buffer for the corresponding pixel.

Fig: Basic video-controller operations

There is a one to one correspondence between the two arrays or the matrix of pixels on the screen and also in the frame buffer. Each point addressable memory there was a corresponding point on the screen which should be off or on, on with a certain brightness or color. So, when you are addressing that point in system memory or frame buffer the corresponding beam is also trying to fire that pixel on the screen. So, you should know what should be the intensity or the color of that point and hence the strength of the intensity. The strength of the beam must be controlled to give it the desired intensity at that particular point.

ASHUTOSH PANDEY COMPUTER GRAPHICS (NCS-403)

So, if you look back into the figure essentially the video controller must give two outputs. First one if you see within the pink shaded diagram here with what characters, horizontal and vertical deflection voltages. That dictates where the electron beam is currently and what pixel on the screen it is trying to access. So at that particular point the

or the magnetic coil which controls where the beam position currently is that is dictated by what memory you are accessing at the frame buffer, that is number one. And what should be the strength of the electron beam, whether it should be switched off or whether it should be switched on the intensity of the beam. So these are the two outputs of the video controller which goes inside the monitor or the monitor basically needs these two inputs from the video controller to guide the beam and switch on and off at the particular intensity. What does it do? Well, you have a block called the raster scan generator which will automatically keep
doing this refreshing.
But basically the raster scan generator keeps automatically generating these horizontal and vertical deflection voltages corresponding to the addressable point in the memory from the
frame buffer and it will load the corresponding values of xy coordinates of that integer position
of the screen to two registers x and y which will in turn address memory through a memory address register. Well, this is something to do with concepts of computer organization or operating system.The memory address is built from the contents of the x and y register and it will help you to access a particular location inside the frame buffer corresponding to the point you are addressing on the screen.

1.4 Point and Line,Line Drawing Algorithms

First let us see the method of drawing a straight line on the screen. And of course that seems to be the most easiest one out of these four different attributes, basic minimal attributes necessary for any graphics drawing package, software or standard whatever you mean. And we will see why for drawing lines you need an algorithm to draw a line, because the straight line is the easiest thing which a baby even can draw in a school in the primary section.If you give him a piece of paper and a pencil or a pen and give him a scale and he just draws a line, puts the scale and draws a line. And the equation of a line is also very straight forward, is the simplest one. When you read equations and read geometry, the equation of the line comes on, first linear expression and there should not be any problem.
So why do we talk of an algorithm for scan converting lines, we will see that. And before going into that of course I will giving a hint why you need an algorithm, because when we draw a line, when you think of a line in a graph paper or in a plain paper or whatever the case may be we are provably in fact drawing a line in a analog environment where all points are defined or for xy different coordinates.
But in the case of the computer graphics you have a digitized raster environment so xy are defined as integer coordinates and you need to actually find out what are those
coordinates which fall on the line before you draw it. So that is the problem in the digitized space, we do not have continuous values of x and y like the analog world. And hence in the case we need an algorithm by which you draw a line.Display devices raster in all that you can visualize yourself the digitized space or a raster space as the matrix or an array of pixels and definitely if you draw an arbitrary line, not all of this square pixel blocks or raster
position will fall on a line. So we are talking of approximately representing line in that
sense truly of course in analog environment you can say there are basically infinite points which lie on the line. That is not the case, we have a finite set of pixels which fall on a line and you have to find out which are those finite pixels.
When you define a line you can think of the equation of a line or the staring point x1 y1 and the finishing point x2 y2 of a line and you can simply draw a line by a scale that is fine. But
in the case of a graphic screen which you are viewing now in a TV or a CRT monitor you
ASHUTOSH PANDEY COMPUTER GRAPHICS (NCS-403)
 (
d
ef
l
ec
t
i
on

vol
ta
g
e
s

o
f

t
h
e

ho
r
iz
on
t
a
l

a
nd

v
er
t
ic
a
l

d
ef
l
ec
t
i
on

p
l
a
t
e
s

o
r

it

c
ou
l
d

be

t
he

so
l
e
no
i
d
)
have to find out what are those pixels staring from x0 y0 and so on up to an end point x and y or x1 and y1. What are those points or the addressable pixels is the term used here in the

problem definition which falls in this line. So that is the problem posed now, I read it again. Given the specification of a straight line either in the form of an equation or the staring point and the end point, if that is given to you find the collection of addressable pixels which most closely approximates this line.
The goals of line drawing algorithms:
a) Straight line should appear straight.
b) It should start and end accurately, matching end points with connecting lines. c) Lines should hace constant brightness.
d) Lines should be drawn as rapidly as possible.

Two line drawing algorithms are
a) DDA (Digital Differential Analyzer)
b) Bresenham’s line drawing algorithm

a) DDA(Digital Differential Analyzer)

In computer graphics, a hardware or software implementation of a digital differential analyzer (DDA) is used for linear interpolation of variables over an interval between start and end point. DDAs are used for rasterization of lines, triangles and polygons. In its simplest implementation the DDA Line drawing algorithm interpolates values in interval [(xstart, ystart), (xend, yend)] by computing for each xi the equations xi = xi−1+1/m, yi = yi−1 + m, where Δx = xend − xstart and Δy = yend − ystart and m = Δy/Δx.
The dda is a scan conversion line algorithm based on calculating either dy or dx. A line is sampled at unit intervals in one coordinate and corresponding integer values nearest the line path are determined for other coordinates.
Considering a line with positive slope, if the slope is less than or equal to 1, we sample at unit x
intervals (dx=1) and compute successive y values as
Subscript k takes integer values starting from 0, for the 1st point and increases by until endpoint
is reached. y value is rounded off to nearest integer to correspond to a screen pixel.
For lines with slope greater than 1, we reverse the role of x and y i.e. we sample at dy=1 and calculate consecutive x values as
Similar calculations are carried out to determine pixel positions along a line with negative slope.
Thus, if the absolute value of the slope is less than 1, we set dx=1 if i.e. the starting extreme point is at the left.

The basic concept is:
1) A line can be specified in the form:
y = mx + c
2) Let m be between 0 to 1, then the slope of the line is between 0 and 45 degrees.
3) For the x-coordinate of the left end point of the line, compute the corresponding y value
according to the line equation. Thus we get the left end point as (x1,y1), where y1 may not be an integer.
4) Calculate the distance of (x1,y1) from the center of the pixel immediately above it and call it
D1
5) Calculate the distance of (x1,y1) from the center of the pixel immediately below it and call it
D2
6) If D1 is smaller than D2, it means that the line is closer to the upper pixel than the lower
pixel, then, we set the upper pixel to on; otherwise we set the lower pixel to on.

7) Then increatement x by 1 and repeat the same process until x reaches the right end point

8) This method assumes the width of the line to be zero.

DDA Algorithm:

1. Define the nodes, i.e end points in form of (x1,y1) and (x2,y2).
2. Calculate the distance between the two end points vertically and horizontally, i.e dx=|x1- x2| and dy=|y1-y2|.
3. Define new variable name ‘pixel’, and compare dx and dy values, if dx > dy then
pixel=dx else
pixel =dy.
4. dx=dx/pixel
and dy=dy/pixel
5. x=x1;
y=y1;
6. while (i<=pixel) compute the pixel and plot the pixel with x=x+dx and y=y+dy.

We assume that x2 is more than x1, dx is greater than dy that means the slope is less than 1 and we will see that we can easily modify the other situations to handle all the other possible cases of drawing the line. What is the DDA algorithm? dx is defined to the first four statements of this algorithm here on the right bottom of the screen gives the initializing condition, that is not the loop, dx is what I just said sometime back x2 minus x1, dy is y2 minus y1, the slope of the line m is given as dy by dx.
Now since x2 x1 y2 y1 are integer coordinates dx dy will be also integers. But the ratio of two
integers is not guaranteed to be an integer quantity. In general it will be a floating point, so just remember here that the value of m or the slope of the line is going to be floating point number, y is equal to y1 that is the starting point, you know it stars at x1 y1 and so what we do basically is, you actually draw the first point x1 y1 and then start, you make an iterative loop, actually I have written this in pseudo code, not follow any syntax of languages like c, it could
be Pascal like Algoe like, so you make a loop from x1 to x2. You start from the x coordinates
of the first point of the starting point and wind up and finish at and the end point of the x coordinates and at each point you draw the lines.
The first point of course will be y is equal to y1, so you draw the first point which is x1 and round of y1 which is nothing but the y1 itself. Then what you do is this is the incremental algorithm that is why you increment y by the value m. You increment y by the
value m, remember y is an integer but adding a floating point number will actually return a
floating point value on the y. So in the next loop what will happen is in the draw point command the round function will return an integer point or integer value of y and that is what the draw point commands basically illuminates, let us assume that this draw point is a very low level liability function where given two integer points x, y it draws a point on the screen.

Drawback:

• Floating point values (m,y)
• Round operation
 (
of

t
he

l
i
n
e
.
)
• Special cases m = 0 or infinity

b) Bresenham's Line Algorithm

This algorithm is very efficient since it use only incremental integer calculations. Instead of calculating the non-integral values of D1 and D2 for decision of pixel location, it computes a value, p, which is defined as:
If p>0, it means D1 is smaller than D2, and we can determine the pixel location accordingly. However, the computation of p is very easy:
The initial value of p is 2 * vertical height of the line - horizontal length of the line.
At succeeding x locations, if p has been smaller than 0, then, we increment p by 2 * vertical
height of the line, otherwise we increment p by 2 * (vertical height of the line - horizontal length of the line).

Bresenham’s Line Algorithm:
1. Input the two line endpoints and store the left endpoint in (xo,yo)
2. Load (xo, yd into the frame buffer; that is, plot the first point.
3. Calculate constants ∆x, ∆y, 2∆y, and 2∆y – 2∆x, and obtain the starting value for the decision parameter as
po = 2∆y - ∆x
4. At each xk along the line, starting at k = 0, perform the following test: If pk < 0, the next point
to plot is (xk+1, yk) and
pk+1 = pk-2∆y
Otherwise, the next point to plot is (xk+1, yk+1) and
pk+1 = pk + 2∆y - 2∆x
5. Repeat step 4 ∆x times.
Example :
The line it endpoints (20, 10) and (30,18). This slope of 0.8, with
∆x= 10, ∆y=8
The initial decision parameter has the value
po = 2∆y-∆x
= 6
And the increments for calculating successive parameters are
2∆y=16, 2∆y-2∆x = -4
E plot the initial point (xo,yo) = (20,10), and determine successive pixel position along the line path from decision parameter as

k PK (xK+1,yK+1) k PK (xK+1,yK+1)

0 6 (21, 11) 5 6 (26,15)

1 2 (22,12) 6 2 (27,16)

2 -2 (23,12) 7 -2 (28,16)

3 14 (24,13) 8 14 (29,17)

4 10 (25,14) 9 10 (30,18)

1.5 Circle Generating Algorithms

However, unsurprisingly this is not a brilliant solution!
Firstly, the resulting circle has large gaps where the slope approaches the vertical
Secondly, the calculations are not very efficient
The square (multiply) operations
The square root operation – try really hard to avoid these! We need a more efficient, more accurate solution.
The first thing we can notice to make our circle drawing algorithm more efficient is that circles
centred at (0, 0) have eight-way symmetry

Fig: Eight-way Symmetric rule of circle

Eight way symmetry Rule says if in any quadrant we have a point (x,y) we can find 7 more points in rest of the seven octants as(y,x),(-y,-x),(-x,y),(-y,x),(-x,-y),(x,-y),(y,-x).

Similarly to the case with lines, there is an incremental algorithm for drawing circles – the mid- point circle algorithm.

1.6 Mid-point Circle Generating Algorithm

In the mid-point circle algorithm we use eight-way symmetry so only ever calculate the points for the top right eighth of a circle, and then use symmetry to get the rest of the points.

As in the raster line algorithm, we sample at unit intervals and determine the closest pixel position to the specified circle path at each step. For a given radius r vand screen center position (x , y,), we can first set up our algorithm to calculate pixel positions around a circle path centered at the coordinate origin (0,O)T.h en each calculated position (x, y) is moved to its proper screen position by adding x to x and y to y. Along the circle section from x = 0 to x = y in the first quadrant, the slope of the curve varies from 0 to -1. Therefore, we can take unit steps in the positive x direction over this octant and use a decision parameter to determine which of the two possible y positions is closer to the circle path at each step. Positions ih the other seven octants are then obtained by symmetry.

To apply the midpoint method, we define a circle function: Fcircle(x,y)=x2+y2-r2----1

If the point is in the interior of the circle, the circle function is negative.And if the point is outside the circle, the circle function is positive. To summarize, the relative position of any point (x. y) can be determined by checking the sign of the circle function:

< 0 , if(x,y) is inside the circle boundary

Fcircle(x,y)=0 , if(x,y) is on the circle boundary

>0, if(x,y) is outside the circle boundary

The circle-function tests are performed for the mid positions between pixels near the circle path at each sampling step. Thus, the circle function is the decision parameter in the midpoint algorithm, and we can set up incremental calculations for this function as we did in the line algorithm.

The midpoint between the two candidate pixels at sampling position xk + 1. Assuming we have just plotted the pixel at (xk, yk), we next need to determine whether the pixel at position (xk+ 1, yk) or the one at position xk+l cirrular path. (xk + 1, yk -- 1) is closer to the circle. Our decision parameter is the circle function 1 evaluated at the midpoint between these two pixels:

pk= Fcircle(xk+1,yk-1/2)
=(xk+1)2 + (yk-1/2)2-r2
If pk < 0, this mid point is inside the circle and the pixel on scan line yb is closer to the circle
boundary. Otherwise, the mid position is outside or on the circle boundary, and we select the
pixel on scanline yk - 1. Successive decision parameters are obtained using incremental calculations. We obtain a recursive expression for the next decision parameter by evaluation the circle function at sampling position xk+ 1 = xk + 2:
pk= Fcircle(xk+1+1,yk+1-1/2)
=[(xk+1)+1]2 + (yk+1-1/2)2-r2
 (
A
n
y

po
i
nt (

x

,

y
)

on
t
h
e

bound
a
r
y

of

t
he

c
i
rc
l
e
 w
i
t
h
ra
d
i
us r

s
a
t
i
s
f
i
e
s
t
he
 e
q
u
a
t
i
on
F
ci
r
c
l
e
(
x,
y
)
=
0
)
Or
 (
+1
)Pk+1 = pk + 2(xk+1) + (yk 2

– yk2)-(yk+1-yk)+1
where yk+1 ,, is either yk or yk-1,, depending on the sign of pk.
Increments for obtaining pk+1, are either 2xk+1+1 (if pk is negative) or 2xk+1-2yk+1+1. Evaluation
of the terms 2xk+1 and 2yk+1,can also be done incrementally as
2xk+1=2xk+2
2yk+1=2yk-2
At the start position (0, r), these two terms have the values 0 and 2r, respectively.Each successive
value is obtained by adding 2 to the previous value of 2x and subtracting 2 from the previous value of 2y.
The initial decision parameter is obtained by evaluating the circle function at the start position
(x0, yo) = (0, r):
P0=5/4-r
If the radius r is specified as an integer, we can simply round p0 to:
P0 = 1 - r (for r an integer)
since all increments are integers.

Mid point Circle Algorithm

1)Input radius r and circle center (x, y,), and obtain the first point on the circumference of a circle centered on the origin as
(x0,y0) = (0, r)
2)Calculate the initial value of the decision parameter as
p0 = 5\4 – r
3)At each xk position, starting at k = 0, perform the following test: If pk < 0, the next point along
the circle centered on (0,0) is (xk+1, yk) and
pk+1 = pk+2xk+1+1
Otherwise, the nest point along the circle is (xk+1, yk+1) and
pk+1 = pk+2xk+1+1-2yk+1
where 2xk+1= 2xk + 2 and 2yk+1= 2yk - 2.
4. Determine symmetry points in the other seven octants.
5. Move each calculated pixel position (x, y) onto the circular path centered on (xc, yc) and plot the coordinate values:
x = x + xc, y = y + yc
6. Repeat steps 3 through 5 until x >= y.

Example: Suppose there is a circle with radius r=11 and center at (0,0).Find the pixels in 1st
octant. r=11
po = 1-r = 1-11 =-10

2x0=0 , 2y0=22

k PK (xK+1,yK+1) 2xK+1 `2yK+1

0 -10 (1, 11) 2 22

1 -7 (2, 11) 4 22

2 -2 (3, 11) 6 22

3 5 (4, 10) 8 20

4 -6 (5, 10) 10 20

5 5 (6, 9) 12 18

6 0 (7, 8) 14 16

[Type text]

7 -5 (8, 8) 16 16

With a parallel computer, we can calculate pixel positions along a line path simultaneously by partitioning the computations among the various processors available. One approach to the partitioning problem is to adapt an existing sequential algorithm to take advantage of multiple processors. Alternatively, we can look for other ways to set up the processing so that pixel positions can be calculated efficiently in parallel. An important consideration in devising a parallel algorithm is to balance the processing load among the available processors.
Given np processors, we can set up a parallel Bresenham line algorithm by subdividing the line path into np partitions and simultaneously generating line segments in each of the subintervals. For a line with slope 0 < m < 1 and left endpoint coordinate position (x0, y0), we partition the line along the positive x direction. The distance between beginning x positions of adjacent partitions can be calculated as
∆xp=(∆x+np-1)/np
where ∆x is the width of the line, and the value for partition width ∆xp is computed using integer division. Numbering the partitions, and the processors, as
0,1,2, up to n- 1, we calculate the starting x coordinate for the kth partition as xk=x0+k∆xp
As an example, suppose ∆x=15 and we have n p=4 processors. Then the width of the partitions
is 4 and the starting x values for the partitions are x0, x0 + 4, x0 +8, and x0 + 12. With this partitioning scheme, the width of the last (rightmost) subinterval will be smaller than the others in some cases. In addition, if the line endpoints are not integers, truncation errors can result in variable width partitions along the length of the line.
To apply Bresenham's algorithm over the partitions, we need the initial value for the y coordinate and the initial value for the decision parameter in each partition.
The change ∆yp, in the y direction over each partition is calculated from the line slope m and partition width ∆xp:
∆yp= m∆xp

At the kth partition, the starting y coordinate is then yk=y0+round(k∆yp)
The initial decision parameter for Bresenham’s algorithm at the start of the kth subinterval is obtained from
pk=(k∆xp)(2∆y)-round(k∆yp)(2∆x)+2∆y-∆x
 (
1
.
7

Pa
r
a
l
l
el

V
e
r
s
i
o
n
s
 o
f

t
h
e
s
e

a
lg
o
r
i
th
m
s
)
Each processor then calculates pixel positions over its assigned subinterval using the starting decision parameter value for that subinterval and the starting coordinates (x0,y0).We can also reduce the floating-point calculations to integer arithmetic in the computations for starting values y k and pk by substituting m =∆y/∆x and rearranging terms. The extension of the parallel Bresenham algorithm to a line with slope greater than 1 is achieved by partitioning the line in the y direction and calculating beginning x values for the partitions. For negative slopes, we increment coordinate values in one direction and decrement in the other.

Fig: Parallel Line Drawing Algorithm

Unit II

2.1 Basic transformation and Matrix Represenations:

It is transformations of points,lines and object shapes in two dimensional screen. Two dimensional transformations and the use of linear algebra or matrix theory are almost very interlinked.

Fig: Matrix Representation of a point

Matrix manipulations are mainly to do with multiplications and additions, a little bit of inverse transpose properties of matrices you must know I believe. And if we have not probably touched upon it in the resent past I will advise that you go back to your basic mathematical books or competitions in engineering let us say and look back into concepts of matrix and properties of determinants, matrix manipulations and simple things like
that.
Representation of a point in a 2 into 1 matrix is done that means it is a column vector with one column and two rows, the two corresponding elements in the column or just the x and y
coordinates of the matrix. We assume in a graph paper, the origin in the left bottom there
is a point x and y so in that also a matrix form is represented.Transformation is to be applied on to this point, we are going to move it any where on the screen depending upon where you want, you could move a line, or a or a point, or a structure and we need to see how to apply these different types of transformations using basic matrix theory or using matrix manipulation techniques. The general method of implementing a transformation is to apply operator T which is again a matrix on the operator A. A is the coordinate of the points or point on which we are going to apply the transformation and T is the operator matrix and the multiplication of T with A gives you the position of the new point or the points with B. So that is the basic idea of transformations and it is basically matrix manipulation.
So the T represents a generic operator to be applied to the points in A, A could be a single point or more than one point .Raster graphics displays are typically when we have to draw objects including lines, polygons and areas typically all those are build up with points, it is a
mixture of points and so when we transform the objects we have to transform all these points

because the shaping function must be kept almost intact in general, of course there are certain

cases where the shape information also may not be intact after the transformation takes place.

So we apply the T on point or points in A and T is called the geometric transformation matrix. It is also called the affine transformation matrix in general world it depends upon what functional form you are using and based on that you might get different types of transformations. So the right hand side of the equation B equals to A is known and if A and T are known the last line it says the transform points are obtained by calculating B and the points in B in which the transform points are obtained by a simple matrix multiplication of T with A.

Fig: General Transformation of 2D points

General transformation of 2D points: Well, before we move forward with the different
types of transformations ,a little bit of the inside to this matrix multiplication. There are two ways you can multiply a matrix; either put the matrix B equals A T we can some times say when T A instead of A T. If you look into the general form of matrix multiplication here we are talking about xy the point coordinate in the graphic screen which is premultiplied, why premultiplied? Because this operator T has four parameters, the scalar four elements of the matrix T are a b c and d as given here.
And if we premultiply you get the new coordinates or transformed coordinates x prime and y
prime. If you know the matrix multiplication which is obviously very simple, you can easily see that first you get two linear equations or scalar equations from the vector of matrix multiplication equations here where x prime the transformed coordinate, x coordinate of the transformed point is ax plus cy and the y prime is bx plus dy. So if you multiply you get this as you can see, the row and then the column multiplication the x prime is ax plus cy and
if you take bottom row of T and the column of x that is we have y prime equals bx plus dy and
that is typically what you see.

Interchangeably you can use any notation you like in terms of pre or post multiplication but be consistent. Be consistent in the sense that,if you start with premultiplication follow the premultiplication representation of matrix multiplication to implement geometric transformation throughout your derivations or program implementation. Whereas as if you are starting with the post multiplication, transpose and all that you better stick to that please do not keep swapping.The various 2D transformations are

1) Translation
2) Scaling
3) Reflection
4) Rotation
5) Shearing

1) Translation: It is a rigid body 2D transformation in which the shape or size of the object doesnot change.It is the movement of the object from one position to another position.

Fig: Translation

The coordinates of just one pixel value on the left bottom most corner of the structure is given which is 2, 2 on the left side here and you add 5 to 2 you get 7 and you add 1 to 2 you get 3. So 2, 2 is displaced to 7, 3 and all other coordinates are also displaced in a similar manner because we are talking of rigid body transformation so all of these points or the entire object undergoes the same types of transformation like a translation. If you want to replace the translations by matrix equation you can easily represent it by an equation like this. You remember the coordinates of A and B are 2 into 1, basically it is a vertical column vector with just two elements and you add tx to X and ty to Y and you get the coordinates of the displaced point or for the entire object.
The translation can be used with other transformations. It is done inherently. If you do not write it even as an expression and do not give it a translation also it is there in other types of transformation as for example rotation.

Rotations of any objects which are not centered at the origin undergo a translation and are the same for scaling when objects and lines are not centered at the origin. Anything which is not at the origin and undergoes rotation and scaling then those objects including lines and points also undergo a translation in some form.

Fig: Usage of Translation with other transformations

2) Scaling: Scaling or reflections are caused by the diagonal elements of the matrix T. We are talking of theoff-diagonal elements or non-diagonal elements b and c both equal to 0 and we have the diagonal elements a and d let us say they are non 0 0. Of course if all elements are 0 typically you are shifting the point to the origin and nothing happens basically. Scaling or reflections are caused by the diagonal elements of the matrix T. We are talking of the off- diagonal elements or non-diagonal elements b and c both equal to 0 and we have the diagonal elements a and d let us say they are non 0 0. Of course if all elements are 0 typically you are shifting the point to the origin and nothing happens basically.
Assuming b and c are both 0 as given here we are talking about scaling to start with, we will move to reflection and we know that the x coordinate are scaled by the parameter a and the y coordinates are scale by the parameter d. If both a and d are same and they are more than 1 that is they are greater than 1, we have enlargement that means the body zooms out and enlarges in size and scale, it scales up, it grows or expands or enlarges.
That is the concept which we have when the diagonal elements a and d both are equal. If they are not equal we will come to that in a moment. But if they are equal then we have more than 1, we have enlargement and if both are equal but they are less than 1, not negative, you must very careful here, there is a fractional number a and d are both equal and a fractional number between 0 to 1 we have a compression or reduction in the size or the scale of the object that used to be compressed. This is what we have as scaling. Now when both a and d we have are same what we call as uniform scaling, uniform means the amount of scale, whatever happens either enlargement or compression, in both the x and y axis are same and that is why we say that the scaling is uniform.
If a is equal to d if the parameter diagonal elements a and d are same we have uniform scaling so we can have uniform enlargement and you can have uniform compression depending upon both being same and the value being more than 1 or less than 1 respectively, we have seen that in the equations.

If a is not equal to d then the scaling is called non-uniform scaling.

Fig: Scaling

3) Reflection: Reflection is creating a mirror image of the object.It can be visualized that plane to be the mirror an the intersection of the plane and x, y plane and 2D in this case; the 2D plane which was intersected gives you the axis. So it is about at axis which you have the reflection and you can obtain that by geometrical transformation matrix when you put the two diagonal elements to be negative, or it is enough when one or both are negative.

Fig: Reflection

The transformation matrix T having four parameters at this which is a is equal to minus 1, b is equal to 0, c is equal to 0 and d is equal to 1. So a is minus 1, d is 1, the rest of the off- diagonal elements are 0 sort of a thing.

Fig: Special cases of Reflections

4) Rotation: When we place a watch on the paper or the screen on over which you are implying the transformations and observe the direction of the movement of the second hand or minute hand. The direction which, if it is clockwise, the counter clockwise or the reverse direction is basically conceived to be or taken to be positive rotations. So the direction of movement or rotation of the hands of the clock, typically the second hand minute or even the hour hand is the negative rotation. So the counter clockwise rotations about the origin are conceived to be or considered to be or taken to be positive rotations .

Fig: Rotation

5) Shearing: Shear is a case which is not basically similar to an example, typically you can shear an object which is soft. You can take a typical example of a rubber sheet or a cloth or a paper and you should be able to provide a shear.
Take a very large book dictionary which is fairly large in height let us say or a book, a large volume of a book and then what you do is put it on the table and give it a force,drag force on the horizontal direction on the top of the book, what you will see is that the book which is probably sitting upright will typically tend to bend towards the direction of the force and that is the good example of a shear, you can do that. You can do that with the help of a book, a dictionary for that matter and the book which was straight upright sitting will typically bend and shear itself along the direction of the force
.

Fig: Shearing

2.2 Homogeneous Coordinate System

Fig: Homogeneous Coordinates System

Matrix multiplication is used in general to represent all transformations in 2D and except translation which is an addition instead of a multiplication.
So we have a mathematical problem, we cannot directly represent translations as matrix multiplication as we can do for say, these are examples in figures of scaling and rotation.Again in the same structure like a house which is scaled up or scaled down it means it is expanded or contracted or we can make something like a house to rotate about its origin. And in this case
they may inherent a translation but when you represent these transformations you use
the matrix multiplication operation, mathematical model.

Homogeneous coordinate is a coordinate system where each point is now basically represented by a triplet x y w. So there is a third element which comes, remember it is not a 3D space, we are still talking of 2D space, x y are the coordinates value and what is the role of w?That is the homogeneous term, it is just a parameter and we will say once given x y w you divide the first 2x, y by the third element w or the third parameter w and you get back your Cartesian
2D coordinate and that is what the last line says. x by w y by w, how do you get this? Take the first two divide by third. And those are called the Cartesian coordinates of the homogeneous points. Therefore, homogeneous points coordinates are this; x y w or x y w here or in the equation on the right hand side x y w or x prime y prime w prime. But to get the Cartesian coordinates take the first two divide by third and you get x by w and y by w where you get the actual coordinates which we have been talking about for w could be equal to 1.

Fig: Interpretation of Homogeneous Coordinate System

This is an interpretation of homogeneous coordinate representation. Any point in this vector line which comes out of this x y w space, you can visualize this now to be a 3D space where w could be z but actually it is not z because x y are the coordinates and any vector which points in this direction x y w. Ph is a point in this homogeneous space or in x y w space and it also points as a vector along a certain direction. Any point on this line or on this vector in this direction basically represents a single point in Cartesian coordinate system which is this one.
So the P2d is nothing but x by w y by w and one and that is obtain by dividing all the x y w triplets by the third element w. And that is what gives you, the first two of those gives you the
2D coordinates. So basically this intersection of this vector with w equal to one plane that is

you draw a plane which is parallel to x, y axis and normal or orthogonal to the w axis, the w axis is perpendicular and normal to this plane and it intersects the w axis at w equal to 1 which is marked here at the center.

Fig: General Purpose 2D Homogeneous Coordinate transformation

The general purpose 2D transformation matrix in general which should be able to handle all different five types of transformations and this is a general purpose transformation matrix. So there are 9 elements, 3 into 3 matrix, we need a 3 into 3 because homogeneous Cartesian coordinate representation talks about a 3 into 1 element column vector. So there is a need a 3 into 3 element transformation matrix.

2.3 Composite Transformation

With the matrix representations of the previous sei:tion, we can set up a matrix for any sequence of transformations as a composite transformation matrix by calculating the matrix product of the individual transformations. A Fonning product of transformation matrices is often referred to as a concatenation, or composition, of matrices. For column-matrix representation of coordinate positions, we form composite transformations by multiplying matrices in order from right to left. That is, each successive transformation matrix premultiplies the product of the preceding transformation matrices.

Fig: Composite Transformation

General Pivot-Point Rotation:

With a graphics package that only provides a rotate function for revolving objects about the coordinate origin, we can generate rotations about any selected pivot point (x, y,) by performing the following sequence of translate-rotate translate operations:

2. Rotate the object about the coordinate origin.
3. Translate the object so that the pivot point is returned to its original position.

Fig: General Pivot-Point Rotation

Matrix for this sequence is obtained with the concatenation of

which can be expressed in the form

Genral fixed-point Scaling:

A transformation sequence tcs produce scaling with respect to a selected fixed position (x!, y,)
using a scaling motion that can only scale relative to the coordinate origin.

1. Translate object so that the fixed point coincichrs with the coordinate origin.
2. Scale the object with respect to the coordinate origin.
3. Use the inverse translation of step 1 to return the object to its original position. Concatenating the matrices for these three operations produces the required scaling matrix

 (
1.
T
ra
ns
l
a
t
e

t
he

ob
je
c
t

so
t
h
a
t
t
he

p
i
vo
t
-
po
i
nt posit
i
on
i
s
m
ov
e
d
t
o
t
he
 c
oo
r
d
i
-
n
a
t
e

o
r
i
g
i
n.
)
This transformation is automatically generated on systems that provide a scale function that accepts coordinates for the fixed point.

2.4 Viewing Pipeline:

Fig: 2D Viewing Pipeline

The real scene taken through a 2D camera is represented using modeling coordinates into a world coordinate system which is user specified. In the World Coordinate system , an area is selected which is to be displayed called Window.Further World coordinates are converted to viewing coordinates as per the viewing plane and the viewing direction of the user.Further it is transformed into normalized coordinate system which is a standard coordinate system having x- extent between 0 and 1 . Y-extent is also between 0 and 1.Further the normalized coordinate system is converted to physical display device coordinate system on which an area is chosen where the image is displayed called viewport.

2.5 Vieweing Transformation:

The viewport transformation maps Normalized device coordinates into window (screen)
coordinates
- The viewport is the rectangular region of the window where the image is drawn
- Normally the viewport is measured in window coordinates relative to the lower-left corner of the window

- The viewport transformation determines the actual size in pixels of the displayed object

To map (wx, wy) in normalized device coordinates to (vx, vy) in window coordinates:

vx = ((vxmax - vxmin)/(wxmax - wxmin))*(wx - wxmin) + vxmin (1)

vy = ((vymax - vymin)/(wymax - wymin))*(wy - wymin) + vymin (2)

In order to avoid distortion, the aspect ratio in normalized device coordinates should equal the aspect ratio of the viewport coordinates:

- Unequal aspect ratios will cause objects to appear stretched or squished

- In order to preserve the aspect ratio, it may be necessary have a viewport which is smaller than the window

2.6 Clipping

Clipping algorithms are designed to efﬁciently identify the portions of scene (in viewing coordinates) that lie inside a given viewport. They are useful because they
1) Excludes unwanted graphics from the screen.
2) Improves efﬁciency, as the computation dedicated to objects that appear offscreen can be signiﬁcantly reduced;
3) Can be used in other ways (modelling of rectangular aperatures, for example).

Most often clipping is deﬁned with respect to a rectangular window; though the algorithms can be extended to different geometries.
1) Point Clipping
2) Line Clipping
a) Cohen Sutherland Line clipping Algorithm b) Liang Barsky algorithm
3) Polygon Clipping

a) Sutherland Hodgeman polygon Clipping b) Weiler Atherton polygon Clipping

Let W denote a clip window withcoordinates (xmin,ymin),(xmin,ymax),(xmax,ymin), (xmax,ymax),then a vertex (x,y) is displayed only if all four of the following “point clipping” inequalities are satisﬁed:
xmin≤x≤xmax, and, ymin≤y ≤ymax

2.7 Line Clipping:

2.7.1 Cohen Sutherland line clipping algorithm

This is one of the oldest and most popular line-clipping procedures. Generally, the method speeds up the processing of line segments by performing initial tests that reduce the number of the intersections that must he calculated. Every line endpoint in a picture is assigned a four-digit binary code, called a region code that identifies the location of the point relative to the boundaries of the clipping rectangle. Regions are set up in referenced to the boundaries as shown in Fig. Each bit position in the region code is used to indicate one of the four relative coordinate positions of the point with respect to the clip window: to the left, right, top, or bottom. By numbering the bit positions in the region code as 1 through 4 from right to left, the coordinate regions can be correlated with the bit positions

Fig: Binary region codes assigned to line endpoints according to relative position with respect to the clipping rectangle.

 (
P
o
in
t
 C
l
ippin
g
)
bit 1: left bit 2: right bit 3: below bit 4: above

that is below and to the left of the rectangle has a region code of 0101.

Bit values in the region code are determined by comparing endpoint coordinate values (x, y) to the clip boundaries. Bit 1 is set to 1 if x < xwmin. The other three bit values can be determined using similar comparisons. For languages in which bit manipulation is possible, region-code bit values can be determined with the following two steps: (1) Calculate differences between endpoint coordinates and clipping boundaries. (2) Use the resultant sign bit of each difference calculation to set the corresponding value in the region code. Bit 1 is the sign bit of x - xwmin bit
2 is the sign bit of x- xwmax ; bit 3 is the sign bit of y - ywmin and bit 4 is the sign bit of ywmax- y.

Once we have established region codes for all line endpoints, we can quickly determine which lines are completely inside the clip window and which are clearly outside. Any lines that are completely contained within the window boundaries have a region code of 0000 for both endpoints, and we trivially accept these lines. Any lines that have a 1 in the same bit position in the region codes for each endpoint are completely outside the clipping rectangle, and we trivially reject these lines. We would discard the line that has a region code of 1001 for one endpoint and a code of 0101 for the other endpoint. Both endpoints of this line are left of the clipping rectangle, as indicated by the 1 in the first bit position of each region code. A method that can be used to test lines for total clipping is to perform the logical and operation with both region codes. If the result is not 0000, the line is completely outside the clipping region.

Intersection points with a clipping boundary can be calculated using the slope- intercept form of the line equation. For a line with end point coordinates (x1, y1) and (x2, y2), they coordinate of the intersection point with a vertical boundary can be obtained with the calculation

y= y1 + m(x –x1)

where the x value is set either to xwmin, or to xwmax and the slope of the line is calculated as m = (y2 - y1) / (x2 – x1). Similarly, if we are looking for the intersection with a horizontal boundary, the x coordinate can be calculated as

with y set either to ywmin,, or to ywmax,. The following procedure demonstrates the Cohen- Sutherland line-clipping algorithm. Codes for each endpoint are stored as bytes and processed using bit manipulations.

A line from (2, 7) to (8, 12) in a window (Xwmin = Ywmin = 5 and Xwmax = Ywmax = 10) Solution:The region code of point P1(2,7)=0001
The region code of point P2(8,12)=1000

The line is partially visible.

 (
A

v
a
l
ue

of

1

i
n

a
n
y

bit

posit
i
on

i
n
d
i
ca
t
e
s

t
h
a
t

t
he

po
i
nt

i
s

i
n

t
h
a
t

re
l
a
t
i
ve

posit
i
on;

o
t
h
erw
i
s
e
,

t
he
bit

posit
i
on

i
s

s
e
t

t
o

0.

I
f

a

po
i
nt

i
s

w
i
t
h
i
n

t
he

c
l
i
p
p
i
ng
r
ec
t
a
n
g
l
e
,

t
he

r
e
g
i
o
n

c
ode
 i
s

0000.

A

po
i
nt
)
The point of intersection of point P1 with the left boundary is =(xmin,y)

y=57/6=9.5

The point of intersection of the point P2 with the top boundary is (x,ymax) Where (12-10)/(8-x)=5/6
X=28/5=5.6 ymax=10
So the finally visible portion of the line would be between (5,9.5) and (5.6,10).

2.7.2 Liang Barsky Algorithm

Faster line clippers have been developed that are based on analysis of the parametric equation of a line segment, which we can write in the form

x= x1+ u∆x

y = y1+ u∆y 0<= u<=1

where ∆x = x2 – x1 and ∆y = y2 – y1. Using these parametric equations, Cyrus and Beck developed an algorithm that is generally more efficient than the cohen-Sutherland algorithm. Later, Liang and Barsky independently devised an even fister parametric line-clipping algorithm. Following the Liang-Barsky approach, we first write the point-clipping conditions in the parametric form:

Each of these four inequalities can be expressed as

where parameters p and q are defined as

p1 = -∆x q1 = x1 - xwmin p2 = ∆x q2 = xwmax - x1 p3 = -∆y q3 = y1 - ywmin p4 = ∆y q4 = ywmax – y1
 (
W
h
er
e

x
m
in
=5 a
n
d

(
y
-
y1
)
/
(
x
-
x1
)
=5
/
6
)
Any line that is parallel to one oi the clipping boundaries has pk= 0 for the value of k corresponding to that boundary (k = 1, 2, 3, and 4 correspond to the left, right, bottom, and top

boundaries, respectively). If, for that value of k, we also find qk < 0, then the line is completely outside the boundary and can be eliminated from further consideration. If qk >= 0 the line is inside the parallel clipping boundary. When pk< 0, the infinite extension of the line proceeds from the outside to the inside of the infinite extension of this particular clipping boundary. If pk >
0, the line proceeds from the inside to the outside. For a nonzero value of pk, we can calculate the value of u that corresponds to the point where the infinitely extended line intersects the extension of boundary k as

For each line, we can calculate values fur parameters u1 and u2 that define that part of the line that lies within the clip rectangle. The value of u1 is determined by looking at the rectangle edges for which the line proceeds from the outside to the inside (p < 0). For these edges, we calculate rk
= qk /pk. The value of u1 is taken as the largest of the set consisting of 0 and the various values of
r. Conversely, the value of u2 is determined by examining the boundaries for which the line
proceeds from inside to outside (p > 0). A value of rk is calculated for each of these boundaries, and the value of u2 is the minimum of the set consisting of 1 and the calculated r values. If u1>u2, the line is completely outside the clip window and it can be rejected. Otherwise, the endpoints of the chipped line are calculated from the two values of parameter u.

In general, the Liang-Barsky algorithm is more efficient than the Cohen-Sutherland algorithm, since intersection calculations are reduced. Each update of parameters u1 and u2 requires only one division; and window intersections of the line are computed only once, when the final values of u, and u, have been computed. In contrast, the Cohen-Sutherland algorithm can repeatedly calculate intersections along a line path, even though the line may be completely outside the clip window. And, each intersection calculation requires both a division and a multiplication.

2.8 Line Clipping against non rectangular clip window

Fig: Example of line clipping against non rectangular window

1) Clip a picture to the exterior of a specified region
2) The picture parts to be saved are those that are outside the region.
3) Eg. Multiple window systems, applications that require overlapping pictures.

4) Procedures for clipping objects to the interior of the concave polygon windows.

2.9 Polygon Clipping:

2.9.1 Sutherland Hodgeman polygon clipping

We can correctly clip a polygon by processing the polygon boundary as a whole against each window edge. This could be accomplished by processing all polygon vertices against each clip rectangle boundary in turn. Beginning with the initial set of polygon vertices, we could first clip the polygon against the left rectangle boundary to produce a new sequence of vertices. The new set of vertices could then k successively passed to a right boundary clipper, a bottom boundary clipper, and a top boundary clipper, as in Fig. At each step, a new sequence of output vertices is generated and passed to the next window boundary clipper.

Fig: Clipping a polygon against successive window boundaries.

There are four possible cases when processing vertices in sequence around the perimeter of a polygon. As each pair of adjacent polygon vertices is passed to a window boundary clipper, we make the following tests:

(1) If the first vertex is outside the window boundary and the second vertex is inside, both the intersection point of the polygon edge with the window boundary and the second vertex are added to the output vertex list

(2) If both input vertices are inside the window boundary, only the second vertex is added to the output vertex list.

(3) If the first vertex is inside the window boundary and the second vertex is outside, only the edge intersection with the window boundary is added to the output vertex list.

(4) If both input vertices are outside the window boundary, nothing is added to the output list. These four cases are illustrated in Fig. for successive pairs of polygon vertices. Once all vertices have been processed for one clip window boundary, the output list of vertices is clipped against the next window boundary.

Fig: Successive processing of pairs of polygon vertices against the left window boundary

Convex polygons are correctly clipped by the Sutherland-Hodgeman algorithm, but concave polygons may be displayed with extraneous lines. This occurs when the clipped polygon should have two or more separate sections. But since there is only one output vertex list, the last vertex in the list is always joined to the first vertex. There are several things we could do to correctly display concave polygons. For one, we could split the concave polygon into two or more convex polygons and process each convex polygon separately. Another possibility is to modify the Sutherland-Hodgeman approach to check the final vertex list for multiple vertex points along any clip window boundary and correctly join pairs of vertices.

2.9.2 Weiler-Atherton Polygon Clipping:

Here, the vertex-processing procedures for window boundaries are modified so that concave polygons are displayed correctly. This clipping procedure was developed as a method for identifying visible surfaces, and so it can be applied with arbitrary polygon-clipping regions.

The basic idea in this algorithm is that instead of always proceeding around the polygon edges as vertices are processed, we sometimes want to follow the window boundaries. Which path we follow depends on the polygon-processing direction (clockwise or counterclockwise) and whether tile pair of polygon vertices currently being processed represents an outside-to-inside pair or an inside- to-outside pair. For clockwise processing of polygon vertices,

Fig: Clipping the concave polygon in (a) with the Sutherland-Hodgeman clipper produces the two connected areas in (b)

Fig: Clipping a concave polygon (a) with the Weiler-Atherton algorithm generates the two separate polygon areas in (b).

we use the following rules:

• For an outside-to-inside pair of vertices, follow the polygon boundary.
• For an inside-to-outside pair of vertices, follow the window boundary in a clockwise
direction.
In 2nd Fig., the processing direction in the Weiler-Atherton algorithm and the resulting clipped polygon is shown for a rectangular clipping window.

An improvement on the Weiler-Atherton algorithm is the Weiler algorithm, which applies constructive solid geometry ideas to clip an arbitrary polygon against any polygondipping region. Second figure illustrates the general idea in this approach. For the two polygons in this figure, the correctly dipped polygon is calculated as the intersection of the clipping polygon and the polygon object.

2.10 Curve Clipping

Curve clipping procedures will involve non-linear equations (so requires more processing than for objects with linear boundaries)

Fig: Showing circle clipping against a window

Preliminary test (Test for overlapping)
ÿ The bounding rectangle for a circle or other curved object is used to test for overlap with
a rectangular clip window.
ÿ If the bounding rectangle is completely inside (save object), completely outside (discard the object)
ÿ Both cases- no computation is necessary.
ÿ If bounding rectangle test fails, use computation-saving approaches

Circle – coordinate extents of individual quadrants & then octants are used for preliminary testing before calculating curve–window intersections
Ellipse – coordinate extents of individual quadrants are used.

If 2 regions overlap, solve the simultaneous line-curve equations to obtain the clipping intersection points.

2.11 Text Clipping

1) Depends on methods used to generate characters & the requirements of a particular application
2) Methods for processing character strings relative to a window boundary, a) All-or-none string clipping strategy
b) All or none character clipping strategy
c) Clip the components of individual characters.

a) All-or-none string clipping strategy
ÿ Simplest method, fastest text clipping
ÿ All string - inside clip window, keep it, and otherwise discard.
ÿ Bounding rectangle considered around the text pattern
ÿ If bounding position of rectangle overlap with window boundaries, string is rejected. c) All or none character clipping strategy
ÿ Discard or reject an entire character string that overlaps a window boundary i.e, discard
those characters that are not completely inside the window.
ÿ Compare boundary limits of individual characters with the window.

ÿ Any character which is outside or overlapping the window boundary is clipped.

Fig: Text Clipping

3) Clip the components of individual characters
ÿ Treat characters same as lines

ÿ If individual char overlaps a clip window boundary, clip off the parts of the character that are outside the window.

UNIT -III

WHAT is 3Dimension: Three-dimensional space is a geometric 3-parameters model of the physical universe (without considering time) in which all known matter exists. These three dimensions can be labeled by a combination of three chosen from the terms length, width, height, depth, and breadth. Any three directions can be chosen, provided that they do not all lie in the same plane.

Fig: 3 Dimensional Plane/ Space

What is 3 Dimensional Object :. An object that has height, width and depth, like any object in the real world is a 3 dimensional object.

What is 3D Graphics : In computers graphics, 3-D (three dimensions or three-dimensional)
describes an image that provides the perception of depth/height/width.

3.1Three Dimensional Display Methods

To obtain A display of a three-dimensional scene that has been modeled in world coordinates. we must first set up a coordinate reference for the "camera". This coordinate reference defines the position and orientation for the plane of the camera film which is the plane we want to use to display a view of the objects in the scene. We have 2 different methods to generate view of the object.

3.1.1 Parallel Projection

One method for generating a view of a solid object is to project points on the object surface along parallel lines onto the display plane. By selecting different viewing positions, we can project visible points on the object onto the display lane to obtain different two-dimensional views of the object. In a parallel projection, parallel lines in the world-coordinate scene project into parallel lines on the two-dimensional display plane. This technique is used in engineering and architectural drawings to represent an object with a set of views that maintain relative proportions of the object. The appearance of the solid object can then be recon structured from the major views.
 (
P
e
r
s
p
ect
i
v
e

P
r
o
j
e
c
t
i
on
)

Fig: Three Parallel projection view of an object, showing relative proportion from different viewing positions

3.1.2 Perespective Projection

Another method for generating a view of a three-dimensional scene is to project Methods points to the display plane along converging paths. This causes objects farther from the viewing position to be displayed smaller than objects of the same size that are nearer to the viewing position. In a perspective projection, parallel lines in a scene that are not parallel to the display plane are projected into converging lines. Scenes displayed using perspective projections appear more realistic, since this is the way that our eyes and a camera lens form images. In the perspective projection view shown in Fig, parallel lines appear to converge to a distant point in the background, and distant objects appear smaller than objects closer to the viewing position.

Fig: PERSPECTIVE PROJECTION

3.1.3 Depth Cueing

With few exceptions, depth information is important so that we can easily identify, for a particular viewing direction, which is the front and which is the back of displayed objects. There are several ways in which we can include depth information in the two-dimensional representation of solid objects. A simple method for indicating depth with wireframe displays is to vary the intensity of objects according to their distance from the viewing position The lines closest to the viewing position are displayed with the highest intensities, and lines farther away are displayed with decreasing intensities. Depth cueing is applied by choosing maximum and minimum intensity (or color) values and a range of distances over which the intensities are to vary. Another application of depth cueing is modeling the effect of the atmosphere on the perceived intensity of objects. More distant objects appear dimmer to us than nearer objects due

perceived color of an object, and we can model these effects with depth cueing.

3.1.4 Visible Line and Surface Identification

We can also clarify depth relationship in a wireframe display by identifying visible lines in some way. The simplest method is to highlight the visible lines or to display them in a different color. Another technique, commonly used for engineering drawings, is to display the non visible lines as dashed lines. Another approach is to simply remove the non visible lines When objects are to be displayed with color or shaded surfaces, we apply surface-rendering procedures to the visible surfaces so that the hidden surfaces are obscured. Some visible surface algorithms establish visibility pixel by pixel across the viewing plane; other algorithms determine visibility for object surfaces as a whole.

3.1.5 Surface Rendering

Added realism is attained in displays by setting the surface intensity of objects according to the lighting conditions in the scene and according to assigned surface characteristics. Lighhng specifications include the intensity and positions of light sources and the general background illumination required for a scene. Surface properties of objects include degree of transparency and how rough or smooth the surfaces are to be. Procedures can then be applied to generate the correct illumination and shadow regions for the scene.

3.1.6 Exploded and Cutaway Views

Many graphics packages allow objects to be defined as hierarchical structures, so that internal details can be stored. Exploded and cutaway views of such objects can then be used to show the internal structure and relationship of the object parts.

3.1.7 Three-Dimensional and Stereoscopic Views

Another method for adding a sense of realism to a computer-generated scene is to display objects using either three-dimensional or stereoscopic views. Three-dimensional views can be obtained by reflecting a raster image from a vibrating flexible mirror. The vibrations of the mrror are synchronized with the display of the scene on the CRT. As the mirror vibrates, the focal length varies so that each point in the scene is projected to a position corresponding to its depth.

Stereoscopic devices present two views of a scene: one for the left eye and the other for the right eye. The two views are generated by selecting viewing positions that correspond to the two eye positions of a single viewer. These two views then can be displayed on alternate refresh cycles of a raster monitor, and viewed through glasses that alternately darken first one lens then the other in synchronization with the monitor refresh cycles.

3.2 Three Dimensional Object Representations

 (
t
o

l
i
g
ht

s
c
a
t
t
er
i
n
g

b
y

du
s
t

p
ar
t
i
c
l
e
s,

h
a
z
e
,

a
nd

s
m
ok
e
.

S
o
m
e

a
t
m
osph
e
r
i
c

eff
e
c
t
s

c
a
n

c
h
a
n
g
e

t
he
)
Representation schemes for solid objects are often divided into two broad categories, although not all representations fall neatly into one or the other of these two categories. Boundary

object interior from the environment. Typical examples of boundary representations are polygon facets and spline patches. Space-partitioning representations are used to describe interior properties, by partitioning the spatial region containing an object into a set of small, non overlapping, contiguous solids (usually cubes). A common space-partitioning description for a three-dimensional object is an octree representation.

3.2.1 Polygon Surfaces

The most commonly used boundary representation for a three-dimensional graphics object is a set of surface polygons that enclose the object interior. Many graphics systems store all object descriptions as sets of surface polygons. This simplifies and speeds up the surface rendering and display of objects, since all surfaces are described with linear equations. For this reason, polygon descriptions are often referred to as "standard graphics objects." A polygon representation for a polyhedron precisely defines the surface features of the object. But for other objects, surfaces are tiled to produce the polygon-mesh approximation.

3.2.2 Polygon Tables

We specify a polygon surface with a set of vertex coordinates and associated attribute parameters. As information for each polygon is input, the data are placed into tables that are to be used in the subsequent' processing, display, and manipulation of the objects in a scene. Polygon data tables can be organized into two groups: geometric tables and attribute tables.

Geometric data tables contain vertex coordinates and parameters to identify the spatial orientation of the polygon surfaces.

Attribute information for an object includes parameters specifying the degree of transparency of the object and its surface reflectivity and texture characteristics.

A convenient organization for storing geometric data is to create three lists: a vertex table, an edge table, and a polygon table. Coordinate values for each vertex in the object are stored in the vertex table. The edge table contains pointers back into the vertex table to identify the vertices for each polygon edge. And the polygon table contains pointers back into the edge table to identify the edges for each polygon.

 (
re
p
re
s
e
n
t
a
t
i
ons

(
B
-
r
e
ps)

d
e
s
cr
i
be

a

t
h
r
ee-
di
m
e
ns
i
on
a
l

ob
j
ec
t

a
s

a

s
e
t

of

s
u
rfa
c
e
s

t
h
a
t

s
e
p
a
r
a
t
e

t
he
)
Fig: Geometric data table representation for two adjacent polygon surfaces, formed with 6 edges and 5 vertices

To produce a display of a three-dimensional object, we must process the input data representation for the object through several procedures. These processing steps include transformation of the modeling and world-coordinate descriptions to viewing coordinates, then to device coordinates; identification of visible surfaces; and the application of surface-rendering procedures. For some of these processes, we need information about the spatial orientation of the individual surface components of the object. This information Is obtained from the vertex coordinate values and the equations that describe the polygon planes. The equation for 'I plane surface can be expressed In the form

Ax+By+Cz+D=0

where (x, y, z) is any point on the plane, and the coefficients A, B, C, and D are constants describing the, spatla1 properties of the plane. We can obtain the values of A, B, C, and D by solving a set of three plane equations using the coordinate values for three non collinear points in the plane. For this purpose, we can select three successive polygon vertices, (x1 y1, z1,), (x2, y2, z2), ,and (x3, y3, z3), and solve the following set of simultaneous linear plane equation for the ratios A/D, B/D and C/D:

(A/D)xk + (B/D)yk+(C/D)zk = -1 , k = 1,2,3

Expanding the determinants, we can write the calculations for the plane coefficients in the form

As vertex values and other information are entered into the polygon data structure, values tor
A,B, C and D are computed for each polygon and stored with the other polygon data.

Orientation of a plane surface in space can be described with the normal vector to the plane, as shown in Fig.

 (
3.2.3
P
l
a
n
e

Equ
a
t
i
o
n
s
)
Fig: Orientation of a plane surface in space

Since we are usually dealing with polygon surfaces that enclose an object interior, we need to distinguish between the two sides of the surface. The side of the plane that faces the object interior is called the "inside" face, and the visible or outward side is the "outside" face. If polygon vertices are specified in a counterclockwise direction then viewing the outer side of the plane in a right-handed coordinate system, the direction of the normal vector will be from inside to outside. This is demonstrated for one plane of a unit cube in Fig.

 (
o d
e
t
er
m
i
ne

t
he

c
o
m
pon
e
n
t
s of

t
he

no
r
m
a
l v
e
c
t
or
 f
or

t
he

sh
a
d
e
d su
r
f
a
c
e

sho
w
n
i
n
F
i
g
,

w
e
)Fig: The shaded polygon surface of the unit cube has plane equation x-1=0 and normal vector N= T (1,0,0)

select three of the four vertices along the boundary of the polygon. These points are selected in a counterclockwise direction as we view from outside the cube toward the origin. Coordinates for these vertices, in the order selected, can be used in Eqs. to obtain the plane coefficients: A = 1,

B = 0, C = 0, D = -1. Thus, the normal vector for this plane is in the direction of the positive x axis. The elements of the plane normal can also be obtained using a vector cross prodct calculation. We again select three vertex positions, V1, V, and V3, taken in counterclockwise order when viewing the surface from outside to inside in a right-handed Cartesian system. Forming two vectors, one from V1 to V2 and the other from V1 to V3 we calculate N as the vector cross product:

N=(V2-V1)* (V3-V1)

This generates values for the plane parameters A, B, and C. We can then obtain the value for parameter D by substituting these values and the coordinates for one of the polygon vertices in plane equation and solving for D. The plane equation can be expressed in vector form using the normal N and the position P of any point in the plane as

N.P=-D

Plane equations are used also to identify the position of spatial points relative to the plane surfaces of an object. For any point (x, y, z) not on a plane with parameters A, B, C, D, we have

Ax+By+Cz+D != 0

We can identify the point as either inside or outside the plane surface according to the sign (negative or positive) of Ax + By + Cz + D:
if Ax + By + Cz + D < 0, the point (x, y, z) is inside the surface

if Ax + By + Cz + D > 0, the point (x, y, z) is outside the surface

parameters A, B, C, and D were calculated using vertices selected in a counterclockwise order when viewing the surface in an outside-to-inside direction. For example, in cube Fig. any point outside the shaded plane satisfies the inequality x - 1> 0, while any point inside the plane has an x coordinate value less than 1.

3.2.4 Polygon Meshes
A polygon mesh is a collection of vertices, edges and faces that defines the shape of
a polyhedral object in 3D computer graphics and solid modeling. The faces usually consist of triangles (triangle mesh), quadrilaterals, or other simple convex polygons, since this simplifies rendering, but may also be composed of more general concave polygons, or polygons with holes.

Fig: A Dolphin formed by mesh of triangles

The study of polygon meshes is a large sub-field of computer graphics and geometric modeling. Different representations of polygon meshes are used for different applications and goals.

Polygon meshes may be represented in a variety of ways, using different methods to store the vertex, edge and face data. These include:

1. Face-vertex meshes: A simple list of vertices, and a set of polygons that point to the vertices it uses.

2. Winged-edge meshes, in which each edge points to two vertices, two faces, and the four (clockwise and counterclockwise) edges that touch it. Winged-edge meshes allow constant time traversal of the surface, but with higher storage requirements.

3. Half-edge meshes: Similar to winged-edge meshes except that only half the edge traversal information is use.

4. Quad-edge meshes, which store edges, half-edges, and vertices without any reference to polygons. The polygons are implicit in the representation, and may be found by traversing the structure. Memory requirements are similar to half-edge meshes.

 (
Th
e
se

i
n
e
qu
a
l
i
t
y

t
e
s
t
s

ar
e

v
a
l
i
d

i
n

a

r
i
g
h
t
-
h
a
nd
e
d

C
ar
t
e
s
i
a
n

s
y
s
t
e
m
,

p
r
ov
i
d
e
d

t
he

p
l
a
ne
)
5. Corner-tables, which store vertices in a predefined table, such that traversing the table implicitly defines polygons. This is in essence the triangle fan used in hardware graphics rendering. The representation is more compact, and more efficient to retrieve polygons, but operations to change polygons are slow. Furthermore, corner-tables do not represent meshes completely. Multiple corner-tables (triangle fans) are needed to represent most meshes.
6. Vertex-vertex meshes: A "VV" mesh represents only vertices, which point to other vertices. Both the edge and face information is implicit in the representation. However, the simplicity of the representation does not allow for many efficient operations to be performed on meshes.

3.3 3-D Geometric and Modeling Transformations

It is Very similar to 2D. Uses 4x4 matrices rather than 3x3 Matrices.

Translation

Fig: Translation of a point (x,y,z) to(x’,y’,z’)

In a three-dimensional homogeneous coordinate representation, a point is translated from position P = (x, y, z,) to position P' = (x', y', z') with the matrix operation

È x¢˘ È1 0 0

tx ˘ È x ˘
Í ˙ Í ˙ Í ˙
Í y¢˙ = Í0 1 0
Í z¢˙ Í0 0 1

t y ˙ ⋅ Í y ˙
tz ˙ Í z ˙
 (
1

0

0

0

1

1
)Í ˙ Í ˙ Í ˙ Î ˚ Î ˚ Î ˚

Parameters tx ty and tz specifying translation distances for the coordinate directions x, y, and z, are assigned any real values. We obtain the inverse of the translation matrix in Eq by negating the translation distances tx ty and tz This produces a translation in the opposite direction, and the product of a translation matrix and its inverse produces the identity matrix.

Rotation

To generate a rotation transformation for an object, we must designate an axis of rotation (about which the object is to be rotated) and the amount of angular rotation. Unlike two-dimensional applications, where all transformations are carried out in the xy plane, a three-dimensional rotation can be specified around any line in space. The easiest rotation axes to handle are those that are parallel to the coordinate axes. Also, we can use combinations of coordinate axis rotations (along with appropriate translations) to specify any general rotation.

Matrix representation for rotation around Z axis

È x'˘
Í y'˙

Ècos Q
Ísin Q

- sin Q
cos Q

0 0˘È x ˘
0 0˙Í y ˙
Í ˙ = Í

˙Í ˙
Í z'˙ Í 0

0 1 0˙Í z ˙
Í ˙ Í

˙Í ˙
Îw˚ Î 0

0 0 1˚Îw˚

Matrix representation for rotation around Y axis

È x'˘

È cos Q

0 sin Q

0˘È x ˘
Í ˙ Í

˙Í ˙
Í y'˙ = Í 0

1 0 0˙Í y ˙
Í z'˙

Í- sin Q

0 cos Q

0˙Í z ˙
Í ˙ Í

˙Í ˙
Îw˚ Î 0

0 0 1˚Îw˚

Matrix representation for rotation around X axis

È x'˘
Í y'˙

È1 0
Í0 cos Q

0
- sin Q

0˘È x ˘
0˙Í y ˙
Í ˙ = Í

˙Í ˙
Í z'˙

Í0 sin Q

cos Q

0˙Í z ˙
Í ˙ Í

˙Í ˙
Îw˚ Î0 0

0 1˚Îw˚

General 3D Rotation

1. Translate the object such that rotation axis passes through the origin.
2. Rotate the object such that rotation axis coincides with one of Cartesian axes.
3. Perform specified rotation about the Cartesian axis.
4. Apply inverse rotation to return rotation axis to original direction.

5. Apply inverse translation to return rotation axis to original position.

Fig: Six Transformation steps for rotation about an arbitrary axis, with the rotation axis projected on to the Z axis

Scaling

Scaling means changing the size of object

Fig: Scaling about origin and scaling matrix

Scaling about an arbitrary point and scaling matrix

Scaling with respect to a selected fixed position (x, y z,) can be represented with the following transformation sequence:

1. Translate the fixed point to the origin.

3. Translate the fixed point back to its original position.

Fig: Scaling about an arbitrary point (Xf,Yf,Zf) and Scaling matrix

Reflections

In 3D reflection the reflection takes place about a plane whereas 2D reflection it used take place about an axis. Transformation matrix for reflection through X-Y plane is

Transformation matrix for reflection through Y-Z plane is

 (
2.
S
ca
l
e

t
he

ob
j
ec
t
r
e
l
a
t
i
v
e

t
o
t
he
 c
oo
r
d
i
n
a
t
e

o
r
i
g
i
n.
)
Transformation matrix for reflection through Z-X plane is

Shear

Shearing transformations can he used to modify object shapes. In three dimensions, we can also generate shears relative to the z axis with x and y axis.

Parameters a and b can be assigned any real values. The effect of this transformation matrix is to alter x- and y-coordinate values by an amount that is proportional to the 2 value, while leaving the z coordinate unchanged. Boundaries of planes that are perpendicular to the z axis are thus shifted by an amount proportional to z. An example of the effect of this shearing matrix on a unit cube is shown in Fig. for shearing values a = b = 1. Shearing matrices for the x axis and y axis are defined similarly.

3.4 THREE DIMENSIONAL VIEWING

Viewing in 3D involves the following considerations: We can view an object from any spatial position, eg.

1. In front of an object,

2. Behind the object,
3. In the middle of a group of objects,

4. Inside an object, etc.

3D descriptions of objects must be projected onto the flat viewing surface of the output device. The clipping boundaries enclose a volume of space.

3.4.1 Viewing Pipeline

Fig: Viewing pipeline

3.4.2 View Coordinates

• Generating a view of an object in 3D is similar to photographing the object.
• Whatever appears in the viewfinder is projected onto the flat film surface.
•	Depending on the position, orientation and aperture size of the camera corresponding views of the scene is obtained.

For a particular view of a scene first we establish viewing-coordinate system.A view-plane (or projection plane) is set up perpendicular to the viewing z-axis(fig).World coordinates are transformed to viewing coordinates, then viewing coordinates are projected onto the view plane(fig).

Fig : View Plane perpendicular to Z axis Fig: Transformation of viewing coordinates on to view plane

To establish the viewing reference frame, we first pick a world coordinate position called the view reference point.This point is the origin of our viewing coordinate system. If we choose a point on an object we can think of this point as the position where we aim a camera to take a picture of the object. Next, we select the positive direction for the viewing z-axis, and the orientation of the view plane, by specifying the view-plane normal vector, N.We choose a world coordinate position P and this point establishes the direction for N.OpenGL establishes the direction for N using the point P as a look at point relative to the viewing coordinate origin.

Finally, we choose the up direction for the view by specifying view-up vector V. This vector is used to establish the positive direction for the yv axis.The vector V is perpendicular to N.Using N and V, we can compute a third vector U, perpendicular to both N and V, to define the direction for the xv axis.

Fig: Up direction of view by view up vector

3.4.3 Transformation From World To Viewing Coordinates

 (
F
i
g
: Es
t
a
bl
i
sh
m
e
nt of

v
ie
w
i
ng

r
ef
e
re
n
c
e
 f
r
a
m
e
)
Conversion of object descriptions from world to viewing coordinates is equivalent totransformation that superimpoes the viewing reference frame onto the world frame using the translation and rotation.First, we translate the view reference point to the origin of the world coordinate system

Fig: Translation of View reference point

Second, we apply rotations to align the xv,, yv and zv axes with the world xw, yw and zw axes, respectively.

Fig: Rotations to align the xv,, yv and zv axes with the world xw, yw and zw axis

If the view reference point is specified at word position (x0, y0, z0), this point is translated to the world origin with the translation matrix T.

È1 0 0
Í
T = Í 0 1 0

- x 0 ˘
˙
 (
y
)- 0 ˙
Í 0 0
Í
Î 0 0

1 - z 0 ˙
˙
0 1 ˚

The rotation sequence requires 3 coordinate-axis transformation depending on the direction of N.
First we rotate around xw-axis to bring zv into the xw -zw plane.

È1 0

0 0 ˘
Í0
R = Í
x Í0
Í

Cosq
Sinq

- Sinq 0 ˙
 (
˙
)Cosq 0 ˙
˙
Î0 0

0 1 ˚

Then, we rotate around the world yw axis to align the zw and zv axes.

ASHUTOSH PANDEY COMPUTER GRAPHICS (NCS-403)

 (
˙
)È Cosa

0 Sina 0 ˘
. Í 0
R = Í

1 0 ˙
y Í- Sina
Í

0 Cosa 0 ˙
˙
 (
0
)Î 0 0 0 1˚

The final rotation is about the world zw axis to align the yw and yv axes.

ÈCosb

- Sinb

0 0 ˘
The complete transformation fromÍSwinobrld toCvoieswb ing0 co0or˙dinate transformation matrix is obtaine
as the matrix product

R = Í
z Í 0
Í

˙
0 1 0 ˙
˙

M wc ,vc

= R z

⋅ R y

⋅ R x

⋅ T Î 0

0 0 1 ˚

3.5 Projections

Once WC description of the objects in a scene is converted to VC we can project the 3D objects onto 2D view-plane. Two types of projections:

1. Parallel Projection

2. Perspective Projection

3.5.1 Parallel Projections

Coordinate Positions are transformed to the view plane along parallel lines.

Fig: Parallel Projection

Parallel Projections

1.Orthographic parallel projection

The projection is perpendicular to the view plane.

2.Oblique parallel projecion

The parallel projection is not perpendicular to the view plane.

Orthographic Parallel Projection

The orthographic transformation is given by

 (
È
x
'
˘

È
1
Í

˙

Í
Í

y
'
˙

=

Í
0
0
0
0

˘
È
x

˘
1
0
0

˙
Í

y
˙
˙
Í

˙
Í
z
'

˙

Í
0
0
0
0
˙
Í
z

˙
Î
1

˚

Î
0
0
0
1

˚
Î
1

˚
)Í ˙ Í

˙Í ˙

Oblique Parallel Projection

The projectors are still orthogonal to the projection plane But the projection plane can have any orientation with respect to the object. It is used extensively in architectural and mechanical design.

Fig: Orthogonal Parallel Projection

Preserve parallel lines but not angles it has three different views
1. isometric view : Projection plane is placed symmetrically with respect to the three principal faces that meet at a corner of object.

2. Dimetric view : Symmetric with two faces.

3. Trimetric view : General case

ASHUTOSH PANDEY COMPUTER GRAPHICS (NCS-403)

Fig: Dimetric, Trimetric and isometric parallel projection

Fig: Dimetric, Trimetric and isometric parallel projection

Matrix for oblique transformation is

Èx p ˘

È1 0

L1 cosj

0 ˘Èx ˘
Í ˙ Í

˙Í ˙
Í y p ˙ = Í0 1

L1 sin j

0 ˙Í y˙
Íz ˙

Í0 0 0

0˙Íz ˙
Í p ˙ Í

˙Í ˙
ÍÎ1

Î0 0 0

1 ˚Î1 ˚

3.5.2 Perspective Projections

First discovered by Donatello, Brunelleschi, and DaVinci during RenaissanceObjects closer to viewer look larger. Parallel lines appear to converge to single point .In perspective projection object positions are transformed to the view plane along lines that converge to a point called the projection reference point (or center of projection)

Fig: Real world perspective projection

When we do 3-D graphics, we think of the screen as a 2-D window onto the 3-D world. The geometry of the situation is that of similar triangles. View from above:

Fig: Perspective projection on view plane

Desired result for a point [x, y, z, 1]T projected onto the view plane:

Matrix for perspective projection is

È1 0
Í 1
 (
M

=

Í
0
)Or perspective
Í0 0
Í

0 0˘
 (
0
) (
˙
)0 ˙
1 0˙
˙
È Îx0h ˘

0È11 d0

1˚0

0˘ È x ˘
Í ˙ Í

˙ Í ˙
Í yh ˙ = Í0 1

0 0˙

Í y˙
Í zh ˙ Í h ˙

Í0 0 1
Í0 0 1 d

0˙ Í z ˙
0˙ Í1 ˙
Î ˚ Î

˚ Î ˚

h = z / d
x p = xh / h,

y p = yh / h

The purpose of 3D clipping is to identify and save all surface segments within the view volume for display on the output device. All parts of objects that are outside the view volume are discarded. Thus the computing time is saved.

3D clipping is based on 2D clipping. To understand the basic concept we consider the following algorithm:

Fig: Different cases of Polygon clipping

Polygon Clipping

Assuming the clip region is a rectangular area,

1. The rectangular clip region can be represented by xmin, xmax, ymin and ymax.

2. Find the bounding box for the polygon: ie. the smallest rectangle enclosing the entire polygon.

3. Compare the bounding box with the clip region (by comparing their xmin, xmax, ymin and ymax).

4. If the bounding box for the polygon is completely outside the clip region (case 2), the polygon is outside the clip region and no clipping is needed.

5. If the bounding box for the polygon is completely inside the clip region (case 1), the polygon is inside the clip region and no clipping is needed.

6. Otherwise, the bounding box for the polygon overlaps with the clip region (cases 3 and 4) and the polygon is likely to be partly inside and partly outside of the clip region. In that case, we clip the polygon against each of the 4 border lines of the clip region in sequence as follows:

1. Using the first vertex as the current vertex. If the point iin the inside of the border line, mark it as 'inside'. If it is outside, mark it as 'outside'.

2. Check the next vertex. Again mark it 'inside' or 'outside' accordingly.

 (
3.6
C
l
ipp
i
n
g
)
3. Compare the current and the next vertices. If one is marked 'inside' and the other 'outside', the edge joining the 2 vertices crosses the border line.

Fig: Polygon clipping

4. In this case, we need to calculate where the edge intersects the border (ie. intersection between 2 lines).

5. The intersection point becomes a new vertex and we mark it as 'synthetic'.

6. Now we set the next vertex as the current vertex and the following vertex as the next vertex, and we repeat the same operations until all the edges of the polygon have been considered.

7. After the whole polygon has been clipped by a border, we throw away all the vertices marked 'outside' while keeping those marked as 'inside' or 'synthetic' to create a new polygon.

8. We repeat the clipping process with the new polygon against the next border line of the clip region.

This clipping operation results in a polygon which is totally inside the clip region.

UNIT-IV

4.1 Curves and Surfaces

ASHUTOSH PANDEY COMPUTER GRAPHICS (NCS-403)

Quadric Surfaces: A frequently used class of objects are the quadric surfaces, which are described with second-degree equations (quadratics). They include spheres, ellipsoids, tori paraboloids, and hyperboloids. Quadric surfaces, particularly spheres and ellipsoids, are common elements of graphics scenes, and they are often available in graphics packages as primitives’ from which more complex objects can be constructed.

Fig:Quadric Surfaces

Spheres: In Cartesian coordinates, a spherical surface with radius r centered on the coordinate origin is defined as the set of points (x, y, z) that satisfy the equation

x2 + y2 + z2 = r2

We can also describe the spherical surface in parametric form, using latitude and longitude angles (Figure):

Fig: Parametric coordinate position (r, ø, θ) on the surface of a sphere with radius r

x = r cosø cosθ - π/2 ≤ ø ≤ π/2

y = r cosø sinθ - π ≤ θ ≤ π

z = r sinø

Ellipsoid: An ellipsoidal surface can be described as an extension of a spherical surface, where the radii in three mutually perpendicular directions can have different values.

And a parametric representation for the ellipsoid in terms of the latitude angle ø and the longitude angle θ in Fig. is

Fig: An ellipsoid with radii rx, ry and rz centered on the coordinate origin.

x = rx cosø cosθ - π/2 ≤ ø ≤ π/2

y = ry cosø sinθ - π ≤ θ ≤ π

z = rz sinø

Blobby Objects: Irregular surfaces can also be generated using some special formulating approach, to form a kind of blobby objects -- The shapes showing a certain degree of fluidity.

Fig:Blobby Objects

4.2 Introductory Concepts of Spline: Spline means a flexible strip used to produce a smooth curve through a designated set of points. Several small weights are distributed along the length of the strip to hold it in position on the drafting table as the curve is drawn.

We can mathematically describe such a curve with a piecewise cubic polynomial function
=> spline curves. Then a spline surface can be described with 2 sets of orthogonal spline curves.

Fig:Spline Curves

4.3 Bezier Curves and Surfaces

Bezier Curves:

So far we have only considered defining curves wholly in terms of the points through which they pass. This is a logical way of thinking, though it does suffer from drawbacks. We wish to make arbitrarily complex curves. Using just one equation to get more and more complex curves leads to higher degrees of polynomial and becomes mathematically awkward. One solution is to create complex curves out of many simpler curves. We call these patches. The key to creating curves in this way is how we match the end of one curve to the start of the next. It is not acceptable to match just the end points; we must match gradients as well. Defining curves by the points through which they pass does not lend itself very well to patching.

Bezier curves are defined using four control points, known as knots. Two of these are the end points of the curve, while the other two effectively define the gradient at the end points. These two points control the shape of the curve. The curve is actually a blend of the knots. This is a recurring theme of approximation curves; defining a curve as a blend of the values of several control points.

Suppose we are given n + 1 control-point positions: pk = (xk, yk, zk), with k varying from 0 to n. These coordinate points can be blended to produce the following position vector P(u), which describes the path of an approximating Bezier polynomial function between p, and pn,.

The Bezier blending functions BEZk,n(u) are the Bemstein polynomials:

where the C(n, k) are the binomial coefficients

Equivalently, we can define Bezier blending functions with the recursive calculation

with BEZ k,k = uk , and BEZ0,k = (1 – u)k . A set of three parametric equations for the individual curve coordinates

Fig: Examples of two-dimensional Bezier curves generated from three, four, and five control points. Dashed lines connect the control-point positions

Properties of Bezier Curves

1. Bezier curve always passes through the first & last control points i.e curve has same end points as the guiding polygon.
2. The degree of polynomial defining the curve segment is one less than the number of defining polygon points. Therefore for 4, control points the degree of polynomial is three.
3. The curve generally follows the shape of the defining polygon.
4. The curve lies entirely within the convex hull formed by control points.
5. The curve exhibits the variation diminishing property. This means that the curve does not oscillate about any straight-line move often than the defining polygon

6. The curve is invariant under an affine transformation.

specifying by an input mesh of control points. The parametric vector function for the Bezier surface is formed as the Cartesian product of Bezier blending functions:

with pj,k specifying the location of the (m + 1) by (n + 1) control points

The control points are connected by dashed lines, and the solid lines show curves of constant u and constant v. Each curve of constant u is plotted by varying v over the interval from 0 to 1, with u fixed at one of the values in this unit interval. Curves of constant v are plotted similarly

Fig: Bezier surfaces constructed tor (a) m = 3,n = 3, and (b) m = 4, n = 4.

Dashed lines connect the control points.

Bspline Curves and Surfaces

Bspline Curves:

The Bezier representation has two main disadvantages.

(i) The number of control points is directly related to the degree. Therefore, to increase the complexity of the shape of the curve by adding control points requires increasing the degree of the curve or satisfying the continuity conditions between consecutive segments of a composite curve.
(ii) Changing any control points affects the entire curve or surface, making design of specific sections very difficult.

 (
B
e
z
i
e
r

Su
r
f
a
ce
:

T
w
o

s
e
t
s

of

o
r
t
ho
g
on
a
l

B
e
zi
e
r

c
u
r
v
e
s

ca
n

be

u
s
e
d

t
o

d
e
s
i
gn

a
n

ob
j
ec
t

su
rfa
c
e

b
y
)
These disadvantages are remedied with the introduction of the B-spline (basis- spline) representation.

curve in a blending-function formulation as

Where pk are an input set of n + 1 control points.

Blending functions for B-spline curves are defined by the Cox-deBoor recursion formulas:

where each blendjng function is defined over d subintervals of the total range of u. The selected set of subinterval endpoints u, is referred to as a knot vector. We can choose any values for the subinterval endpoints satisfying the relation uj ≤ uj + 1.

Properties of B-spline curve:

1. The degree of B-Spline polynomial is independent of the number of vertices of the defining polygon.
2. The curve generally follows the shape of the defining polygon.
3. The curve lies within the convex hull of its defining polygon.
4. The curve exhibits the variation diminishing property. This means that the curve does not oscillate about any straight-line move often than the defining polygon.
5. The B-Spline allows local control over the curve surface because each vertex affects the shape of the curve only over a range of parameter values where its associated basic function is non-zero.

In the following we shall assume a B-spline curve C(u) of degree p is defined by n + 1 control points and a knot vector U = { u0, u1,, um } with the first p+1 and last p+1 knots "clamped" (i.e., u0 = u1 = ... = up and um-p = um-p+1 = ... = um).

1. B-spline curve C(u) is a piecewise curve with each component a curve of degree p.
2. Equality m = n + p + 1 must be satisfied.
ASHUTOSH PANDEY COMPUTER GRAPHICS (NCS-403)
 (
W
e

ca
n

w
r
i
t
e

a

g
e
n
e
ra
l

e
x
p
re
ss
i
on

f
or

t
he

ca
l
c
u
l
a
t
i
on

of

c
oo
r
d
i
n
a
t
e

posit
i
ons

a
l
ong

a

B
-
spl
i
ne
)
3. Clamped B-spline curve C(u) passes through the two end control points P0 and Pn.

4. Strong Convex Hull Property: A B-spline curve is contained in the convex hull of its control polyline. More specifically, if u is in knot span [ui, ui+1), then C(u) is in the convex hull of control points pi-p, pi-p+1, ..., pi.
5. Local Modification Scheme: changing the position of control point pi only affects the curve C(u) on interval [ui, ui+p+1).
6. C(u) is Cp-k continuous at a knot of multiplicity k
7. Smoothness: degree n B-spline curves are Cn−1, so cubic B-spline curves are C2
continuous.2
8. Aﬃne invariance: scaling or translating all the control points by a constant amount will
scale or translate the curve by that same amount.
9. Local control: changing one control point aﬀects only a limited number of curve segments. For the case of cubics, the B-spline curve segment over [ti, ti+1] is aﬀected
only by the four control points Vi−3, Vi−2, Vi−1 and Vi.
10. local convex hull: the section of the curve over [ti, ti+1] lies within the “convex hull” of
the control points that aﬀect that segment. For cubics, that section of the curve lies in the
convex hull of Vi−3, Vi−2, Vi−1 and Vi.
11. Nondegeneracy: because the B-splines form a basis for the spline space, a curve will not
collapse to a single point unless all the control points are located at that point.
12. Reproduction of lines: if all the control points lie on a line, then the B-spline curve will also lie on that same line.
13. Recursive evaluation algorithm: there is a stable recursive algorithm for evaluating B- spline curves.
14. Derivative formula: a slight variation of the evaluation algorithm gives a means of computing the derivative at any t-value.
15. Subdivision algorithm: given a B-spline curve over a knot vector ti , and given a
reﬁnement of that original knot vector, there is an eﬃcient and stable algorithm to
represent the curve over the reﬁned knot vector.
16. Variation diminishing: a B-spline curve will wiggle no more than its control polygon.
Speciﬁcally, any line will intersect the curve no more times than it intersects the control polygon

B-Spline Surfaces: Formulation of a B-spline surface is similar to that for B6zier splines. We can obtain a vector point function over a B-spline surface using the Cartesian product of B-spline blending functions in the form

where the vector values for pk1,k2 specify positions of the (n1 + 1) by (n2 + 1) control points.

B-spline surfaces exhibit the same properties as those of their component B-spline curves. A surface can be constructed from selected values for parameters d1 and d2 (which determine the polynomial degrees to be used) and from the specified knot vector.

4.5 Hidden Lines and Surfaces

Back Face Detection Algorithm: A fast and simple object-space method for identifying the back faces of a polyhedron is based on the “inside-outside” tests and discards them. A point (x, y,z) is "inside" a polygon surface with plane parameters A, B, C, and D if

Ax + By + Cz +D < 0 (1) When an inside point is along the line of sight to the surface, the polygon must be a back face.
Back-face test by considering the direction of the normal vector N to a polygon surface, which has Cartesian components (A, B, C). In general, if Vview is a vector in the viewing direction from the eye (or "camera") position, as shown in Figure, then this polygon is a back face if

Vview ∙ N > 0 (2)

Fig : Vector Vview in the viewing direction and a back-face normal vector N of q polyhedron

Right-handed viewing system, If object is converted to projection coordinates and viewing direction is parallel to viewing direction is parallel to zv axis, then Vview = (0 , 0, Zv) and

Vview ∙ N = Zv C (3)

so that we only need to consider the sign of C, the ; component of the normal vector N.

Fig: A polygon surface with plane paprameter C< 0 in a right-handed viewing coordinate system is identified as a back face when the viewing direction is along the negative Zv axis.

A polygon is back face if C<=0

Similarly, left-handed system, back face if C >= 0

Complete visibility test for nonoverlapping convex polyhedral

For concave polygon, more test must be carried out to determine whether there are additional faces that are totally or partially obscured by other faces

Fig: View of a concave polyhedron with one face partially hidden by other faces.

For a general scene, back For a general scene, back-face removal face removal can be expected to eliminate about half of the polygon surfaces in a scene from further visibility tests

4.6 Depth –Buffer Method:

Use of a depth-buffer is a common image-space approach; also called z-buffer method since depth usually measured along z-axis

This approach compares surface depths at each pixel position on the projection plane

Object depth is usually measured from the view plane along the z axis of a viewing system

This method requires two buffers: one is the image buffer and the other is called the z-buffer (or the depth buffer). Each of these buffers has the same resolution as the image to be captured.

Fig : At view-plane position (x, y), surface S, has the smallest depth from the view plane and so is visible at that position.

As surfaces are processed, the image buffer is used to store the color values of each pixel position and the z-buffer is used to store the depth values for each (x,y) position.

Algorithm:
1.Initially each pixel of the z-buffer is set to the maximum depth value (the depth of the back
clipping plane).
2.The image buffer is set to the background color.
3.Surfaces are rendered one at a time
4.For the first surface, the depth value of each pixel is calculated
5.If this depth value is smaller than the corresponding depth value in the z-buffer (ie. it is closer to the view point), both the depth value in the z-buffer and the color value in the image buffer are replaced by the depth value and the color value of this surface calculated at the pixel position.
6.Repeat step 4 and 5 for the remaining surfaces
ASHUTOSH PANDEY COMPUTER GRAPHICS (NCS-403)

7.After all the surfaces have been processed, each pixel of the image buffer represents the color of a visible surface at that pixel.

- This method requires an additional buffer (if compared with the Depth-Sort Method) and the
overheads involved in updating the buffer. So this method is less attractive in the cases where
only a few objects in the scene are to be rendered.
- Simple and does not require additional data structures.
- The z-value of a polygon can be calculated incrementally.
- No pre-sorting of polygons is needed.
- No object-object comparison is required.
- Can be applied to non-polygonal objects.
- Hardware implementations of the algorithm are available in some graphics workstation.
- For large images, the algorithm could be applied to, eg., the 4 quadrants of the image
separately, so as to reduce the requirement of a large additional buffer.

Calculate the depth of any point on the plane containing the polygon

Depth valueigures for a surface position (x, y) are calculated from the plane equation for each surface:

z = (-Ax-By-D)/C (4)

For any scan line (Fig. 5), adjacent horizontal positions across the line differ by1, and a vertical y value on an adjacent scan line differs by 1. If the depth of position (x, y) has been determined to be z, then the depth z' of the next position (x +1, y) along the scan line is obtained from Eq. 4 as:

Depth z’ of (x+1, y)

z’ = [-A(x+1)-By-D]/C, z’= z-A/C

Fig: From position (x, y) on a scan line, the next position across the line has coordinates (x + 1, y),

and the position immediately below on the next line has coordinates (x, y - 1).

Depth z’ of (x-1/m, y-1)

z’ = [-A(x-1/m)-B(y-1)-D]/C, z’ = z+(A/m + B)/C

Fig : Scan lines intersecting a polygon surface

Fig: Intersection positions on successive scan Lines along a left polygon edge.

Depth z’ of (x, y -1)

z’ [= -Ax - B(y - 1) - D] / C, z’ = z + B / C

4.7 A- Buffer Method:

An extension of the ideas in the depth-buffer method is the A-buffer method (at the other end of the alphabet from "z-buffer", where z represents depth).

The A-buffer method represents an antialiased, area-averaged, accumulation-buffer method developed by Lucasfilm for implementation in the surface-rendering system called REYES (an acronym for "Renders Everything You Ever Saw").

A drawback of the depth-buffer method is that it can only find one visible surface at each pixel position.

In other words, it deals only with opaque surfaces and cannot accumulate intensity values for more than one surface, as is necessary if transparent surfaces are to be displayed.

The A-buffer method expands the depth buffer so that each position in the buffer can reference a linked list of surfaces. Thus, more than one surface intensity can be taken into consideration at each pixel position, and object edges can be antialiased.

Each position in the A-buffer has two fields:
• depth field - stores a positive or negative real number
• intensity field - stores surface-intensity information or a pointer value.

Fig : Organization of an A-buffer pixel position: (a) single-surface overlap of the corresponding pixel area, and (b) multiplesurface overlap

If the depth field is positive, the number stored at that position is the depth of a single surface overlapping the corresponding pixel area. The intensity field then stores the RCB components of the surface color at that point and the percent of pixel coverage as in figure(a).

If the depth field is negative, this indicates multiple-surface contributions to the pixel intensity. The intensity field then stores a pointer to a linked list of surface data, as in Fig.(b).

4.8 Scan-Line Method:

In this method, as each scan line is processed, all polygon surfaces intersecting that line are examined to determine which are visible. Across each scan line, depth calculations are made for each overlapping surface to determine which is nearest to the view plane. When the visible surface has been determined, the intensity value for that position is entered into the image buffer.

Fig: Scan lines crossing the projection of two surfaces, S1, and S2 in the view plane.

ASHUTOSH PANDEY COMPUTER GRAPHICS (NCS-403)

Dashed lines indicate the boundaries of hidden surfaces.

Begin

For each pixel (x,y) along the scan line do ------------ Step 1

ASHUTOSH PANDEY COMPUTER GRAPHICS (NCS-403)
 (
F
or

e
ac
h s
c
a
n l
i
ne

do
)
Begin

End

z_buffer(x,y) = 0

Image_buffer(x,y) = background_color

For each polygon in the scene do ----------------------- Step 2

Begin

For each pixel (x,y) along the scan line that is covered by the polygon do

Begin

End

End

End

2a. Compute the depth or z of the polygon at pixel location (x,y).

2b. If z < z_buffer(x,y) then

Set z_buffer(x,y) = z

Set Image_buffer(x,y) = polygon's colour

4. Step 2 is not efficient because not all polygons necessarily intersect with the scan line.
5. Depth calculation in 2a is not needed if only 1 polygon in the scene is mapped onto a segment of the scan line.
6. To speed up the process:

Recall the basic idea of polygon filling: For each scan line crossing a polygon, this algorithm locates the intersection points of the scan line with the polygon edges. These intersection points are sorted from left to right. Then, we fill the pixels between each intersection pair.

With similar idea, we fill every scan line span by span. When polygon overlaps on a scan line, we perform depth calculations at their edges to determine which polygon should be visible at which span.

Any number of overlapping polygon surfaces can be processed with this method. Depth calculations are performed only when there are polygons overlapping.

We can take advantage of coherence along the scan lines as we pass from one scan line to the next. If no changes in the pattern of the intersection of polygon edges with the successive scan lines, it is not necessary to do depth calculations.

This works only if surfaces do not cut through or otherwise cyclically overlap each other. If cyclic overlap happens, we can divide the surfaces to eliminate the overlaps.

Fig: Intersecting and cyclically overlapping surfaces that alternately obscure one another.

•	This algorithm is applicable to non-polygon surfaces (use of surface and active surface table, z-value is computed from surface representation)
• Memory requirement is less than that for depth-buffer method.
• Lot of sorting are done on x-y coordinates and on depths.

4.9 Basic Illumination Models

Ambient Light: A surface that is not exposed directly to a light source still will be visible it nearby objects are illuminated. In our basic illumination model, we can set a general level of brightness for a scene. This is a simple way to model the combination of light reflections from

incident on each object is a constant for all surfaces and over all directions.

I = kaIa

where I is the intensity of the ambient light, and ka (the ambient reflection coefficient) is the percentage of ambient light reflected from the object’s surface.

Diffuse Reflection: Diffuse reflections are constant over each surface in a scene, independent of the viewing direction. Surfaces appear equally bright from all viewing angles since they reflect light with equal intensity in all directions. Deffuse reflection is dull and matte surface, and also called Lambertain Reflection.

Brightness depends only on the angle θ between the light direction L and the surface normal N

Surface

Fig: Angle of incidence θ between the unit light-source direction vector L and the unit surface normal N

Ι = Id kd cosθ

= Ιd kd (Ν ∙L)

Ι = Ia ka + Ιd kd (Ν∙ L)

Specular Reflection: Specular reflection is when the reflection is stronger in one viewing direction, i.e., there is a bright spot, called a specular highlight. This is readily apparent on shiny surfaces. For an ideal reflector, such as a mirror, the angle of incidence equals the angle of specular reflection.

 (
v
ar
i
o
u
s

s
u
r
f
a
ce
s

t
o

pr
o
d
u
c
e

a

uni
f
orm

i
l
l
u
m
i
n
at
i
on

c
al
l
e
d

th
e

a
m
b
i
en
t

l
i
g
ht
,

or

ba
c
kgro
u
n
d
l
i
g
h
t
.

A
m
b
i
e
nt

l
i
g
ht

h
as

n
o

spat
i
al

or

d
i
r
ec
t
i
o
n
a
l

c
h
ara
c
t
e
r
i
st
i
c
s
.

The

a
m
ount

of

a
m
b
i
e
nt

l
i
g
ht
)
Fig: Specular-Reflection angle equals angle of incidence ø

So if R is the direction of specular reflection and V is the direction of the viewer (located at the View Reference Point or VRP), then for an ideal reflector the specular reflection is visible only when V and R coincide. For real objects (not perfect reflectors) the specular reflectance can be seen even if V and R don't coincide, i.e., it is visible over a range of a values (or a cone of values). The shinier the surface, the smaller the f range for specular visibility. So a specular reflectance model must have maximum intensity at R, with an intensity which decreases as f(a).

Fig:Specular Reflection

Phong Model: This is an empirical model, which is not based on physics, but physical observation. Phong observed that for very shiny surfaces the specular highlight was small and the intensity fell off rapidly, while for duller surfaces it was larger and fell off more slowly. He decided to let the reflected intensity be a function of (cos a)n with n >= 200 for a shiny surface and n small for a dull surface. For a perfect reflector n equals infinity, and for a piece of cardboard n equals 0 or 1. In the diagram below we can see how the function (cos a)n behaves for different values of n.

Specular reflection is also a function of the light incidence angle q. An example is glass which has almost no specular reflectance for q = 0 degrees but a very high specular reflectance for q >
ASHUTOSH PANDEY COMPUTER GRAPHICS (NCS-403)

80 degrees. Some substances, such as copper, actually change color with change in the incidence

for copper.

Combined Diffuse and Specular Reflections with Multiple Light Sources

A full specular reflectance function is the Bi-directional Reflectance Distribution Function (BRDF). For glass the BRDF at 0 degrees incidence equals 0 and for light incident at 90 degrees, it equals 1. Since for many materials the BRDF is approximately constant, Phong called this term the specular coefficient (ks) and assumed it was constant. Then, since cos a = V∙ R, a complete illumination intensity model for reflection including diffuse reflection from ambient light and a point light source, and the Phong model for specular reflection is:

I = ka * Ia + (Ip /(d)) [kd * (N∙ L) + ks * (V∙ R)n]

For color there will be versions of the above equation for Red, Green, and Blue components. The coefficient of specular reflection ks is usually not the same as the coefficient of diffuse reflection kd or the ambient reflection ka. The assumption is often made that the specular highlights are determined by the color of the light source, not the material, e.g., ksR = ksG = ksB = 1.0 This is true of plastic which is why many computer graphics images appear to be plastic.

Approximations in the application of the Phong Model

If the point light source is far from the surface then N∙ L is constant across a planar surface, e.g., across one planar polygon. Similarly if the VRP is far from the surface then V∙ R is constant across the surface.

4.9 Warn Model: The Warn model provides a method for simulating studio lighting effects by controlling light intensity in different directions.

Light sources are modeled as points on a reflecting surface, using the Phong model for the surface points. Then the intensity in different directions is controlled by selecting values for the Phong exponent In addition, light controls, such as "barn doors" and spotlighting, used by studio photographers can be simulated in the Warn model. Flaps are used to control the amount of light emitted by a source In various directions. Two flaps are provided for each of the x, y, and z directions. Spotlights are used to control the amount of light emitted within a cone with apex at a point-source position.

 (
a
n
g
l
e
,

a
s

sho
w
n

i
n

t
he

f
o
l
l
o
w
i
ng

p
l
ot

of

t
h
e

r
ef
le
c
t
a
n
c
e

c
u
r
ve

a
s

a

f
u
n
c
t
i
on

of

t
he

i
n
c
i
d
e
nt

a
n
g
l
e
)
4.10 Intensity Attenuation: As radiant energy from a point light source travels through space, its amplitude is attenuated by the factor l/d2, where d is the distance that the light has traveled. This means that a surface close to the light source (small d) receives a higher incident intensity horn the source than a distant surface (large d).

intensity attenuation into account. Otherwise, we are illuminating all surfaces with the same intensity, no matter how far they might be from the light source. If two parallel surfaces with the same optical parameters overlap, they would be indistinguishable from each other. The two surfaces would be displayed as one surface.

4.11 Color Consideration

Most graphics displays of realistic scenes are in color. But the illumination model we have described so far considers only monochromatic lighting effects.

Color Models: A color model is a method for explaining the properties or behavior of color within some particular context.

Light or colors are from a narrow frequency band within the electromagnetic spectrum:

Fig:Electromagnetic Spectrum

Hue (Color): The dominant frequency reflected by the object

Brightness: The perceived intensity of the light. This is related to the luminance of the source.

Purity (Saturation): How pure the color of the light appears.

Chromaticity: collectively refer to purity and hue.

Complementary Colors: eg. Red and Cyan, Green and Magenta, Blue and Yellow, which combine and form white light.

Primary Colors: eg. R,G,B - starting from these colors, a wide range of other colors can be formed.

Shades of a Color: created by adding black pigment to the color.

Tints of a Color: created by adding white pigment to the color.

Tones of a Color: created by adding black or white pigments to the color.

ASHUTOSH PANDEY COMPUTER GRAPHICS (NCS-403)
 (
Th
eref
o
re
,

t
o

p
r
od
u
c
e

r
e
a
l
i
st
i
c

l
i
g
ht
i
ng

e
ff
e
c
t
s,

o
ur

il
l
um
i
n
a
t
i
on

m
od
e
l

shou
l
d

t
a
ke

t
h
i
s
)
RGB Model: Used by RGB monitors which separate signals for the red, green, blue components of an image.

for red, green, and blue.

Fig:RGB Model

YIQ Model: Used by the NTSC television monitors: Y - Contain the luminance (brightness) information
I - Contain the orange-cyan hue information

Q - Contain the green-magenta hue information

CMY Model: Useful for describing color output to hard-copy devices. These devices produce a color picture by coating a paper with color pigments. We see the colors by reflected light, which is a subtractive process.

CMYK means using the ink of Cyan, Magenta, Yellow, and Black.

 (
B
a
s
e
d

on

t
he

v
i
s
i
on
 s
y
s
te
m

of

our

e
y
e
s,

t
h
a
t

w
e

h
a
ve

3

v
i
su
a
l

p
i
g
m
e
n
t
s

i
n

t
he

c
on
e
s
 o
f

t
he

r
e
t
i
n
a
,
)
Fig:CMY Model

Consider that,
• Magenta ink indeed subtracts the green component from incident light, so the remaining
red and blue components are seen by us, as a resultant color of magenta.
• Cyan ink indeed subtracts the red component from incident light, so the remaining green
and blue components are seen by us, as a resultant color of cyan.
• If we mix the ink of magenta and cyan, then, this ink subtracts the green and red
component from the incident light, and the remaining blue component is seen by us, as a
resultant color of blue.

HSV Model: In this model, users select a spectral color and apply the amounts of white or black that are to be added to obtain different shades, tints, and tones.

HSV model is derived from the RGB cube. H: Hue
S: Saturation

V: Value

Saturation and value are measured as the horizontal and vertical axes. And a degree (0 - 360)
describes the hue. Complementary colors are 180 degrees apart.

Fig:HSV Model

Interesting facts about human eyes:
• can distinguish about 128 different hues
• can distinguish about 130 different tints (saturation levels)
• can distinguish about 23 shades for yellow and about 16 different shades for blue colors
• Hence, can distinguish about 128 x 130 x 23 = 82720 different colors.

HSL Model:

Used by Tektronix. H: Hue
L: Lightness

S: Saturation

Fig:HSL

4.12 Transparency and Shadows

Transparency: A transparent surface, in general, produces both reflected and transmitted light. The relative contribution of the transmitted light depends on the degree of transparency of the surface and whether any light sources or illuminated surfaces are behind the transparent surface.

Fig: Light emission from a transparent surface is in general a combination of reflected and transmitted light.

When a transparent surface is to be modeled, the intensity equations must be modified to include contributions from light passing through the surface. In most cases, the transmitted light

is generated from reflecting objects in back of the surface. Realistic transparency effects are modeled by considering light refraction. When light is incident upon a transparent surface, part of it is reflected and part is refracted.

Fig: Reflection direction R and refraction direction T for a ray of light incident upon a surface with index of refraction ήr

Shadows
• Shadow can help to create realism. Without it, a cup, eg., on a table may look as if the
cup is floating in the air above the table.
• By applying hidden-surface methods with pretending that the position of a light source is
the viewing position, we can find which surface sections cannot be "seen" from the light
source => shadow areas.
• We usually display shadow areas with ambient-light intensity only.

Types of Shading

Fig:Shadow

In order to produce a realistic image with various kinds of reflection, there are 3 common shading methods which are mainly applied to polygons:

1. Constant Intensity Shading (Flag Shading)
• The intensity value for the whole polygon is calculated once and the whole polygon will
be shaded with the same intensity value.
• Fast and simple but cannot model specular reflection.

based on the normal of each polygon surface. Since different polygons have different normal, the light intensity computed may be quite different).

 (
•

P
r
ob
l
e
m

of

i
n
t
e
ns
i
t
y

d
i
s
c
ont
i
nu
i
t
y

b
e
t
w
ee
n

po
l
yg
ons

(
The

l
i
g
ht

i
n
t
e
ns
i
t
y

i
s

c
o
m
pu
t
e
d
)

2. Gouraud Shading

Fig:Flag Shading
• The intensity value is calculated once for each vertex of a polygon
• The intensity values for the inside of the polygon are obtained by interpolating the vertex
values.
• Eliminates the intensity discontinuity problem.
• Still not model the specular reflection correctly.
• The interpolation of color values can cause bright or dark intensity streaks, called the
Mach-bands, to appear on the surface.

3. Phong Shading

Fig:Gourand Shading
• Instead of interpolating the intensity values, the normal vectors are being interpolated
between the vertices.
• The intensity value is then calculated at each pixel using the interpolated normal vector.
• This method greatly reduces the Mach-band problem
• but it requires more computational time.

Fig:Phong Shading

image51.png

image52.png

image53.png

image54.jpeg

image55.png
y X' =x-S, ¥
‘ Y=y,
oo 14
z X z X

Enlarging object also moves it from origin

x|l [S, 0 0 0][x
! 0 S 0 0
P- Y 5 1Y _s.P
z' 0 0 S 0ffz
1 0 0 0 1][1

image1.jpeg
Introduction to COMPUTER GRAPHICS
Computer Graphics Involves display, manipulation

and storage of plctures and experimental data for
proper visualization using a computer.

Typical graphics system comprises of a host
computer with support of fast processor, large
memory, frame buffer and

« Display devices (color monitors),
« Input devices (mouse, keyboard, Joystick,

touch screen, trackball)
- Output devices (LCD panels, laser printers,

color printers. Plotters etc.)
+ Interfacing devices such as, video l/O,
TV interface etc.

image56.jpeg
s, 0 0 (1-8)x,

T.S.T" 0.5 0 I’S.\))/

0 0 5 (1-8,)z

/ %) 00 0 ! 1 !

image57.png

image58.png

image59.png

image60.png

image61.png

image62.png

image63.png

image64.png

image65.png

image66.png

image67.png

image68.png

image69.png

image70.png

image71.png

image72.png

image73.png

image74.png

image75.png

image76.png

image77.png

image78.png

image79.png

image80.png

image81.png

image82.png

image83.png

image84.png

image2.jpeg
Examples of Computer Graphics Devices:
CRT, EGA/CGA/VGA/SVGA monitors,
plotters, data matrix, laser printers, Films,
flat panel devices, Video digitizers, scanners,
LCD panels, keyboard, joystick, mouse,

touch screen, track ball, etc,

image85.png

image86.png

image87.png

image88.png

image89.png

image90.png

image91.png

image92.png

image93.png

image94.png

image95.png

image96.png

image97.png

image98.jpeg
MC —»

Modeling
Transformation

Transformation

— WC —

Viewing
Transformation

Transformation

DC

image99.png

image100.png
X\ Vo o 7o)

image101.jpeg

image103.jpeg

image105.jpeg
View
Plane

image106.png

image107.jpeg
§W

image108.jpeg
i

Trimetric

image109.jpeg

image3.jpeg
Operation of an electron gun with
an accelerating anode

Focusing _Electron
Cathode Anode Beam Path

Heating
Filament Control Accelerating
Grid ‘Anode

image110.jpeg

image111.jpeg
How tall should
this bunny be?

image112.png

image113.png
Viewplane X

P

image114.png

image4.jpeg
Types of CRT display devices
* DVST (Direct View Storage Tube)
+ Calligraphic or Random Scan display system
+ Refresh and raster scan display system

image115.png
original polygon

outside

image116.png
COOSEm
pa A A ¥ J
e 1
4= 4 5 ‘.'
reem
200N

image117.png

image118.png
‘i

image119.png

image120.png

image121.png

image122.png
Pl) :.an.ssz‘_m, 0sus=1

image123.png
BEZ, () = Cin, k(1 — up*

image124.png
n
n -~k

image125.png
BEZ,) = (1 = W) BEZ,, () + uBEZ, ,, (), n>k=1

image126.png
X = Y BEZy)

Y = Yy BEZ)

20 = > 2 BEZ, ()

image127.png
@ ™

image128.png
P,)= S Y p,BEZ,,0)BEZ,, (1)
I

image129.png

image5.jpeg

image130.png
P) = D Py Bia), Uy S U S Upe 2=d=nm +1
&'

image131.png
1L
[
0, otherwise
- R
B - L g,)+ T H
Upagoy = My Myeq = Mgy

La-1(4)

image132.png
m
P, 0) = 5 D Puy By 0By)
K =04570

image133.jpeg
N=(ABC),

image134.jpeg
Y,
N-(A,B,C)

image135.png

image136.jpeg

image137.png
obtain the depth
and the colour of
the polygon at the
pixel concerned

image buffer __

image138.png
¥ Axis

:

S
T

image139.png
top scan line

y scan line

left edge

intoracation

bottom scan line

image140.jpeg
yetalne
Scan e

image6.jpeg
Picture Display,
et buffer
Vector/ Dis;
play
ol
generator

image141.jpeg
depth < 0

-

Surfl
info

Surf2
info

(b)

image142.png
(a)

image143.jpeg
v

Scan Line 1

image144.png

image145.jpeg

image146.png
L

image147.jpeg

image148.png

image149.png

image150.png

image151.png

image152.png

image153.png

image154.png

image7.jpeg
o
e =g

170

image155.png

image156.png

image157.png

image158.png

image159.png

image160.png
ey i, R

image161.png

image162.png

image163.png
GTtadt.

image164.png

image165.png
W

image166.png

image167.png

image168.png

image169.png

image170.png
sherx

19j01Me81IN

paseyu

sonemosom |

AL pue oipey W3

opey Wy |

Frequency

(hertz)

108 10 102 10 106 10'8 10%

108

image171.png
Yellow
(1,1,0)

Red R
(1,0,0

Blue Magenta
001 (1,01

image8.jpeg
Raster-scan display system
draws a discrete set of points

image172.png
M

Yellow Green

image173.png

image174.png

image175.png

image176.png
Litihtness)

A on

image177.png
incident
light

transparent
object

image9.jpeg
Basic video-controller refresh operations

Memory Pixel
=

image178.png
sin 6,

Lsine,

image179.png
To Light N
Source L

Tetlection
diroction

image180.png
/ Incident Light

from a
Distant Source

image181.png
L

image182.png
The normal vector at vertex V is calculated as the average of the
surface normals for each polygon sharing that vertex.

image183.png
[

Interpelation of surface normals along a polygon edge.

image10.jpeg

image11.png
Pracedure par_bres_line(k, x0, 0, xf. 1f
Var
dx. dy, .y, x end, p, const1, constz
x5, v, 1, 2. Lnteger;
Begin
s = A0~ A7y
(Do not compute p yet)
constl 2 dy
Do not compta canst? yor)
165053/ Then
Begn x5 = xf vs = vfnd.
Else Fogin xs = X0; ys = 0 End;
wi=(dy+ P_Mirus 1) Di P:
x=kow
X.ond = x 4w
Ifx_end > dx Then x_end = d
o dye dx;

Abs(yo-y)

+ Integer):

Intoger;
w

@
@
@
@)
®

constl;
/= 2 +dx) Div
= consti — dx + 22

yeyim

xex ond Do

Bogin
x=xal
1p<0Then p=p+ corstt
Else Begin y = y+1: p
sot_pivel(x.g:
End

tnd

@
®
o)

v
an
a2)
as)

-+ const2 End;

image12.jpeg
2D TRANSFORMATIONS AND MATRICES
Representation of Points:

2 x 1 matrix:

General Problem: [B] = [T] [A]

[T] represents a generic operator to
be applied to the points in A. T is the
geometric transformation matrix,

If A & T are known, the transformed
points are obtained by calculating B,

image13.jpeg
General Transformation of 2D points:

Al

x'=ax+ey

Solid body transformations - the above.
equation Is valid for all set of points and lines of
the object being transformed.

image14.jpeg
Y

rNWE OO
o

Translations

X

123456789

image15.jpeg
Translations
B=A+Ty, where Ty = [t t,]
Where else are translations introduced?

1) Rotations - when objects are not centered
at the origin.

2) Scaling - when objects/lines are not
centered at the origin - If line intersects the
origin, no translation,

Origin Is invariant to Scallng, reflection
and Shear - not translation,

image16.jpeg
i
e
-
=

=]

x

123456789

What It s, and/ or S, < O (ara negative)?.
Gt raflections through an axis or plane.

Only disgonal terms ara involved In scaling and.
rafiections:

image17.jpeg

image18.jpeg
Special cases of Reflections (IT] =-1)

MatrixT Reflection about
=0 At (or Xeaee)
20 At (o Yoaes)

Yo xoaxs

¥ = X Axia

image19.jpeg
ROTATION Y

X"~ xcos (6) - ysin (0) f 505
¥ xsin (0)+ yeos (0) 4 »
In matrix form, thisis: 2 ‘

cos(0) () | L
OGN %12 545 x

Positive Rotations; counter clockwise about
the origin
For rotations, |T| = 1 and [T]7 = [T]*,
Rotation matrices are orthogon:

image20.jpeg
—axicy
bvdy

¥ depands linearly on x ; This effect Is called
shear.

similarly for =0, ¢ not equal to zero. The
110 this case 1 i DBortIRRL 1o Nt e

shos

image21.jpeg
HOMOGENEOUS COORDINATES

Vebreeytt

bl A et
Xy W)

(x/w, y/w) are called the Cartasian
coordinates of the NOMOJENaOHS POIALE.

image22.jpeg
Interpretation of
Homogeneous_Coordinates
w

P (%, v, W)

image23.jpeg
General Purpose 2D transformations In
homogeneous coordinate representation

Parametars involved in scaling, rotation,
reflection and shearare: a, b, ¢, d

I B = T.A, than If B = AT, then
Translation)

parameters: st anout
(0, 9) o

image24.jpeg
COMPOSITE TRANSFORMATIONS

1 we want to apply a sarfes of
transformations Ty, T, Ts o a sat of points,
e e
1) We can calculate p'=T *p, p"'= T,*p',
=Ty p
2) Calculate T=T,T,*T,, then p''= T*p.

Mathod 2, saves large number of additions
and_multiplications (computational time) ~
fieeds approximataly 1/3 of as many operation:
Therefors, we concatanate or composa the
matrices [nto one final transformation matrix,
and then apply that to the points.

image25.png

image26.png
con
sin 6
0

st
=| sine
o

~sind
cosf
0

it
cos

0

0
0
1

[

[-

o0
100 = cou) by, sin @
wl -~ s Bl - xsn 6

l

image27.png
T(x,) RO T-x, ~y) = Rix,y, 6

image28.png
o
00

¥
1

¥

T, u) - S(s,5,) - TC-x;,

S0 =)
0 s ydi-s)
00 1

Sx. ¥y 5,5,

image29.jpeg
Construct
‘World-coordinate
Scene Using
[Modeling-Coordinate|
Transformations

!

Convert
World
Coordinates
t©
Viewing
Coordinates

Transform Viewing
Coordinates to
Nomalized
Coordinates.

s

Map Normalized
Coordinates to
Device Coordinates

image30.png
oeling L Faevice
rmtens @
Konodeting X device

image31.jpeg
wymax

Normalized Device

wymin
wxmin

Coordinates

wxmax

vymax

mapped to

vymin

Window (screen)

Coordinates

vxmin

vxmax

image32.jpeg
(wx max—wymin) _ (vx max— vx mi
(wy max—wxmin)) ~ (vy max— vy min))

image33.png
1001 1000 1010
0001 0000 0010
0101 0100 0110

image34.png

image35.png
AW = X) + UBX = XWpyy,

e A

image36.png
upy =< Gy,

image37.png

image38.jpeg

image39.png
Onginal clip Ciip Clip Cip
Polygen Left Right Bottom Top

image40.png
out =
save Vi, V,

out—out
save none

image41.png
A |

image42.png
W 4

image43.jpeg
Before Clipping

After Clipping

Clipping a filled circle.

image44.jpeg
Bafors Cipping

STRING 2

Aftar Ciippin

Text clipping using &
bounding rectangle about the
entire string.

STRING 1

<"

STRING 4

SfrAING 3

Before Ciipping

fiar

B
frainG 3
STRING 4

Afior Cilpping
Text clipping using a

‘bounding rectangle about
individual characters.

image45.png
N

Zcoordinate
] 4[/ ket
e carordinar

image46.png
Side

image47.png

image48.png
“
@
Ve ES
9

va
Vertex Table Edgo Tablo | ~_Surtace Table

vi

$1:V1,v2, V3
V1 ixtytz1 E1:v1.V3 | | [s2: vz va. vs, va
V2 ix2y2.22 E2:vi.v2
V3:x3y3.23 E3:v2,va
Vaxayaza Ea:v2va
V5 :x5y5.25. E5:Va, V5
E6:V5, V3

image49.png
A=y = 2) + yz - 2) + y -

B

C -

D

25)

20 = xg) 2l = x) F ayx - vy

N2 =y + xlyy) oty)

=Xy -)~ X - s

=z)

image50.png

image102.jpeg

image104.png
Zy

Y

