

Asynchronous Sequential Circuits

• Timing Problems

- synchronous circuit: eliminated by triggering all flip-flops with the pulse edge
- asynchronous circuit: change immediately after input changes

• Asynchronous Sequential Circuits

- no clock pulse
- difficult to design
- delay elements: the propagation delay
- must attain a stable state before the input is changed to a new value
- DO NOT use asynchronous sequential circuits unless it is absolutely necessary
	- e.g., in you exam

9-2 Analysis Procedure

- •The procedure
- 1.Determine all feedback loops
- 2. Assign Y_i 's (excitation variables), y_i 's (secondary variables)
- 3.Derive the *Boolean functions* of all Yi's
- 4.Plot each Y function in *a map*
	- the y variables for the rows
	- the external variable for the columns
- 5.Combine all the maps into one *transition table*
	- showing the value of Y=Y $_1$ Y $_2$ …Y $_{\rm k}$ inside each square
- 6.Circle the stable states and derive the *state table*
	- those values of Y that are equal to y=y₁y $_2...$ y $_{\rm k}$ in the same row

Asynchronous sequential circuit (vs. sequential circuit)

- •Total state of the circuit: combine internal state with input value
	- $-$ eg. Figure 9-3(c) has 4 stable total states: y_1y_2 x=000, 011, 110, and 101, and 4 unstable total states: 001, 010, 111, and 100
- •There usually is at least one stable state in each row

Figure 9-2 Asynchronous Sequential Circuit Example

Flow Table

• A flow table

 y_2

 $y_1 y_2$

 00

01

11

5

6

- a state transition table with its internal state being symbolized with letters
- Figure 9-4(a) is called *a primitive flow table* because it has only one stable state in each row
- Figure 9-4(b): two states, a and b; two inputs, $\mathsf{x}_\mathtt{1}$ and $\mathsf{x}_\mathtt{2}$; and one output, $\mathsf z$

Figure 9-4. Examples of Flow Tables

Figure 9-4(b)

- If x_1 =0, the circuit is in state a
- If x_1 goes to 1while x_2 is 0, the circuit goes to b
- With inputs x_1x_2 =11, it may be in either in state a or state b, and output 0 or 1, respectively
- Maintain in state b if the inputs change from 10 to 11 and maintain in state a if the inputs changes from 01 to 11

Derivation of a Circuit Specified by Flow Table

Race Conditions

- Race condition
	- occur when two or more binary state variables change value in response to a change in an input variable
		- When unequal delays are encountered, a race condition may cause the state variables to change in an unpredictable manner
		- $y_1, y_2, ..., y_i$ may change in unpredictable manner in response to a change in x_1
	- $-$ 00 \rightarrow 11
		- $\overline{}\!\!0\rightarrow$ 10 \rightarrow 11 or $\overline{00}\rightarrow$ 01 \rightarrow 11
- a noncritical race
	- if they reach the same final state
	- otherwise, a *critical race*: end up in two or more different stable states

Example of Race Conditions

Figure 9-8 Examples of Cycles

- •Races may be avoided
- race-free assignment: only 1 state can change at any one time (Section 9-6)
- Directing the circuit through inserting intermediate unstable states with a unique state-variable change

•A cycle: When a circuit goes through a unique sequence of unstable states

Stability Considerations

- An unstable condition will cause the circuit to oscillate between unstable state
- Care must be taken to ensure that the circuit does not become unstable
- a square waveform generator?

 01

 00

 X_1X_2

11

10

Fig. 9-9 Example of an Unstable Circuit

- Column 11 has no stable states: with input x_1x_2 fixed at 11, the values of Y and y are never the same
	- •State variable alternates between 0 and 1 indefinitely as long as input=11
- 13• If each gate has a propagation delay of 5 ns, Y will be 0 for 10 ns and 1 for next 10 ns, resulting a square-wave waveform with 20 ns period, or 50Mhz

9-3 Circuits with Latches

- Asynchronous sequential circuits
	- were know and used before synchronous design
- SR Latch
- the use of SR latches in asynchronous circuits produces a more orderly pattern
	- the memory elements clearly visible
	- reduce the circuit complexity
- two cross-coupled NOR gates or NAND gates

SR Latch with Two Cross-coupled NOR Gates

S'R' Latch with NAND Gates

18

Procedure for analyzing an asynchronous sequential circuit with SR latches

Logic circuit \Rightarrow transition table/map

- 1. Label each latch output with Y_i and its external feedback path (if any) with y_i for i = 1, 2, …, k
- 2. Derive the Boolean functions for S_i and R_i inputs in each latch
- 3.Check whether SR=0 for each NOR latch or whether S'R'=0 for each NAND latch
	- If not satisfied, it's possible that the circuit may not operate properly
- 4.Evaluate Y=S+R'y for each NOR latch or Y=S'+Ry for each NAND latch
- 5.Construct a map with the y's representing the rows and the x inputs representing the columns
- 6. Plot the value of Y=Y $_1$ Y $_2$ …Y $_{\sf k}$ in the map
- 7.Circle all stable states where Y=y. The resulting map is then the transition table

Implementation Example

•Derive (c) and (d) from (a) by referencing (b)

20•Use the complemented values for S and R of NOR latch to derive the circuit for NAND latch: $S=(x_1x_2)'$ and $R = x_1$

Procedure for implementing a circuit with SR latches from a given transition table

- 1. Given a transition table that specifies the excitation function $\mathsf{Y}\texttt{=}\mathsf{Y}_1\mathsf{Y}_2...\mathsf{Y}_\mathsf{k}$, derive a pair of maps for S_i and R_i
- 2. Derive the simplified Boolean functions for each S_i and R_i – DO NOT make S_i and R_i equal to 1 in the same minterm square

3. Draw the logic diagram

– for NAND latches, use the complemented values of those S_i and R_i

21

Debounce Circuit

- Mechanical switch: as input signal
- Debounce circuit
- remove the series of pulses that result form a contact bounce and produce a single smooth transition of the binary signal

Reduction of the Primitive Flow Table

- Two or more rows in the primitive flow table can be merged if there are nonconflicting states and outputs in each of columns (formal procedure is given in next section)
	- Primitive flow table is separated into two parts of three rows each

Assign Outputs to Unstable States

•the unstable states have unspecified output values •no momentary false outputs occur when circuit switches between stable states 0→0 \Rightarrow 0 : assign 0 if the transient state between two 0 stable states 1→1 \Rightarrow 1 : assign 1 if the transient state between two 1 stable states $0\rightarrow 1$, $1\rightarrow 0 \Rightarrow$ don't care: assign don't care if the transient state between two different stable states

(a) Flow table (b) Output assignment Fig. 9-21 Assigning Output Values to Unstable States

27

Summary of Design Procedure

- 0. Problem definition: state the design specifications
- 1. Interpretation: Obtain a *primitive flow table* from the given design specifications (Section 9-4; most difficult)
- 2. State reduction: reduce flow table by merging rows in primitive flow table (Section 9-5; *implication table*, *merger diagram*) –Reduce *equivalent states* and *compatible states*
- 3. State assignment: assign binary state variables to each row of the reduced flow table to obtain the *transition table*–Eliminates any possible critical races (Section 9-6)
- 4. Output assignment: assign output values to the dashes associated with the unstable states to obtain the *output maps*
- 5. Simplification: Simplify the Boolean functions of the excitation and output variables and draw the *logic diagram* –can be drawn using SR latches (Section 9-3)

 \boldsymbol{b}

Equivalent and Reduced States

Table 9-4 State Table to Be Reduced

31

Merging of the Flow Table

-
- combinations of inputs or input sequences may never occur
- •**compatible**: two incompletely specified states that can be
	- they have the same output whenever specified and
	- their next states are compatible whenever they are specified
- •Procedure for finding a suitable group of compatibles for
- 1. determine all *compatible pairs* by using the *implication table*
- 2. find the *maximal compatibles* using a *merger diagram*
- 3. find a *minimal collection* of compatibles that cover all the states and is

9-6 Race-Free State Assignment

•*Race-free*: avoiding critical races

- Only one variable changes at any given time
- may allow noncritical race

•*Adjacent assignment*

- Condition: binary values of states between which transitions occur only differ in one variable
- tedious process: test and verify each possible transition between two stable states
- *m* variables required for a flow table with *ⁿ* rows: 2*^m* [≥] *ⁿ*
	- No critical race for assigning a single variable to a flow table with two rows
- •*Transition diagram*: pictorial representation of all required

transitions between rows

- Try to find only one binary variable changes during each state transition
- If critical races exist, add extra rows to obtain race-free assignment
- •Two methods for race-free state assignment
- *shared-row method*
- *multiple-row method*

37

1. Derive the transition diagram from the flow table

- Uni-directed line: one-way transition
- Bi-directed line: two-way transition
- 2. State assignment: assign a=00, b=01, c=11
	- critical race: transition a \rightarrow c
	- noncritical race: transition c \rightarrow a

Race-free assignment: add an extra row to the flow table to avoid the critical race

Flow Table with an Extra Row

• An extra row labeled d is added

 \overline{a}

 \overline{b}

 ϵ

 ϵ

 \boldsymbol{b}

 ϵ

- critical-race transition a \rightarrow c becomes a=00 \rightarrow d=10 \rightarrow c=11
- noncritical-race transition c \rightarrow a becomes c=11 \rightarrow d=10 \rightarrow a=00
- no stable state in row d: two dashes represent unspecified states that
	- can be considered don't-care conditions
	- must not be d=10, or becomes stable state

Four-Row Flow-table Example

Fig. 9-29 Four-Row Flow-Table Example

Figure 9-29 Example: 4 states/rows

 \boldsymbol{d}

 \overline{a}

 \overline{d}

- Require a minimum of two state variables
- Diagonal transitions c→^a and b→d make adjacent assignment impossible
- Therefore, at least 3 binary state variables are needed

Implementation with SR latches

• Otherwise, output Q remains unchanged – under any other input condition

Note that this circuit can be used as a flip-flop in clocked sequential circuits,

the internal design of the flip-flop is an asynchronous problem

• Tends to be specialized

50

6. Obtain the Logic Diagram Using SR Latch

Summary

Chapter 9 Asynchronous Sequential Logic

- 9-1 Introduction
- 9-2 Analysis Procedure
- 9-3 Circuits With Latches
- 9-4 Design Procedure
- 9-5 Reduction of State and Flow Tables
- 9-6 Race-Free State Assignment
- 9-7 Hazards
- 9-8 Design Example