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Equating the right sides of equations 6.3 and 6.4 we get

u, Ul ly,| sina =u,.b

W'l Ju,} sina = b

b i
2 e Ju,| =1and [u
2 dneeli] |

‘This can also be verified graphically as shown in Fig, 6.7

Fig. 6.7
By substituting values of cos and sin the rotation matrix R, can be given as
10 0 0

0 c/d b/d 0

0 -b/d c/d of

0o 0 0 1

Next we have to perform the rotation of unit vector about y axis. This can be achieved by
rotating u” (3,0, d) through angleonto the z axis. Using similar equations we can determine
cospand sin as follows.

We have angle o rotation:

uu,

al + dK and

cos(-f) = cosp

K
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) =1
Consider cross product of u” and u,
wxu, = u, (] o sin ()
= - ] [ snp sin (-6)=-sin0

Cartesian form of cross product gives us
u'xu, = u,(a)

Equating above equations,
1wl fu,sinp =

sinf

but we have, a= e

and  sinp =
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By substituting values of cos  and sin b in the rotation matrix R, can be given as

TR

VaT bl oc

Let A= Vb e and [V] = AT 4 bt &

We have,
L D idetmy

\
N detT

Using above equation we get inverse of R,y a5

b 0

IV IVRR VI

o £ 2o
P

LI )

Ve vl vl

{o 0 o 1
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Inverse of translation mateix can be given as

10 00

T = |
[o 0 10
L. yiomod
With transformation matrices T and R, we can align the rotation axis with the

positive z axis. Now the specified rotation with angle 8 can be achieved by rotation
transformation as given below

cos8 sinb 0 O

—sin® cosd 0 0

o 0 10

Lo o 01

o complete the required rotation about the given axis, we have to transform the
rotation axis back 1o ts original position. This can be achieved by applying the inverse
transformations T and R} . The overall transformation matrix for rotation about an

arbitrary axis then can be expressed as the concatenation of five individual
transformations.

RO) = T-R,, R, R T

10 o o] coso siné 0 0
[ ° & 1
fo 1 0 € b gli-sing cosd 0 0

ie. R() AV
0o 0 1 b e gllo 0 10

vl
5 -y -z o a0 0 oo

0 00

100

010
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6.6 Reflection with Respect to Given Plane

6.6.1 Reflection with Respect to xy Plane

Consider point P(x, y, z). The reflection of
this point with respect to xy plane is given by
ponit P(x, y, - ), as shown in Fig. 6.8,
Corresponding to  this  reflection  the
transformation matrix can be given as

1Py

oo
M=[0 1 0
L 01

Fig. 68

6.6.2 Reflection with Respect to Any Plane
Oftenitis necessary to reflect an object through a plane other than x =0 (yz plane), y =0
(xz plane) or z =0 (xy plane). Procedure to achieve such a reflection  reflection with rospect
toany plane) can be given as follows
1. Translate a known point P, that lies in the reflection plane to the origin of the
co-ordinate system.
2. Rotate the normal vector to the reflection plane at the origin until it is coincident with
+vez axis, this makes the reflection plane 2 = 0 co-ordinate plane i.e. xy plane.
3. Reflect the object through z = 0 (xy plane) co-ordinate plane.
4. Perform the inverse transformation 10 those given above to achieve the result.
Let B, (x, y,, 2,) be the given known point. Translate this point to the origin by using
corresponding translation matrix
10 00

0 1 o
T
0 [ 1
% -y
Let the normal vector N = nJ+nJ+nK
IN = ynTnden]

B 1
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As we want to match this vector with 7 axis, (so that the planc of reflection will be
parallel o xy plane), we will use the same procedhire as used in rotation.
Ao om

el = 0
N IN
LILI R PR A
AIN| A N
LIRS
AN TN
[ o o o1
s seen earler fo rflection about xy plane e have

10 0 0“
01 0 o0f

M
0010
00 01

Now for inverse transformation we have,

10 0o
01 0o

;v |
0 0 1 0f
%o Yo 2o 1
A oo =
[N N

a o 0

R i
LI o
NN
o o 1

Resulant transformation matrix can b given as
Rp = T-R, MR T
Ex.65 i the matix formirror refection it espect o heplane assing through heorign
and having a morma vector whosedivection s M = 1] 1 K

Sol.:  Here, P, (0, 0, 0) and the plane passes through the origin hence transiation
matrix is not necessary.
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The normal vector N

IN|
R,
&
01 00
M
0010
loo o1
The reflection matrix is given by
Ry = Ry MR
3 3 33 0
-3 13 -3 0
R
~y3 -3 413 0

Lo o 01
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Solved Examples

Ex.62: Obtain transfornuation matrix for rotation about the line joiing the points (0, 0, 0 and
(1,1,1) with the angle of rotation 45° n counter-clockuise seie.

Sol.: In this case the line passes through the origin, so the translation is not
required. Therefore, R, can be given

Ry = R, RRS)

by usual notations, .
A s
Vi = JT3T5T=43
Here,a = 1,b = 1, ¢ =1 By using derived rotaton matricesfo R, R and K.} from
secton 6.5 we have

7 1 1
2o Lol [L Lo
BB 7
R SUoL g
Ry=|% 7 B |r-| 7
i
L
77
0 01 0 0 01
S
2 =lig
%
)
- 0
Ry =l
T
L1,
i
0 0 01
Ry = Ry ‘R-R)

0.80473 05058 -0.3106 0

-0.3106 080473 0.5058 0

0.5058 -0.3106 0.80473 0

0 0 01

A triangle is defind by 3 vertices A (0, 2, 1) B, (2, 3,0), C (1,2, 1. Find the firal
coondinates aferit i rotated by 45°around aline joining the points (1, 1, D and 0,0,0).
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Sol.

The required transformation matrix for this example is already obtained in
previous example.

‘Therefore final co-ordinates are

Ex.64:

Sol.

021 0] 080
230 0 [-0.3106
1121 0| | o508

voorll o
-0116 1.297 -1.814

0.676 3422 0.693

10.687 1.802 0998

o 0 0

0505
0.804
-0.3106

0
o

0

0

|
1

A’ (0.116,1297, - 1.814)
B (0676, 3422, 0893)
C (0687, 1802, 0.998)

0.3106 0]
0505 0
0804 0

0

1

A triangle is defined by 3 vertices A (0, 2,1) B (2,3, 0), C (1, 2, 1). Find the final
co-ordinatesafte it is otated by 45°around aline joining the points (2,2, 2)and (1,1, 1)

Here the given axis of

10 00
01 00
00 10

Therefore the inverse of translation matrix can be obtained as

rotation is ot at the origin, therefore translation
matrix is required. The translation matrix can be given as :
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T can besecn that after translatifg the given axis to the urigin we get line points as (1, 1,
17.and (0,0, 0) which are same a5 the line points considered in the previous example. The
rolation angle (459 in this example also matches with that in the previous example,
Therefore we can use resultant. matrix of the previous problen, in deriving the
transformation matrix for the given problem. The teansformation matrix for his problem
canbe given as

R = TRR R T

Substituting resultant mateix from the previous problem we have,

[ 087 055 030 G)71 0 0 0
A P TP P
L 0 oo

100 U] sk N5 0310 0]
o 1 oof|-om0 o oxs of

0 0 10| 055 -030 084 0

EEETT I 1 1o
0.5047 0505 -03106 0

-03106  0.8047 0505 0

0505 03106 0.8047 0

|
Lo 0 [




image17.jpeg
Three Dimensional Viewing,
Projection and Clipping

7.1 Introduction

In cliapler 6, we have seen that two dimensional viewing operations transfer positions
from the world coordinate plane to pixel positions in the plane of display device. In three
dimensional viewing the situation is bit more comple, since we now have mare options as
1o how views are to be gencrated. First of all, we can view an object from any spatial
pusition : from front, from back or from above, Further mure wee can generate a view of what
wewould see i we were standing in the middle of a group of objects orinside a single object,
Another important aspect must be considered in the three dimensional viewing is that cven
though the ubject is Hhree dinensional it mus
the display device,

projected vato the flat viewing surface of

In this chapler, we discuss the general operations required to generate three
dimensional viewing, It includes the study of parallel and perspective projections, viewing
parameters and three dimcasionl ipping

7.2 Three Dimensional Viewing

As mentioned carlier, the 3D viewing process is inherently more complex than the 20
viewing process. In two dimensional viewing we have 2D window and 2D viewport and
objects in the world covrdinates are lipped against the window and are then transformed
into the viewport for display. The complexity in added in the three dimensional viewing is
ucause of the added dimension and the fact that eventhough objects are three dimensional
the display devices are only 2D.

‘The mismatch between 3D objects and 20 displays is compensated by introducing
projeetions. The projections fransform 3D abjects inta a 2D projection plane. The Fig, 7.1
shows the conceptual model of the 3D transformation process.

In 3D viewing, we specify a view volume in the world coordinates using modelling
transformation. The world courdinate positions of the objects are then converted into
viewing coordinates by viewing transformation. The projection transformation s then used
to convert 3D description of objects in viewing coordinates fo the 20 projection coordinates,
Finally, the workstation transformation transforms the projection coordinates into the
devie coordinates.

2
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Modeling Modeling | World Viewing . vew
coordinates transformation coordinates’ transiormation coordinates J

U=

ranslormation

Projection Workstation Devce
coordinates’ wansformation coordinates.

Fig. 7.1 Conceptual model of 3D transformation process

7.3 Viewing Parameters

As mentioned earlier, we can view
Yo the object from the side, or the top, or

even from behind. Therefore, it is
necessary to choose a particular view for
a picture by first defining a view plane
A view plane is nothing but the film
plane in a camera which is positioned
and oriented for a particular shot of the
scene. World coordinate positionsin the
scene are transformed to viewing
coordinates, then viewing coordinates
are projected onto the view plane. A
view plane can be defined b
i blihing the viewing - coondinae
system or view reference coordinate
System, as shown in the Fig. 7.2

Fig. 7.2 Right handed viewing coordinate systom

The first viewing parameter we must consicir s the view reference point. This point is
the center of our viewing coordinate system. It is often chosen to be close to or on the surface
of some object in a scene. Its coordinates are specified as Xy, Yy and Zy

‘The next viewing parameter is a view-plane normal vector, N. This normal vector is the
direction perpendicular to the view plane and itis defined as [DXN, DYN, DZN]. We know
thatthe view plane s the film in the camera and we focus camera towards the view reference
point. This means that the camera is pointed in the direction of the view plane normal. This
s llustrated in Fig. 7.3, (See on next page)

s shown in the Fig, 7.3, the view plane normal vector s a directed line segment from
the view plane to the view reference point. The length of this directed! line segment is
referred toas view - distance. This is another viewing parameter. It tells 1w far the camera
is positioned from the view reference point. In other words we can s, +hat a view plane is
positioned view - distance away from the view reference point in the direction of the view
plane normal. This is illustrated in Fig. 7.4
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View +

eference. o

point

Object

Fig. 7.3 View reference point and view plane normal vector

View
|~ piane

pon

Fig. 74 3.0 viewing parameters

‘As shown in the Fig. 7.4 we have world coordinate system which we used to model our
object, and we have view plane coordinates, which are attached to the view plane.
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Itis possible o obtain the different views by rotating the camera about the view plane
normal vector and keeping view referunce point and direction of N vector fixed, as shown i
the Fig. 7.5

: <

Fig. 7.5 Rotating view plans

At ditferent angles, the view planc will show the same scene, but rotated 5o that a
diffecent part of the abject is up. The rotation of a camera or view plane is specified by a
view-up vector V [XUP YUP ZUP] which is another important vieiving parameter.

We can also oblain a series of views of ascene, by keeping the view reference point fixed
and changing the ditection of N, as shown in the Fig. 7.6 changing the view plane normal
changes the orientation of camera or view plane giving different views

il

Viviewup vector)

gl

Fig. 7.6 Viowing object by changing view plane vector N

In this section we have seen viewing parameters such as view reference point, view
plane nomal vector, view-distance and view-up vector. These parameters allow the user to
select the desired view of the object
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7.4 Transformation from World Coordinate to Viewing Coordinates

The conversion of ubject description from world covrdinates to viewing coordinates is
achicved by following transformation sequence,

1. Transhate the view reference point (o the origin of the world coordinate system

2. Apply rotations to align the s,, v, and 7, axes with the world coordinate x,, , and 7,
anes, respectively

The view point specificd al world position (x,, y,, 7,) can be transhated t the world
cuondinale origin with the malris transformnation
[ T

oo 0o

Yo <z 1]

[
For alignrient of thice axes we require the threc coordinate-axis rotations, depending on
the direction we choose for N. In general, if N is not aligned with any warld coordinate axis,
we can align the viewing and world coordinate systems with the transformation sequence
ReR, R, That s, we first rotate around the world x,, axis to bring z, into the x,, 7, planc.
‘Then, we rotate around the world y,, axis to align the 2, and 7, axes. Finally, we rotate about
the 2, axis to align the v, and y, axes. In case of left handed view reference system, a
reflection of one of the viewing axes is alsa necessary. This i illustrated in Fig, 7.7

Yo Yo Y.
il
- v
(2)Origina positions () Transiation (€)3 axes rotation

Fig. 7.7 Aligning of viewing and world coordinate axes using a sequence of transiate -rotate
transformations
Therefore, the composite transformation matrix is given as
Te = TRR.R,
There is another way to generate composite rotation matrix. A composite rotation
matrix can be directly generated by calculating unit u, v, n vectors. If we know N and V.
vectors, the unit vectors are calculated as
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Wy oy ) vEnxu= (v, vy

‘This method of generating composite rotation matrix automatically adjusts the direction
of V 5o that v is perpendicular to n. The composite rotation mafrix for the viewing
transformation is given as

wove om0
e )

|

Rof vam o .
fus va om0
lo o 01

This transforms u 0nto the world x, axis, v onto the y,, axis, and n onto the 7, axis.
Furthermore, this matrix automatically performs the reflection necessary tortransform a
left-handed viewing system onto the right handed world system.

With second method, the composite transformation matrix is given as
T =T R

7.5 Projections.

After converting the description of objects 11om world_coordinates to viewing
coordinates, we can project the three dimensional objects onto the two dimensional view
plane. There are two basic ways of projecting objects onto the vicw plane  Paralle] projection
and Perspective projection.

7.5.1 Parallel Projection

I parallel projection, z - coordinate is discarded and parallel lines from each vertex on
the object are extended until they infersect the view plane. The point of intersection s the
projection of the vertex. We connect the projected vertices by line segments which
correspond to connections on the original object.

View plane

Object

Fig. 7.8 Paralel projection of an object to the view plana

As shown in the Fig. 7., a parallel projection preserves relative proportions of objects
but does not produce the realistic views.





image23.jpeg
Computer Graphics _ 227 Three Dimensional Viewing, Projection and Clipping

7,52 Perspective Projection

The perspective projection, on the other hand, produces realistic views but does not

serve relative proportions. In perspective projection, the lines of projection are not
parallel Instead, they all converge at a single point called the center of projection or
projection reference point. The object positions are transformed to the view plane along
these converged projection lines and the projected view of an object is determined by
calculating the intersection of the converged projection lines with the view plane, as shown
in the Fig, 7.9. .

Viewplane.

Convéigas
prjocton .
s St Corter of
roecton

Fig. 79 Perspective projection of an object (o the view plane

7.5.3 Types of Parallel Projections

Parallel projections are basically categorized into two types, depending on the relation
between the direction of projection and the normal to the view plane. When the direction of
the projection is normal (perpendicular) to the view plane, we have an orthographic parallel
projection. Otherwise, we have an oblique parallel projection. Fig. 7.10 illustrates the two
types of parallel projection.

Viow pane

ity

Viowsane Tiow plane
(ot ram) (s )

{s) Orthographic parae projection 1) Oblaue parail projection
Fig. 710
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7.5.3.1 Orthographic Projection

As shawa in Fig. 7.10 @), the most common types of orthographic projections ar the
front projection, tup projection and side projection. I all these, the projection plan (view
plane) is perpendicutar to the prineiple axis. These projections are often used in or
drawing to depict machine parts, assemblies, buildings and so on

coring,

The orthagraphic projection can display smore than one face of an objeet. Such an
arthographic projection is called axonometric Githugraphic projection. 1 tses projection
plancs (view planes) that are not normal to a principle axis. ey resemble the perspctive
projection in this way, but diffee in that the foreshortening s uniform rather than bing,
felated 1o the distance from the center of projection. Parailclism of fines i presery i but
angles are not. The most commonly used axonometric orthographic projcction is the
isometric projection

e isometric projection can be generated by

ligning the views plane so that it intersects
cach canndinate axis in which the object is defined at the same distance from the arigin. As
“hown in the Fig, 7,11, the isometric projection is ubtained by aligainng the projction vector
with the cube diagonal. It uses an wseful property that all three principle aves are vqually
fareshortened, allowing measurements along the axes to be made to the same seale (henee
the name :iso for cqual, metric for measure).

Projecton
plane.

Projector

Projection
pane.
normal

Fig. 7.11 Isometric projection of an object onto a viewing plane
7.5.3.2 Oblique Projection

An oblique projection is abtained by projecting points along parallel lines that ar not
perpendicularto the projection plane. Fig. 7.10 (b) shows the obligue prjection. Notice that
the view plane normal and the direction of projection are not the same. The oblique
projections are further classified as the cavalier and cabinet projections. T'or the cavalier
projection, the direction of projection makes a 45°angle with the view planc. As a result, the
projection of a line perpendicular to the view plane has the same length as the line it that
s, there is no foreshortening, Fig. 7,12 shows cavalier projcctions of a unit cube with o = 45°
and o = 30"
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@ ]

Fig. 712 Cavaller projections of the unit cube

‘When the direction of projection makes an angle of arctan (2) = 63.4°with the view plane,
the resulting view is called a cabinet projection. For this angle, lines perpendicular to the
viewing surface are projected at one-half their actual length. Cabinet projections appear
more realistic than_cavalier projections because of this reduction in the length of
perpendiculars. Fig. 7.13 shows the examples uf cabinet projections for a unit cube.

w2

®

Fig.7.13 Cabinet projoctions of the unit cube

7.5.4 Types of Perspective Projections

The perspective projection of any set of parallel lines that are not parallel to the
projection plane converge to a vanishing point. The vanishing point for any set of lines that
are parallel to one of the thice principle axes of an object is referred o as a principle
vanishing point or axis vanishing point. There are at most three such points, corresponding
1o the number of principle axes cut by the projection plane. The perspective projection is
classiied according to number of principle vanishing points i a projection  one-point, two
points or three-point projections. Fig, 714 shows the appearance of one-point and two-point
perspective projections for a cube
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@
Soordome onepant
description De-polre,
projection
vanishing vanisning
point point
©
Two-point
perspective
ojection

Fig. 7.14 Perspective projections
The Fig, 7.15 summarizes the logical relationship among the various types of projections

Planar geomaiic

projectons.
Paralel Perspeciive
Orthographic Obigue One  Two  Thiee
pomt pont -point
Top  Front Axonometic Side
(plan)  (elevation) elevation

Cabinet  Cavaller  Ofther
Isometric____Other
Fig. 715
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7.5.5 Transformation Matrices for General Parallel Projection

7.55.1 On XY Plane

view pane
= e
[
b T RV
Portantne 4
o

Fig. 7.6

Y= ity

In a general parallel projection, we
‘may select any direction for the lines of
projection Suppose that the direction of
projection is given by the vector [x, y,
2,]and that the object is to be projected
onto the xy plane. If the point on the
object s given as (x, y,, 7}, then we can
determine the projected point (x;, y;) as
given below

The equations in the parametric
form for a line passing through the
projected point (x, ¥y, 7,) and in the
direction of projection are given as

For projected point 7, is 0, therefore, the third equation can be written as,

&

Substituting the value of u in first two equations we get,

G+, (-2/z,)  and
1Yy e 2i/z)

‘The above equations can be represented in matrix form as given below

by = bay,z) |

or in homogeneous coordinates we have,

beysz 1= oy 21

ie. P, = P, Par,

-

oz Volz

1 [
0 1

Xolzp “ye[zp |

1 0
1

0 0

‘This is the general equation of parallel projection on xy plane in matrix form.
& 4

Here, we ignore the value of z, when drawing the projected irnage.
g z 5
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7.5.5.2 On Given View Plane

From the  above
transformation matrix we can
derive the general equation of
parallel projection onto a given
view plane instead of xy plane in
the direction of a given vector
Vx,. Y 25) as follows

Let us consider that Ry is the
view reference point, P, is the
object point and P, is the
projected point. Now perform
the following steps

Fig 7T
1 Translate the view reference point R, of the view plane 1o the origin using the
translation matrix T.

2. Perform an alignment transformation R,, so that the view narmal vector N of the view
plane points in the direction K, the normal to the xy plane.

3. Project point P, on o the xy plane
4 Pecform the inverse of steps 2and 1

Par,nx, = TR, Par, Ry -T"
2 n
[A o Mo
10 0 o N g ﬂ
0 1 0 of | 0
0 0 00
; ol
Tx
IN| 0 00
0 100
N 010
N Yo 2 1
Lo

“This s the general equation of parallel projection on the given view plane in matrix
form
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7.5.6 Transformation Matrix for Oblique Projection onto xy Plane

Oblique projections to the xy plane can be specified by a number fand an angle . Here
prescribes the ratio that any line L perpendicular to the xy plane will be foreshortencd after
the projection. The angle s the angle that the projection of any line perpendicular o the xy
plane makes with positive x axis.

To find the projection transformation, we need to determine the directon vector V.
From Fig, 718, with line L of length , e choose vector V to have the dircction same as that
of vector ;P

V= B amleyy )o1K

Tine L
£10.0.)

Fig. 7.8
Comparing with

Vo= xgleyf ez K
we get,

X = %= feosh
2= fsind

Using result of previous article, we have

1 0 0 0]
. IR
ar, = | feosd fsng o

Tl

0 0 01

‘This is the general form of an oblique projection onto the xy plane.
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7.5.7 Transformation Matrix for Perspective Projection

Lot us consider the center of
proction is at P{x, Y, 7 and the
point on obiject is Py(x;. Y1, ), then the
parametric  cquation for line lpc, v, z9 | Viewsene
Containing these points can be givenas

Projectsd point
Palrg 42,00

Genter of
rofecon Pl Yo 2

Pointon the
x=x o+ (G- X)u abject

e+ ly-ydu

2=zt =20
For projected point z is 0,
dhrsor the . eqion a0 be reET
0= g+@-zu

Substituting the value of u in first two equations we get,

7-2

Yiove

The above equations can be
below.

00 0]
bo y2 a1 <% 0 10
oy n o |

5 0 0 -

Here, we have taken the center of projection as P(x, Y., 2. If we take the center of
projection on the negative z-axis such that
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z=-%
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7.6 Three Dimensional Clipping

In chapter 6, we have seen the concept of window, which served as clipping boundary.
in two-dimensional space. In three dimensional space the concept can be extended to a
clipping volume or view volume. The two common three dimensional clipping volumes
are a rectangular parallelepiped, i.e.a box, used for parallel or axonometric projections, and
a truncated pyramidal volume, used for perspective projections. Fig. 7.21 shows these
volumes. These volumes are six sided with sides : left, right, top, bottom, hither (near), and
yon (far).
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The two-dimensional concept of region codes can be extended to three dimensions by
considering six sides and 6-bit code instead of four sides and 4-bit code. Like
two-dimension, we assign the bit positions in the region code from right to left as

Bit1 =1, if the end point is to the left of the volume
Bit2 =1, if the end point is to the right of the volume
Bit 3= 1, if the end point is the below the volume.

Bit4 = 1, if the end point is above the volume

1, if the end point is in front of the volume
Bit 6= 1, if the end point is behind the volume

Otherwise, the bitis set to zero, As an example, a region code of 101000 identifies a point
as above and behind the view volume, and the region code 000000 indicates a point within
the view volume.

A line segment can be immediately identified as completely within the view volume if
both endpoints have a region code of 000000. If cither endpoint of a line segment does not
have a region code of 000000, we perform the logical AND operation on the two endpoint
codes. If the result of this AND operation is nonzero then both endpoints are outside the
view volume and line segment is completely invisible. On the other hand, if the result of
AND operation is zero then line segment may be partially visible. In this case, it is necessary
to determine the intersection of the line and the clipping volurne.

We have seen that determining the end point codes for a rectangular parallelepiped
clipping volume is a straight forward extension of the two dimensional algorithm.
However, the perspective clipping volume shown in Fig. 7.21(b) requires some additional
processing. As shown in the Fig. 7.21(b), the line connecting the center of projection and the
center of the perspective clipping volume coincides with the 7 axis in a right handed
coordinate system.
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Fig. 7.22 shows a top view of the perspective clipping volume, The equation of the line
which represents the right hand plane in this view can be given as

2y —zc
where
2y -zc

anday=-a, zc

This equation of right hand plane can be used to determine whether a point is to the
right,on or to the left of the plane, .., outside the volume, on the right hand plane, or inside
the volume. Substituting the x and y coordinates of  point P into x - 2, - a, gives the
following results

fo=x-za, -0, >0 if P is to the right of the right plane
-0 if P is on the right plane
<0 i P is to the left of the right plane
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Similarly, we can derive the test functions for the left top bottom, hither and yon planes.

Table 7.1 shows these test functions.

Plane Test functions with Results
Right —za,-a; >0  ifPistothe right of the right plane
=0 ifPisontheright plane
. <0 ifPistotheleftof the right plane
where ‘= and aym—ayz
-z
Left T hox 2B f <0 ifPistotheleftof the loft planc
=0 ifPisonthe left plane
50 ifPis to the right of the left plane
where =2t andB,=-B 2
2y ~2c |
Top f=y-2y,-v, >0  ifPisabove the top plane
=0 ifPison the top plane
<0 ifPisbelow the top plane
where m=— andp =z
2y -z
Bottom fy=y-28,-8, <0 if Pisbelow the botiom plane
=0 ifPis on the bottom plane
50 if Pis above the bottom plane
where §i=zc and®,=-8 2 |
Hither >0 if Pisin front of the hither plane
=0 ifPison the hither plane
<0 ifPisbehind the hither plane
Yon i Pis behind the yon plane
if Pis on the yon plane
>0 ifPisin front of the yon plane

Table 7.1 Test functions for six planes of clipping volume.
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7.7 Three - Dimensional Midpoint Subdivision Algorithm

In the previous section, we have seen how to identify location of the end points of line:
segments with respect o clipping volume. Once this processis over we can determine which
line segments are completely visible, which are completely invisible and which are partially
visible. For partially visible segment we have to determine the intersection with clipping
volume. This can be achieved with the help of three - dimensional midpoint subdivision
algorithm. It is an extension of 2D midpoint subdivision algorithm discussed in section
6322

© Algorithm :
1. Find the locations of endpoints (endpoint codes) of line segments with respect to clipping
volume (using test functions in case of perspective clipping volume)
2. Check visibilty of cach line segment

a) If odes for both endpoints are zero then the line is completely visible, Hence draw the
line and go to step .

b) If codes for endpoints are not zero and the logical ANDing of them is also nonzero the
line s completely invisible, so reject the line and go to step 4.

) If codes for two endpoints do not satisfy the conditions in 2 &) and 2 b) the line is
partially visible

3. Divide the partially visible line segments in equal parts and repeat steps 1 and 2 for
subdivided line segments until you get completely visible and completely invisible line.
segments. Draw the visible line segment and discard the invisible one.

4 Swp
Solved Examples
B

Under e standard perspectie, what is the projected image of
@ a point in the plane z = - z,
b) the line segment joining P, (1,

320100 (3,1,00
Sol.

Fig.7.23
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2) The plane z = - z,is the plane parallel to xy view plane and is at a distance of z units
from it The centre of projection P,(0,0, ~z, lies on the plane. If P(x,,~,) is any point i this
plane, the line of projection P,P does not intersect the xy view plane. Thus P(x, y, -z issaid
to be projected out to infinity (),

b) The given line PP, passes through the plane z = -z, The equation of the line is given
by .

x =142t y=21+2t z=-3z,+328

Applying the standard projection to the equation of the line, we get
fz. 00 uw i
0z 00

a2 —1e2 Bzdzg 1| 5o [ler2at —ae2ar 0 <2aadny
0000z

Changing to 3D co-ordinates, the equations of the projected line segment are
24228 _ 142t

Tz43z8 243t

2o +2zt _-1+2t

T2z ez 23t

¥y

z=0
Ex.7.2:  Using the originas the centre of projection, derive the perspective transformation onto the
pline passing through the point P, (x, y, z) and having the normal vector
N=ml+nf + K.
Sol.: Lt P, (x, y, ) be projected onto P, (xy, yy, ;). From Fig. 724 we see that
the line segments 1,0 and PO are along the same line. Hence there exists a constant
‘u’ such that P,0 = uP,0. Comparing the corresponding components, we get
X =ux
Ya=uy, G}

2, =uz, |

v

4 ngd + sk

Pt 1. 21)
o v

Rolka Yo 20

Fig. 724
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6.1 Introduction &

Manipulation viewing and construction of three dimensional graphic image requires
the use of three dimensional geometric and coordinate transformations. Three dimensional
geometric transformations are extended from two-dimensional methods by including
considerations for the z coordinate. Like two dimensional transformations, these
transformations are formed by composing the basic transformations of translation, scaling,
and rotation. Each of these transformations can be represented as a matrix transformation
with homogencous coordinates. Therefore, any sequence of transformations can be
represented as a single matrix, formed by combining the matrices for the individual
transformations in the sequence.

€.2 Translation

Three dimensional _transformation matrix for translation with homogeneous
coordinates is s given below. Lt specifies three coordinates with their own translation factor.

[1 000
0°1 00
T

00 10
bt

1.0 00
01 00
Xy Z1=Kxyz1]
0010
by o)
Slery oyt zen 1) ©1

Like two dimensional transformations, an object is translated in three dimensions by
transforming each vertex of the object.

a98)
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(@) Transiating point () Transiating object

Fig. 61 3D translation

6.3 Scaling

Three dimensional transformation marix for scaling with homogeneous coordinates is
as given below.

g.6:230 Sealing
I specifis thre coordinates with their own scaling factor
oo
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A scaling of an object with respect to a selected fixed position can be represented with
the following transformation sequence.

1. Translate the fixed point to the origin.
2. Scale the object
3. Translate the fixed point back to its original position.

6.4 Rotation

Unlike two dimensional rotation, where all transformations are carried out in the xy
plane, a three-dimensional rotation can be specified around any line in space. Therefore, for
three dimensional rotation we have to specify an axis of rotation about which the object is to
be rotated alongwith the angle of rotation. The easiest rotation axes (o handle are those that
are parallel to the coordinate axes. It s possible to combine the coordinate axis rotations to
specify any general rotation,

Coordinate Axes Rotations

Three dimensional transformation matrix for each coordinate axes rotations with
homogeneous coordinate are as given below

y y
cost s 0 0
Ry« |0 cos0 0 0
1o o 10
o 0 01 Q Y
z i
(@ ) ()

Fig. 6.3 Rotation about z axis

‘The positive value of angle indicates counterclockwise rotation. For clockwise rotation
value of angle  is negative.
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Fig. 6.4 Rotation about x axis

i

:
o

@ ® ©

Fig. 6.5 Rotation abouty axis
6.5 Rotation about Arbitrary Axis

A rotation matrix for any axis that does not coincide with a coordinate axis can be set up
s a composite transformation involving combinations of translations and the
coordinate-axes rotations

In a special case where an object s to be rotated about an axis thatis parallel o one of the
coordinate axes we can obtain the resultant coordinates with the following transformation
sequence.

1. Translate the object so that the rotation axis coincides with the parallel coordinate

2. Perform the specified rotation about that axis.

3. Translate the object so that the rotation axis is moved back to its original position.

When an object is to be rotated about an axis that s not parallel o one of the coordinate
axes, we have to perform some additional transformations. The sequence of these
transformations is given below.
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1. Translate the object s0 that rotation axis specified by unit vector  passes through the
coordinate origin. (sec Fig. 6.6 (a) and (b) )

2. Rotate the object 5o that the axis of rotation coincides with one of the coordinate axes
Usually the 7 axis is preferred. To coincide the axis of rotation to z axis we have to
first perform rotation of unit vector u about x axis to bring it into xz plane and then
perfonm rotation about y axis to coincide it with z axis. (see Figs. 6.6 (¢) and (d) )

3 Perform the desired rotation 0 about the 7 axis

4. Apply the inverse rofation about y axis and then about x axis to bring the rotation axis
back to its original orientation.

5 Apply the inverse translation to move the rotation axis back to its original position.

a) Axis of rotation b) Transiation of the
Gefincd by points rotation axis to the.
Pyandp, Coordinate erigin

¥
o
[
i x
€) Rotation of unit 4) Rotation of unit
vector about  axis to vector u about y axis
bring it nto xz plane o lign twith the z axis
Fig. 6.6

Asshownin the Fig. 6.6 (a) the rotation axisis defined with bwo coordinate points P, and
P, and unit vector u is defined along the rotation of axis as

v

W= v =(ab0)
vl
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where V is the axis vector defined by two points P, and I, as
V=r-p
= b= X ya-yuta=z)

‘The components a, b, and ¢ of urit vector u are the direction cosines for the rotation axis
and they can be defined as

K]

As mentioned earlier, the first step in the transformation sequence is to translate the
object to pass the rotation axis through the coordinate origin. This can be accomplished by
moving point P, to the origin. The translation is as given below

oo o0

o 1 0 o
i |
o 0 1 oo

Now we have to perform the rotation of unit vector u about x axis. The rotation of u
around the x axis into the x; plane is accomplished by rotating ' (0, b, ) through angle.
intothe 2axis and the cosine of the rotation anglea can be determined from the dot product
of u'and the unit vector u, (0,0, 1) along the 2 axis

where w' (0, b, ) = b] + K and

uju, d

0,0,0,1)=K

Since [u,| =1

where d is the magnitude of u’
0= e
Similarly, we can determine the sine of a from the cross product of u’ and u,.
wxu, = u, [u'] Ju,] sina ©3)
2 th Corlar o frth s gk v 5

wxu, = u b (0




