
Chapter 9
Asynchronous Sequential Logic

吳俊興
高雄大學 資訊工程學系

December 2004

EEA051 - Digital Logic
數位邏輯

2

Chapter 9 Asynchronous Sequential Logic

9-1 Introduction
9-2 Analysis Procedure
9-3 Circuits With Latches
9-4 Design Procedure
9-5 Reduction of State and Flow Tables
9-6 Race-Free State Assignment
9-7 Hazards
9-8 Design Example

3

9.1 Introduction

Two major types of sequential circuits: depending on timing of
their signals

• Asynchronous sequential circuits
– The transition happens at any instant of time
– Do not use clock pulses. Change of internal state occurs when there is

a change in input variables
• Instability problem: may become unstable at times

– Storage elements work as time-delay device
• May be regarded as a combinational circuit with feedback

• Synchronous sequential circuits
– The transition happens at discrete instants of time
– The circuit responds only to pulses on particular inputs
– Storage elements are affected only with the arrival of each pulse

4

Block Diagram of an Asynchronous Sequential Circuit

• n input variables
• m output variables
• k internal states

delay: like short-term
memory

secondary variables and excitation variables

5

Asynchronous Sequential Circuits
• Timing Problems

– synchronous circuit: eliminated by triggering all flip-flops with
the pulse edge

– asynchronous circuit: change immediately after input changes

• Asynchronous Sequential Circuits
– no clock pulse
– difficult to design
– delay elements: the propagation delay
– must attain a stable state before the input is changed to a

new value

• DO NOT use asynchronous sequential circuits unless
it is absolutely necessary
– e.g., in you exam

6

9-2 Analysis Procedure
•The procedure

1.Determine all feedback loops
2.Assign Yi's (excitation variables), yi's (secondary variables)
3.Derive the Boolean functions of all Yi's
4.Plot each Y function in a map

• the y variables for the rows
• the external variable for the columns

5.Combine all the maps into one transition table
• showing the value of Y=Y1Y2…Yk inside each square

6.Circle the stable states and derive the state table
• those values of Y that are equal to y=y1y2…yk in the same row

Asynchronous sequential circuit (vs. sequential circuit)
•Total state of the circuit: combine internal state with input value

– eg. Figure 9-3(c) has 4 stable total states: y1y2x=000, 011, 110, and 101,
and 4 unstable total states: 001, 010, 111, and 100

•There usually is at least one stable state in each row

7

Figure 9-2 Asynchronous Sequential Circuit Example
1. Excitation variables as

outputs and secondary
variables as inputs
Y1=xy1 + x’y2
Y2=xy1’ + x’y2

2. Plot functions in a map
3. Combine all maps into a

transition table
– stable state: y=y1y2 (circled)

4. Complete the state stable
– check if unstable states will

reach a stable state finally

8

Flow Table
• A flow table

– a state transition table with its internal state being symbolized with letters
– Figure 9-4(a) is called a primitive flow table because it has only one

stable state in each row
– Figure 9-4(b): two states, a and b; two inputs, x1 and x2; and one output, z

Figure 9-4(b)

• If x1=0, the circuit is in state a

• If x1 goes to 1while x2 is 0, the
circuit goes to b

• With inputs x1x2=11, it may be in
either in state a or state b, and
output 0 or 1, respectively

• Maintain in state b if the inputs
change from 10 to 11 and
maintain in state a if the inputs
changes from 01 to 11

Figure 9-4. Examples of Flow Tables

9

Derivation of a Circuit Specified by Flow Table
• state assignment ⇒ state equation ⇒ logic diagram

Figure 9-5

10

Race Conditions

• Race condition
– occur when two or more binary state variables change value

in response to a change in an input variable
• When unequal delays are encountered, a race condition may cause the

state variables to change in an unpredictable manner
• y1, y2, …, yi may change in unpredictable manner in response to a

change in x1

– 00 → 11
• 00 → 10 → 11 or 00 → 01 → 11

– a noncritical race
• if they reach the same final state
• otherwise, a critical race: end up in two or more different stable states

11

Example of Race Conditions
Noncritical race Critical race

12

Figure 9-8 Examples of Cycles
•Races may be avoided
– race-free assignment: only 1 state can change at any one time (Section 9-6)
– Directing the circuit through inserting intermediate unstable states with a

unique state-variable change
•A cycle: When a circuit goes through a unique sequence of unstable states

13

Stability Considerations
• An unstable condition will cause the circuit to oscillate between

unstable state
– Care must be taken to ensure that the circuit does not become unstable
– a square waveform generator?

• Column 11 has no stable states: with input x1x2 fixed at 11, the values of Y
and y are never the same

•State variable alternates between 0 and 1 indefinitely as long as input=11
• If each gate has a propagation delay of 5 ns, Y will be 0 for 10 ns and 1 for

next 10 ns, resulting a square-wave waveform with 20 ns period, or 50Mhz

14

9-3 Circuits with Latches

• Asynchronous sequential circuits
– were know and used before synchronous design

• SR Latch
– the use of SR latches in asynchronous circuits produces a

more orderly pattern
• the memory elements clearly visible
• reduce the circuit complexity

– two cross-coupled NOR gates or NAND gates

15

SR Latch with Two Cross-coupled NOR Gates

• Excitation variable:
Y = ((S+y)'+R)' = (S+y)R' = SR'+R'y

• Derive the state transition table
– With SR=10, output Q=Y=1

• changing S to 0 ⇒ Q remains 1
– With SR=01, output Q=Y=0

• changing R to 0 ⇒ Q remains 0
– With SR=11, Q=Q’=0

• violate Q and Q’ are the complement of each other
• an unpredictable result when SR: 11 → 00

– if S goes to 0 first, Q remains 0
– if R goes to 0 first, Q goes to 1

–With SR=0
• SR' + SR = S(R'+R) = S
• Y = SR’+R’y = S + R'y

•To analyze a circuit with an SR latch, first check the condition SR=0 holds at all times
•Then use the reduced excitation function Y=S+R’y to analyze the circuit
•If both S and R can be 1 at the same time, use the original excitation function

16

S’R’ Latch with NAND Gates

Excitation variable: Y = [S(Ry)’]’ = S’ + RyFigure 9-11

17

Figure 9-12 Analysis Example

• First obtain S and R inputs
S1=x1y2 S2=x1x2

R1=x1’x2’ R2=x2’y1

• Check if SR=0 is satisfied
S1R1=x1y2x1’x2’=0
S2R2=x1x2x2’y1=0

•Derive the excitation functions (by Y=S+R’y)
Y1=S1+R1’y1=x1y2+(x1+x2)y1=x1y2+x1y1+x2y1

Y2=S2+R2’y2=x1x2+(x2+y1’)y2=x1x2+x2y2+y1’y2

•Derive the transition table

18

Procedure for analyzing an asynchronous
sequential circuit with SR latches

Logic circuit ⇒ transition table/map
1.Label each latch output with Yi and its external feedback path

(if any) with yi for i = 1, 2, …, k
2.Derive the Boolean functions for Si and Ri inputs in each latch
3.Check whether SR=0 for each NOR latch or whether S’R’=0

for each NAND latch
• If not satisfied, it’s possible that the circuit may not operate properly

4.Evaluate Y=S+R’y for each NOR latch or Y=S’+Ry for each
NAND latch

5.Construct a map with the y’s representing the rows and the x
inputs representing the columns

6.Plot the value of Y=Y1Y2…Yk in the map
7.Circle all stable states where Y=y. The resulting map is then

the transition table

19

Latch Excitation Table
• excitation table: lists the required inputs S and R for each of the

possible transitions from y to Y
– To find the values of S and R during the design/implementation process

Derived from the latch transition table of Fig. 9-10(d)
•Remove the unstable condition SR=11
•i.e. to change from y=0 to Y=0, SR can be either 00 or 01⇒ S must be 0

Fig. 9-10

0

Fig. 9-14

20

Transition table ⇒ Logic circuit

Implementation Example

•Derive (c) and (d) from (a) by referencing (b)
•Use the complemented values for S and R of NOR latch to derive the circuit
for NAND latch: S=(x1x2’)’ and R = x1

21

Procedure for implementing a circuit with SR
latches from a given transition table

1. Given a transition table that specifies the excitation function
Y=Y1Y2…Yk, derive a pair of maps for Si and Ri

2. Derive the simplified Boolean functions for each Si and Ri
– DO NOT make Si and Ri equal to 1 in the same minterm square

3. Draw the logic diagram
– for NAND latches, use the complemented values of those Si and Ri

22

Debounce Circuit
• Mechanical switch: as input signal
• Debounce circuit

– remove the series of pulses that result form a contact bounce
and produce a single smooth transition of the binary signal

23

9-4 Design Procedure

Example: Design specifications
– a gated latch
– two inputs, G (gate) and D (data)
– one output, Q

• G = 1: Q follows D
• G = 0 : Q remains unchanged

• 1st step: derive transition table and flow table
– no simultaneous transitions of two variables
– state a: after inputs DG=01
– state b: after inputs DG=11
– only one stable state in each row

•Start from the statement of problem and
culminate in a logic diagram

DG=01
DG=11

24

Reduction of the Primitive Flow Table
• Two or more rows in the primitive flow table can be merged if there are non-

conflicting states and outputs in each of columns (formal procedure is given
in next section)
– Primitive flow table is separated into two parts of three rows each

25

Transition Table and Logic Diagram

• State assignment
– discussed in details in Sec. 9-6
– a:0, b:1
– Assign don’t care: X=1 for y=0 and

X=0 for y=1 ⇒ Q=Y

X

X

26

Use the procedure outlined in Sec. 9-3
• Obtain S=DG and R=D’G from Fig.9-18(a) by

referencing the latch excitation table

• Draw the circuit with SR latch

SR Latch Implementation
27

Assign Outputs to Unstable States
•the unstable states have unspecified output values
•no momentary false outputs occur when circuit switches between stable states

0→0 ⇒ 0 : assign 0 if the transient state between two 0 stable states
1→1 ⇒ 1 : assign 1 if the transient state between two 1 stable states
0→1, 1→0 ⇒ don’t care: assign don’t care if the transient state between

two different stable states

28

Summary of Design Procedure
0. Problem definition: state the design specifications
1. Interpretation: Obtain a primitive flow table from the given

design specifications (Section 9-4; most difficult)
2. State reduction: reduce flow table by merging rows in primitive

flow table (Section 9-5; implication table, merger diagram)
–Reduce equivalent states and compatible states

3. State assignment: assign binary state variables to each row of
the reduced flow table to obtain the transition table
–Eliminates any possible critical races (Section 9-6)

4. Output assignment: assign output values to the dashes
associated with the unstable states to obtain the output maps

5. Simplification: Simplify the Boolean functions of the excitation
and output variables and draw the logic diagram
–can be drawn using SR latches (Section 9-3)

29

9-5 Reduction of State and Flow Tables
• Reduction of state and flow tables

– Equivalent states
– Compatible states: there are unspecified states/outputs

• Equivalent states: for each input, two states
– give exactly the same output and
– go to the same next states or to equivalent next states

• Demonstrate
– (a,b) are equivalent if (c,d) are equivalent
– (a,b) imply (c,d)
– (c,d) imply (a,b)
– both pairs are equivalent

30

Implication Table

check each
pair of states
for possible
equivalence

(1) Mark ‘x’ for pairs
with different outputs

(2) For same outputs,
mark ‘v’ for pairs with
same next states, or

enter next states
to be checked

x a

(3) Make successive
passes to determine

equivalences of
remaining pairs

(d,e) implied
by (a,b), (d,g)

and (e,g)

a,b

a,b

31

Equivalent and Reduced States

• Equivalent states
– (a,b)
– (d,e), (d,g), (e,g) ⇒ (d,e,g)

• Reduced states
– (a,b), (c), (d,e,g), (f)

• State table

x a

32

Merging of the Flow Table
•Consider the don't-care conditions
– combinations of inputs or input sequences may never occur

•compatible: two incompletely specified states that can be
combined, even not equivalent
– for each possible input:

• they have the same output whenever specified and
• their next states are compatible whenever they are specified

•Procedure for finding a suitable group of compatibles for
merging a flow table
1. determine all compatible pairs by using the implication table
2. find the maximal compatibles using a merger diagram
3. find a minimal collection of compatibles that cover all the states and is

closed

33

Step 1 of 3. Find
Compatible Pairs

Compatible pairs: (a,b) (a,c)
(a,d) (b,e) (b,f) (c,d) (e,f)

(1) Check if compatible, or
enter next states

to be checked

(2) Make successive passes
to determine compatibility

of remaining pairs
(no implied states)

34

Step 2 of 3. Find Maximal Compatibles
Maximal compatibles: a group of compatibles that contains all the possible
combinations of compatible states
merger diagram
– an isolated dot: a state that is not compatible to any other state
– a line: a compatible pair
– a triangle: a compatible with three states
– an n-state compatible: an n-sided polygon with all its diagonals connected

Figure 9-23 Example
•Compatible pairs: (a,b) (a,c) (a,d) (b,e) (b,f) (c,d) (e,f)
•Maximal compatibles: (a,b) (a,c,d) (b,e,f)

(c,e)

35

Step 3 of 3. Closed Covering Condition
• Closed covering: the set of chosen compatibles must cover all

the states and must be closed
– closed: no implied states or the implied states are included within the set
– implied states: entered in the checked square of the implication table

• Figure 9-23 / Figure 9-24(a) Example
– Compatible pairs: (a,b) (a,c) (a,d) (b,e) (b,f) (c,d) (e,f)
– Maximal compatibles: (a,b) (a,c,d) (b,e,f)
– no implied states
– Chosen set: (a,c,d) (b,e,f)

• all six states are included: covering all states
• no implied states: closed

36

• Figure 9-25 Example (given (a) implication table)
– compatible pairs

(a,b) (a,d) (b,c) (c,d) (c,e) (d,e)
– maximal compatibles

(a,b) (a,d) (b,c) (c,d,e)
• Case I - chosen compatibles: (a,b) (c,d,e)

– cover all the states
– not closed: (b,c), implied by (a,b), not included

• Case II – chosen compatibles: (a,d) (b,c) (c,d,e)
– cover all the states
– closed: implied states (b,c) (d,e) (a,d) included
– the same state can be repeated more than once

Closed and Unclosed

37

9-6 Race-Free State Assignment
•Race-free: avoiding critical races
– Only one variable changes at any given time
– may allow noncritical race

•Adjacent assignment
– Condition: binary values of states between which transitions occur only

differ in one variable
• tedious process: test and verify each possible transition between two
stable states

– m variables required for a flow table with n rows: 2m ≥ n
• No critical race for assigning a single variable to a flow table with two rows

•Transition diagram: pictorial representation of all required
transitions between rows
– Try to find only one binary variable changes during each state transition
– If critical races exist, add extra rows to obtain race-free assignment

•Two methods for race-free state assignment
– shared-row method
– multiple-row method

38

Three-Row Flow-Table Example

1. Derive the transition diagram from the flow table
– Uni-directed line: one-way transition
– Bi-directed line: two-way transition

2. State assignment: assign a=00, b=01, c=11
– critical race: transition a → c
– noncritical race: transition c → a

Race-free assignment: add an extra row to the flow table to
avoid the critical race

I. Show states
and transitions

II. Assignment

39

Flow Table with an Extra Row

• An extra row labeled d is added
– critical-race transition a → c becomes a=00 → d=10 → c=11
– noncritical-race transition c → a becomes c=11 → d=10 → a=00
– no stable state in row d: two dashes represent unspecified states that

• can be considered don’t-care conditions
• must not be d=10, or becomes stable state

40

Four-Row Flow-table Example

Figure 9-29 Example: 4 states/rows
– Require a minimum of two state variables
– Diagonal transitions c→a and b→d make adjacent assignment impossible
– Therefore, at least 3 binary state variables are needed

41

Assignment for Four-Row Flow Table

• Figure 9-30: assignment for the 4-row flow table
– Original states: a, b, c and d
– Extra states: e, f and g

• Expanded to a seven-row table that is free of critical races
– a→d ⇒ a→e→d
– d→c ⇒ d→f→c
– c→a ⇒ c→g→a

• It is suitable for any four-row flow table

42

State Assignment to Modified Flow Table

⇒

43

Multiple-Row Method
• Methods for race-free assignment

– shared-row method: adding extra rows
– multiple-row method: multiple equivalent

states for each stat
• less efficient but easier to apply

• Multiple-row method for 4-row flow table
– original state a is replaced by a1 and a2
– each original state is adjacent to three states

44

9-7 Hazards
• In the design of asynchronous sequential circuit, the circuit

– must be operated in fundamental mode with only one input changing at
any time, and

– must be free of critical races
• Hazards: unwanted switching transients at the output

– because different paths exhibit different propagation delays
– May cause the circuit to malfunction

• in combinational circuits: may cause temporary false-output value
• in asynchronous sequential circuits: may result in a transition to a wrong

stable state
– Need to check for possible hazards and determine whether causing

improper operations

45

Hazards in Combinational Circuits
•hazard: a condition where a single variable change produces a
momentary output change when no output change should occur

•Assume all inputs are initially set to 1
– gate1 = 1, gate2 = 0 ⇒ gate3 = 1

•Consider a change of x2 from 1 to 0
– gate1 = 0, gate2 = 1 ⇒ gate3 = 1

•Hazard: inverter delay may cause
gate1=0 to change before gate2=1
– gate1 = 0, gate2 = 0 ⇒ gate3 = 0
– momentary gate3=1→0→1!

•Fig.9-33(b) is a NAND implementation
of Fig.9-33(a)
– Y=x1x2+x2’x3 = (x1+x2’)(x2+x3)

46

Types of Hazards

• Whenever the circuit must move from one product term to another, there is a
possibility of a momentary interval when neither term is equal to 1, giving
rise to an undesirable 0 output

• Detected by inspecting the map: the change of input results in different
product term covering the two minterms

– minterm 111 in gate 1 and minterm 101 in gate 2

• When a circuit is implemented in sum of products (AND-OR or NAND gates),
the removal of static 1-hazard guarantees that no static 0-hazards or
dynamic hazards will occur

– If the momentary input causes the OR output to change from 0 to 1, the
output will maintain at 1 after the propagation

change three or more
when 0→1 or 1→0

(both product terms have x2)

47

Hazard-Free Circuit
• The remedy: enclose the two minterms in question with another

product term
– the circuit moves from one product term to another
– additional redundant gate

• General solution: cover any two minterms with a product term
common to path

48

Hazards in Sequential Circuits
In general, no problem for synchronous design, but a momentary incorrect
signal fed back in asynchronous sequential circuit may cause the circuit to go
to the wrong stable state Figure 9-37 Example:

•state yx1x2=111 and
input x2 1→0

•next state should be 110
•hazard: output Y may go to
0 momentarily
• feeds back to gate 2 before
x2’ enter gate 2

• the circuit will switch to
incorrect stable state 010

49

Implementation with SR latches
Asynchronous sequential circuits with SR latches
•A third input to the gate from the complemented side of the latch
Q’ avoids static hazards (maintained at 1 or 0)
– a momentary 0 signal at the S or R inputs of NOR latch has no effect
– a momentary 1 signal at the S or R inputs of NAND latch has no effect

Figure 9-38 Example:
•Consider a NAND SR latch

S=AB+CD and R=A’C
complement the inputs for NAND

S=(AB+CD)’=(AB)’(CD)’
R=(A’C)’

shown in Fig. 9-38(a)

•Boolean function for output Q
Q=(Q’S)’=[Q’(AB)’(CD)’]’
–generated in Fig. 9-38(b) with
2-levels of NAND gates

50

Essential Hazards

• Essential Hazards: due to unequal delays along two or more
paths that originate from the same input
– Another type of hazard may occur in asynchronous sequential circuits

• Static or dynamic hazards are resulted from delays of different inputs
• It cannot be corrected by adding redundant gates

– Solution: adjust the amount of delay in the affected path
• the delay of feedback loops > delays of other signals that originate from

the input terminals
• Tends to be specialized

51

9-8 Design Example
Summary of design procedure
1. Problem definition: state the design specifications
2. Interpretation: derive the primitive flow table (Section 9-4)

– total states: depend on # of input variables and # of secondary variables
3. State reduction: reduce the flow table by merging the rows

(Section 9-5)
– Reduce equivalent states and compatible states by using implication

table and merger diagram to meet the closed covering condition
4. Race-free state assignment (Section 9-6)

– adjacent assignment with transition diagram to avoid critical races
– shared-row method and multiple-row method

5. Obtain the transition table and output map
– Simplify the Boolean functions of the excitation and output variables

6. Obtain the logic diagram using SR latches (Section 9-3)

Example: design a negative-edge-triggered T flip-flop

52

1. Design Specifications

Design a negative-edge-triggered T flip-flop
– Variables

• Two inputs, T (toggle) and C (clock), and
• one output, Q

– Functions
• Output state is complemented if

– T=1 and
– the clock C changes from 1 to 0 (negative-edge triggering)

• Otherwise, output Q remains unchanged
– under any other input condition

Note that this circuit can be used as a flip-flop in clocked sequential circuits,
the internal design of the flip-flop is an asynchronous problem

53

1. Fill in one square in each row belonging to the stable state
2. Enter dashes in those squares whose input differs by two variables from the

input corresponding to the stable state
3. Unstable conditions are determined by utilizing Table 9-6

2. Primitive Flow Table

Differ by one variable and
•a,c: T=1, C=↑ ⇒ Q=initial values
•b,d: T=1, C=↓ ⇒ Q=Q’
•e,f,g,h: T=0 ⇒ Q=unchanged

d,f
a,g
b,h
c,e

54

3. Merging of the Flow Table
•Derive Fig. 9-40
implication table
from Fig. 9-39 flow
table
– Compatible pairs:

(a,f) (b,g) (b,h) (c,h)
(d,e) (d,f) (e,f) (g,h)

– no implied states

(1) Mark ‘x’ for
pairs with

different
outputs

(2) mark ‘v’ for pairs
with same next
states, or enter

next states to be
checked

(3) Make successive
passes to determine

equivalences of
remaining pairs

55

Merging of the Flow Table (cont.)
Derive the reduced flow table (Fig. 9-42)
• Compatible pairs:

(a,f) (b,g) (b,h) (c,h) (d,e) (d,f) (e,f) (g,h)

• Maximal compatible set
(a,f) (b,g,h) (c,h) (d,e,f)
–covering all states

(states h and f are repeated)
–closed: no implied states

56

4. Race-free State Assignment

• Draw transition diagram Fig. 9-43 from the reduced flow table
– four stable states
– no diagonal lines

• Find the race-free state assignment by adjacent assignment
– a=00, b=01, c=11, d=10

57

5. Obtain the Transition Table and Output Map

Fig. 9-14(b) Latch excitation table

58

6. Obtain the Logic Diagram Using SR Latch

•Two state variables, Y1 and Y2,
and one output, Q

– two SR latches, one for
each state variable

•Use two NAND latches with two
or three inputs in each gate

59

Summary

Chapter 9 Asynchronous Sequential Logic
9-1 Introduction
9-2 Analysis Procedure
9-3 Circuits With Latches
9-4 Design Procedure
9-5 Reduction of State and Flow Tables
9-6 Race-Free State Assignment
9-7 Hazards
9-8 Design Example

