Cryptography and Network Security Chapter 2

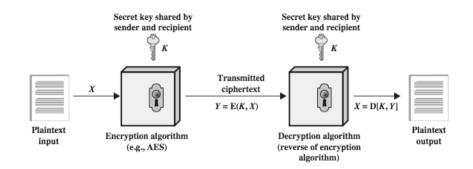
Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB)

Outline

- We will consider:
 - classical cipher techniques and terminology
 - monoalphabetic substitution ciphers
 - cryptanalysis using letter frequencies
 - Playfair cipher
 - polyalphabetic ciphers
 - transposition ciphers
 - product ciphers and rotor machines
 - steganography

Chapter 2 – Classical Encryption Techniques

 "I am fairly familiar with all the forms of secret writings, and am myself the author of a trifling monograph upon the subject, in which I analyze one hundred and sixty separate ciphers," said Holmes..


—The Adventure of the Dancing Men, Sir Arthur Conan Doyle

Symmetric Encryption

- or conventional / private-key / single-key
- sender and recipient share a common key
- all classical encryption algorithms are private-key
- was only type prior to invention of publickey in 1970's
- and by far most widely used

Some Basic Terminology

- · plaintext original message
- · ciphertext coded message
- cipher algorithm for transforming plaintext to ciphertext
- · key info used in cipher known only to sender/receiver
- encipher (encrypt) converting plaintext to ciphertext
- decipher (decrypt) recovering ciphertext from plaintext
- · cryptography study of encryption principles/methods
- cryptanalysis (codebreaking) study of principles/ methods of deciphering ciphertext *without* knowing key
- cryptology field of both cryptography and cryptanalysis

Symmetric Cipher Model

 $\underbrace{X}_{\text{Encryption}} \\ \underbrace{X}_{\text{Encryption}} \\ \underbrace{X}_{\text{Encryption}}$

Figure 2.2 Model of Symmetric Cryptosystem

Requirements

- two requirements for secure use of symmetric encryption:
 - a strong encryption algorithm
 - a secret key known only to sender / receiver
- mathematically have:

Y = E(K, X)

- X = D(K, Y)
- · assume encryption algorithm is known
- implies a secure channel to distribute key

Cryptography

- can characterize cryptographic system by:
 - type of encryption operations used
 - substitution
 - transposition
 - product
 - number of keys used
 - single-key or private
 - two-key or public
 - way in which plaintext is processed
 - block
 - stream

Cryptanalytic Attacks

- · ciphertext only
 - only know algorithm & ciphertext, is statistical, must know or be able to identify plaintext
- known plaintext
 - attacker knows/suspects plaintext & ciphertext
- chosen plaintext
 - attacker selects plaintext and gets ciphertext
- chosen ciphertext
 - attacker selects ciphertext and gets plaintext
- chosen text
 - attacker selects plaintext or ciphertext to en/decrypt

Cryptanalysis

- · objective to recover key not just message
- general approaches:
 - cryptanalytic attack
 - brute-force attack
- · if either succeed all key use compromised

More Definitions

- unconditional security
 - no matter how much computer power or time is available, the cipher cannot be broken ... since the ciphertext provides *insufficient information* to uniquely determine the corresponding plaintext
- computational security
- given limited computing resources (eg. time needed for calculations is greater than age of universe), the cipher cannot be broken

Brute Force Search

- · always possible to simply try every key
- · most basic attack, proportional to key size
- · assume able to know / recognise plaintext

Key size (bits)	Cipher	Number of Alternative Keys	Time Required at 10 ⁹ decryptions/s	Time Required at 10 ¹³ decryptions/s
56	DES	$2^{56} \approx 7.2 \times 10^{16}$	2 ⁵⁵ ns = 1.125 years	1 hour
128	AES	$2^{128} \approx 3.4 \times 10^{38}$	2^{127} ns = 5.3 x 10^{21} years	5.3 x 1017 years
168	Triple DES	$2^{168} \approx 3.7 \times 10^{50}$	2 ¹⁶⁷ ns = 5.8 x 10 ³³ years	5.8 x 10 ²⁹ years
192	AES	$2^{192} \approx 6.3 \times 10^{57}$	2^{191} ns = 9.8 x 10 ⁴⁰ years	9.8 x 10 ³⁶ years
256	AES	$2^{256} \approx 1.2 \times 10^{77}$	2^{255} ns = 1.8 x 10 ⁶⁰ years	1.8 x 10 ⁵⁶ years
26 characters (permutation)	Monoalphabetic	26! = 4 x 10 ²⁶	$2 \cdot 10^{26} \text{ ns} = 6.3 \times 10^9 \text{ years}$	6.3 x 10 ⁶ years

Caesar Cipher

- · earliest known substitution cipher
- by Julius Caesar
- · first attested use in military affairs
- · replaces each letter by 3rd letter on
- example:

meet me after the toga party PHHW PH DIWHU WKH WRJD SDUWB

Classical Substitution Ciphers

 letters of plaintext are replaced by other letters or by numbers or symbols

or

 plaintext is viewed as a sequence of bits, and substitution involves replacing plaintext bit patterns with ciphertext bit patterns

Caesar Cipher

• can define transformation as: abcdefghijklmnopgrstuvwxyz

DEFGHIJKLMNOPQRSTUVWXYZABC

- mathematically give each letter a number a b c d e f g h i j k 1 m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
- then have Caesar cipher as:
 - $c = E(k, p) = (p + k) \mod 26$
 - $p = D(k, c) = (c k) \mod 26$

Cryptanalysis of Caesar Cipher

- only have 26 possible ciphers – A maps to A, B...Z
- · could simply try each in turn
- a brute force search
- · given ciphertext, just try all shifts of letters
- · do need to recognize when have plaintext
- eg. break ciphertext "GCUA VQ DTGCM"

Monoalphabetic Cipher

- rather than just shifting the alphabet
- · could shuffle (jumble) the letters arbitrarily
- each plaintext letter maps to a different random ciphertext letter
- · hence key is 26 letters long

Plain: abcdefghijklmnopqrstuvwxyz Cipher: DKVQFIBJWPESCXHTMYAUOLRGZN

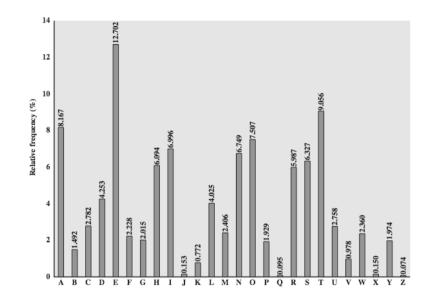
Plaintext: ifwewishtoreplaceletters Ciphertext: WIRFRWAJUHYFTSDVFSFUUFYA

KEY	PHHW	PH	DIWHU	WKH	WRJD	SDUWB
1	oggv	og	chvgt	vjg	vqic	rctva
2	nffu	nf	bgufs	uif	uphb	qbsuz
3	meet	me	after	the	toga	party
4	ldds	ld	zesdq	sgd	snfz	ozqsx
5	kccr	kc	ydrcp	rfc	rmey	nyprw
6	jbbq	jb	xcqbo	qeb	qldx	mxoqv
7	iaap	ia	wbpan	pda	pkcw	lwnpu
8	hzzo	hz	vaozm	ocz	ojbv	kvmot
9	gyyn	gу	uznyl	nby	niau	julns
10	fxxm	fx	tymxk	max	mhzt	itkmr
11	ewwl	ew	sxlwj	lzw	lgys	hsjlq
12	dvvk	dv	rwkvi	kyv	kfxr	grikp
13	cuuj	cu	qvjuh	jxu	jewq	fqhjo
14	btti	bt	puitg	iwt	idvp	epgin
15	assh	as	othsf	hvs	hcuo	dofhm
16	zrrg	zr	nsgre	gur	gbtn	cnegl
17	yqqf	уq	mrfqd	ftq	fasm	bmdfk
18	xppe	хp	lqepc	esp	ezrl	alcej
19	wood	wo	kpdob	dro	dyqk	zkbdi
20	vnnc	vn	jocna	cqn	cxpj	yjach
21	ummb	um	inbmz	bpm	bwoi	xizbg
22	tlla	tl	hmaly	aol	avnh	whyaf
23	skkz	sk	glzkx	\mathbf{znk}	zumg	vgxze
24	rjjy	rj	fkyjw	ymj	ytlf	ufwyd
25	qiix	qi	ejxiv	xli	xske	tevxc

Figure 2.3 Brute-Force Cryptanalysis of Caesar Cipher

Monoalphabetic Cipher Security

- now have a total of $26! = 4 \times 10^{26}$ keys
- · with so many keys, might think is secure
- but would be !!!WRONG!!!
- problem is language characteristics


Language Redundancy and Cryptanalysis

- human languages are redundant
- eg "th lrd s m shphrd shll nt wnt"
- · letters are not equally commonly used
- in English E is by far the most common letter
 followed by T, R, N, I, O, A, S
- other letters like ${\tt Z}$, ${\tt J}$, ${\tt K}$, ${\tt Q}$, ${\tt X}$ are fairly rare
- have tables of single, double and triple letter frequencies for various languages

Use in Cryptanalysis

- key concept monoalphabetic substitution ciphers do not change relative letter frequencies
- discovered by Arabian scientists in 9th century
- · calculate letter frequencies for ciphertext
- · compare counts/plots against known values
- if caesar cipher look for common peaks/troughs
 peaks at: A-E-I triple, NO pair, RST triple
 - troughs at: JK, X-Z
- for monoalphabetic must identify each letter
 - tables of common double/triple letters help

English Letter Frequencies

Example Cryptanalysis

• given ciphertext:

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

- · count relative letter frequencies (see text)
- guess ${\tt P}$ and ${\tt Z}$ are ${\tt e}$ and ${\tt t}$
- guess ZW is th and hence ZWP is the
- proceeding with trial and error finally get: it was disclosed yesterday that several informal but direct contacts have been made with political representatives of the viet cong in moscow

Playfair Cipher

- not even the large number of keys in a monoalphabetic cipher provides security
- one approach to improving security was to encrypt multiple letters
- the Playfair Cipher is an example
- invented by Charles Wheatstone in 1854, but named after his friend Baron Playfair

Encrypting and Decrypting

- plaintext is encrypted two letters at a time
 - 1. if a pair is a repeated letter, insert filler like $\ensuremath{^t\!x}\x$
 - if both letters fall in the same row, replace each with letter to right (wrapping back to start from end)
 - 3. if both letters fall in the same column, replace each with the letter below it (wrapping to top from bottom)
 - 4. otherwise each letter is replaced by the letter in the same row and in the column of the other letter of the pair

Playfair Key Matrix

- a 5X5 matrix of letters based on a keyword
- fill in letters of keyword (no duplicates)
- · fill rest of matrix with other letters
- eg. using the keyword MONARCHY

М	0	Ν	А	R
С	Н	Y	В	D
Е	F	G	I/J	Κ
L	Р	Q	S	Т
U	V	W	Х	Z

Security of Playfair Cipher

- · security much improved over monoalphabetic
- since have 26 x 26 = 676 digrams
- would need a 676 entry frequency table to analyse (verses 26 for a monoalphabetic)
- · and correspondingly more ciphertext
- was widely used for many years
 eg. by US & British military in WW1
- it can be broken, given a few hundred letters
- · since still has much of plaintext structure

Polyalphabetic Ciphers

- polyalphabetic substitution ciphers
- improve security using multiple cipher alphabets
- make cryptanalysis harder with more alphabets to guess and flatter frequency distribution
- use a key to select which alphabet is used for each letter of the message
- use each alphabet in turn
- · repeat from start after end of key is reached

Example of Vigenère Cipher

- · write the plaintext out
- · write the keyword repeated above it
- use each key letter as a caesar cipher key
- · encrypt the corresponding plaintext letter
- eg. using keyword deceptive

key: deceptivedeceptive
plaintext: wearediscoveredsaveyourself
ciphertext:ZICVTWQNGRZGVTWAVZHCQYGLMGJ

Vigenère Cipher

- simplest polyalphabetic substitution cipher
- · effectively multiple caesar ciphers
- key is many letters long $K = k_1 k_2 \dots k_d$
- i^{th} letter specifies i^{th} alphabet to use
- · use each alphabet in turn
- repeat from start after d letters in message
- · decryption simply works in reverse

Aids to Vigenère Encryption

- simple aids can assist with en/decryption
- a Saint-Cyr Slide is a simple manual aid
 - a slide with repeated alphabet
 - line up plaintext 'A' with key letter, eg 'C'
 - then read off any mapping for key letter
- can bend round into a cipher disk
- or expand into a Vigenère Tableau

Table 2.3 The Modern Vigenère Tableau

		Plaintext																									
		а	b	с	d	е	f	g	h	i	j	k	1	m	n	0	р	q	г	s	t	u	v	w	х	у	z
	а	Α	В	С	D	Е	F	G	Η	Ι	J	Κ	L	М	N	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z
	b	в	С	D	Е	F	G	Н	Ι	J	Κ	L	М	Ν	0	Р	Q	R	s	Т	U	v	W	х	Υ	Z	Α
	с	С	D	Е	F	G	Н	Ι	J	Κ	L	М	Ν	0	Р	Q	R	S	Т	U	v	W	х	Y	Z	Α	в
	d	D	Е	F	G	Н	Ι	J	К	L	М	Ν	0	Р	Q	R	S	Т	U	v	W	х	Υ	Z	А	в	С
	е	Е	F	G	н	I	1	к	L	М	N	0	Р	Q	R	S	Т	U	v	w	х	Y	Z	Α	в	С	D
	f	F	G	Н	Ι	J	к	L	М	N	0	Р	Q	R	s	Т	U	v	W	х	Y	Z	Α	в	С	D	E
	8	G	н	I	1	к	L	М	N	0	P	Q	R	S	Т	U	v	w	х	Y	Z	A	в	С	D	Е	F
	h	н	1	1	ĸ	L	M	N	0	P	Q	R	S	Т	U	v	w	x	Y	Z	A	в	C	D	E	F	G
	1	1	1	ĸ	L	M	N	0	P	Q	R	S	Т	U	v	W	X	Y	Z	A	B	C	D	E	F	G	н
	J	J V	K	L	M	N	O P	P	QR	R S	S T	T U	UV	w	W	X	Y Z	Z	A B	B C	C	D E	E F	F	G H	Н	1
	ĸ,	K	L	M	N	O		Q		~~		~			X	1 7		A		-	D			G	н	1	J
	1	M	M N	N O	O P	P	Q R	R S	S T	T U	U V	w	w x	X Y	Y Z	Z	A B	B C	C D	D E	E F	F G	G H	Н	1	ĸ	K
Key	m n	N	0	P	0 r	Q R	S	т	U	v	w	x	Ŷ	z	A	B	C	D	E	F	G	н	T	1	ĸ	ī	M
-	0	0	P	Q	R	S	т	U	v	w	x	v	z	A	В	C	D	E	F	G	н	T	1	v	T	м	N
	<i>D</i>	P	Q	R	S	т	Û	v	w	x	Ŷ	ż	Ā	B	č	Ď	E	F	G	н	T	Ť	ĸ	T	M	N	õ
	P q	ò	Ř	s	т	Û	v	w	x	Ŷ	ż	Ā	B	č	D	Ē	F	G	н	ï	i	ĸ	I.	м	N	ö	P
	7 7	Ř	s	Ť	Ū	v	w	x	v	z	A	в	C	Ď	E	F	G	н	T	ī	ĸ	T.	м	N	0	P	0
	s	s	Ť	Û	v	ŵ	x	Ŷ	ż	Ã	B	č	Ď	Ē	F	G	й	ï	Ĵ	ĸ	L	м	N	ö	P	ò	Ř
	t	T	U	v	w	x	Y	Z	A	в	C	D	E	F	G	н	I	1	ĸ	L	М	N	0	P	0	R	S
	и	Ū	v	w	x	Y	Z	A	в	C	Ď	E	F	G	H	I	J	ĸ	L	м	N	0	P	Q	Ř	S	Ť
	ν	v	w	х	Y	Z	Α	в	С	D	Е	F	G	н	Ι	J	K	L	М	N	0	Р	Q	R	S	Т	U
	w	w	х	Υ	Z	А	в	С	D	Е	F	G	н	I	J	к	L	М	Ν	0	Р	Q	R	S	Т	U	v
	x	х	Υ	Z	Α	в	С	D	Е	F	G	Н	Ι	J	Κ	L	М	Ν	0	Р	Q	R	S	Т	U	v	w
	у	Υ	Z	Α	в	С	D	Е	F	G	Н	Ι	J	Κ	L	М	Ν	0	Р	Q	R	S	Т	U	v	W	х
	z	Z	Α	в	С	D	Е	F	G	Н	Ι	J	Κ	L	М	Ν	0	Р	Q	R	s	Т	U	v	w	х	Y

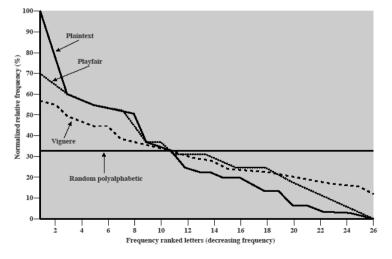


Figure 2.6 Relative Frequency of Occurrence of Letters

Security of Vigenère Ciphers

- have multiple ciphertext letters for each plaintext letter
- · hence letter frequencies are obscured
- but not totally lost

Attacking Vigenère Ciphers

- start with letter frequencies
 see if they look monoalphabetic or not
- if not, then need to determine number of alphabets
- · then can attack each in turn

Kasiski Method

- method developed by Babbage / Kasiski
- · repetitions in ciphertext give clues to period
- · so find same plaintext an exact period apart
- · which results in the same ciphertext
- · of course, could also be random fluke
- eg repeated "VTW" in previous example key: deceptivedeceptive plaintext: wearediscoveredsaveyourself ciphertext:ZICVTWQNGRZGVTWAVZHCQYGLMGJ
- suggests size of 3 or 9
- then attack each monoalphabetic cipher individually using same techniques as before

Autokey Cipher

- · ideally want a key as long as the message
- Vigenère proposed the autokey cipher
- · with keyword is prefixed to message as key
- knowing keyword can recover the first few letters
- · use these in turn on the rest of the message
- eg. given key deceptive

key: deceptivewearediscoveredsav
plaintext: wearediscoveredsaveyourself
ciphertext:ZICVTWQNGKZEIIGASXSTSLVVWLA

• but can still attack frequency characteristics ...

Vernam Cipher

- ultimate defense is to use a key as long as the plaintext
- · with no statistical relationship to it
- invented by AT&T engineer Gilbert Vernam in 1918
- originally proposed using a very long but eventually repeating key

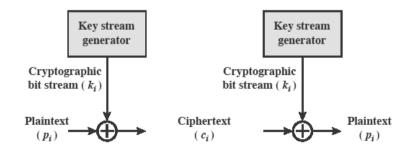


Figure 2.7 Vernam Cipher

One-Time Pad

- if a truly random key equally as long as the message is used, the cipher will be secure
- called a One-Time pad
- is unbreakable since ciphertext bears no statistical relationship to the plaintext
- since for **any plaintext** and **any ciphertext** there exists a key mapping one to other
- can only use the key once though
- problems in generation & safe distribution of key

Transposition Ciphers

- now consider classical transposition or permutation ciphers
- these hide the message by rearranging the letter order
- · without altering the actual letters used
- can recognise these since have the same frequency distribution as the original text

Rail Fence cipher

- write message letters out diagonally over a number of rows
- · then read off cipher row by row
- eg. message: meetmeafterthetogaparty
- · then write message out as:

```
mematrhtgpry
etefeteoaat
```

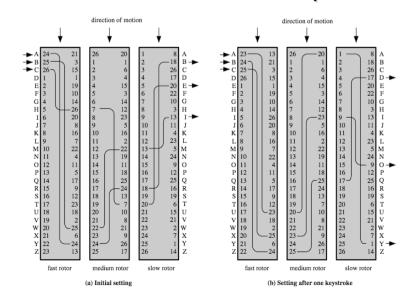
• giving ciphertext MEMATRHTGPRYETEFETEOAAT

Row Transposition Ciphers

- · a more complex transposition
- write letters of message out in rows over a specified number of columns
- then reorder the columns according to some key before reading off the cols

Product Ciphers

- ciphers using substitutions or transpositions are not secure because of language characteristics
- hence consider using several ciphers in succession to make harder, but:
 - two substitutions make a more complex substitution
 - two transpositions make more complex transposition
 - but a substitution followed by a transposition makes a new much harder cipher
- · this is bridge from classical to modern ciphers


Rotor Machines

- before modern ciphers, rotor machines were most common complex ciphers in use
- widely used in WW2
 - German Enigma, Allied Hagelin, Japanese Purple
- implemented a very complex, varying substitution cipher
- used a series of cylinders, each giving one substitution, which rotated and changed after each letter was encrypted
- with 3 cylinders have 26³=17576 alphabets

Hagelin Rotor Machine

Rotor Machine Principles

Steganography

- an alternative to encryption
- hides existence of message
 - using only a subset of letters/words in a longer message marked in some way
 - using invisible ink
 - hiding in LSB in graphic image or sound file
- · has drawbacks
 - high overhead to hide relatively few info bits
- advantage is can obscure encryption use