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Chapter 8 Chapter 8 –– Introduction to Number Introduction to Number 

TheoryTheory

The Devil said to Daniel Webster: "Set me a task I can't carry oThe Devil said to Daniel Webster: "Set me a task I can't carry out, and ut, and 
I'll give you anything in the world you ask for."I'll give you anything in the world you ask for."

Daniel Webster: "Fair enough. Prove that for n greater than 2, tDaniel Webster: "Fair enough. Prove that for n greater than 2, the he 
equation aequation ann + + bbnn = = ccnn has no nonhas no non--trivial solution in the integers."trivial solution in the integers."

They agreed on a threeThey agreed on a three--day period for the day period for the laborlabor, and the Devil , and the Devil 
disappeared.disappeared.

At the end of three days, the Devil presented himself, haggard, At the end of three days, the Devil presented himself, haggard, jumpy, jumpy, 
biting his lip. Daniel Webster said to him, "Well, how did you dbiting his lip. Daniel Webster said to him, "Well, how did you do at o at 
my task? Did you prove the theorem?'my task? Did you prove the theorem?'

"Eh? No . . . no, I haven't proved it.""Eh? No . . . no, I haven't proved it."

"Then I can have whatever I ask for? Money? The Presidency?'"Then I can have whatever I ask for? Money? The Presidency?'

"What? Oh, that"What? Oh, that——of course. But listen! If we could just prove the of course. But listen! If we could just prove the 
following two lemmasfollowing two lemmas——""

——The Mathematical MagpieThe Mathematical Magpie, Clifton Fadiman, Clifton Fadiman

OutlineOutline

•• will consider:will consider:

–– prime numbersprime numbers

–– FermatFermat’’s and Eulers and Euler’’s Theorems & s Theorems & øø(n(n))

–– PrimalityPrimality TestingTesting

–– Chinese Remainder TheoremChinese Remainder Theorem

–– Primitive Roots & Discrete LogarithmsPrimitive Roots & Discrete Logarithms

Prime NumbersPrime Numbers

•• prime numbers only have divisors of 1 and self prime numbers only have divisors of 1 and self 

–– they cannot be written as a product of other numbers they cannot be written as a product of other numbers 

–– note: 1 is prime, but is generally not of interest note: 1 is prime, but is generally not of interest 

•• eg. 2,3,5,7 are prime, 4,6,8,9,10 are noteg. 2,3,5,7 are prime, 4,6,8,9,10 are not

•• prime numbers are central to number theoryprime numbers are central to number theory

•• list of prime number less than 200 is: list of prime number less than 200 is: 
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 

61 67 71 73 79 83 89 97 101 103 107 109 113 127 61 67 71 73 79 83 89 97 101 103 107 109 113 127 

131 137 139 149 151 157 163 167 173 179 181 191 131 137 139 149 151 157 163 167 173 179 181 191 

193 197 199193 197 199



Prime FactorisationPrime Factorisation

•• to to factorfactor a number a number nn is to write it as a is to write it as a 

product of other numbers: product of other numbers: nn == aa xx bb xx cc

•• note that factoring a number is relatively note that factoring a number is relatively 

hard compared to multiplying the factors hard compared to multiplying the factors 

together to generate the number together to generate the number 

•• thethe prime factorisationprime factorisation of a number of a number nn is is 

when its written as a product of primes when its written as a product of primes 

–– eg. eg. 9191 == 77 xx 1313 ;; 36003600 == 2244 xx 3322 xx 5522

Relatively Prime Numbers & GCDRelatively Prime Numbers & GCD

•• two numbers two numbers a,ba,b are are relatively primerelatively prime
((coprimecoprime)) if they have if they have no common divisorsno common divisors
apart from apart from 11

–– eg. eg. 88 and and 1515 are relatively prime since factors of are relatively prime since factors of 88
are are 1,2,4,81,2,4,8 and of and of 1515 are are 1,3,5,151,3,5,15 and and 11 is the is the 
only common factor only common factor 

•• conversely can determine the greatest common conversely can determine the greatest common 
divisor bydivisor by comparing their prime factorizations comparing their prime factorizations 
and using least powersand using least powers
–– egeg. . 300300 == 2211x3x311x5x522 ;; 1818 == 2211x3x322 hencehence
GCD(18,300)GCD(18,300) == 2211x3x311x5x500 == 66

Fermat's TheoremFermat's Theorem

•• aapp--11 == 11 (mod(mod p)p)

–– where where pp is prime and is prime and GCD(a,pGCD(a,p)) == 11

•• also known as Fermatalso known as Fermat’’s Little Theorems Little Theorem

•• also have: also have: aapp == aa (mod(mod p)p)

•• useful in public key and useful in public key and primalityprimality testingtesting



Euler Euler TotientTotient Function Function øø(n(n))

•• when doing arithmetic modulo when doing arithmetic modulo nn

•• complete set of residuescomplete set of residues is: is: 0..n0..n--11

•• reduced set of residuesreduced set of residues is those numbers is those numbers 
(residues) which are relatively prime to (residues) which are relatively prime to nn

–– eg for eg for nn == 1010, complete set of residues is , complete set of residues is 

{0,1,2,3,4,5,6,7,8,9}{0,1,2,3,4,5,6,7,8,9}

–– reduced set of residues is reduced set of residues is {1,3,7,9}{1,3,7,9}

•• number of elements in reduced set of residues is number of elements in reduced set of residues is 

called the called the Euler Euler TotientTotient Function Function øø(n(n))

Euler Euler TotientTotient Function Function øø(n(n))

•• to compute to compute øø(n(n) need to count number of ) need to count number of 
residues to be excludedresidues to be excluded

•• in general need prime factorization, butin general need prime factorization, but
–– for p (p prime) for p (p prime) øø(p(p)=p)=p--11

–– for for p.qp.q ((p,qp,q prime)   prime)   øø(p.q(p.q)=(p)=(p--1)x(q1)x(q--1)1)

•• egeg..
øø(37) = 36(37) = 36

øø(21) = (3(21) = (3––1)x(71)x(7––1) = 2x6 = 121) = 2x6 = 12

Euler's TheoremEuler's Theorem

•• a generalisation of Fermat's Theorem a generalisation of Fermat's Theorem 

•• aaøø(n(n)) == 11 (mod(mod n)n)

–– for any for any a,na,n where where GCD(a,nGCD(a,n)) == 11

•• egeg..
aa == 33 ;; nn == 1010 ;; øø(10)(10) == 4; 4; 

hencehence 3344 == 8181 == 11 modmod 1010

aa == 22 ;; nn == 1111 ;; øø(11)(11) == 10;10;

hencehence 221010 == 10241024 == 11 modmod 1111

•• also have: also have: aaøø(n)+1(n)+1 == aa (mod n)(mod n)



PrimalityPrimality TestingTesting

•• often need to find large prime numbers often need to find large prime numbers 

•• traditionally traditionally sievesieve using using trial divisiontrial division
–– ieie. divide by all numbers (primes) in turn less than the . divide by all numbers (primes) in turn less than the 

square root of the number square root of the number 

–– only works for small numbersonly works for small numbers

•• alternatively can use statistical alternatively can use statistical primalityprimality tests tests 
based on properties of primes based on properties of primes 
–– for which all primes numbers satisfy property for which all primes numbers satisfy property 

–– but some composite numbers, called pseudobut some composite numbers, called pseudo--primes, primes, 
also satisfy the propertyalso satisfy the property

•• can use a slower deterministic can use a slower deterministic primalityprimality testtest

Miller Rabin AlgorithmMiller Rabin Algorithm

•• a test based on prime properties that result from a test based on prime properties that result from 
FermatFermat’’s Theorems Theorem

•• algorithm is:algorithm is:

TEST(TEST(nn)) is:is:

1. Find integers 1. Find integers kk,,qq,,kk>0,>0,qq odd, so that odd, so that ((nn––1)1) == 22kkqq

2. Select a random integer 2. Select a random integer aa,, 11 << aa << nn –– 11

3. 3. if if aaqq modmod nn == 11 then then return (return (““inconclusiveinconclusive");");

4. 4. for for jj == 00 to to kk –– 11 dodo

5. 5. ifif ((aa22
jj
qq modmod nn == nn -- 11))

then then return(return(““inconclusiveinconclusive")")

6. return (6. return (““composite")composite")



Probabilistic ConsiderationsProbabilistic Considerations

•• if Millerif Miller--Rabin returns Rabin returns ““compositecomposite”” the the 

number is definitely not primenumber is definitely not prime

•• otherwise is a prime or a pseudootherwise is a prime or a pseudo--primeprime

•• chance it detects a pseudochance it detects a pseudo--prime is < prime is < 11//44

•• hence if repeat test with different random a hence if repeat test with different random a 

then chance n is prime after t tests is:then chance n is prime after t tests is:

–– Pr(nPr(n prime after t tests) = 1prime after t tests) = 1--44--tt

–– egeg. for t=10 this probability is > 0.99999. for t=10 this probability is > 0.99999

•• could then use the deterministic AKS testcould then use the deterministic AKS test

Prime DistributionPrime Distribution

•• prime number theorem states that primes occur prime number theorem states that primes occur 
roughly every (roughly every (lnln nn) integers) integers

•• but can immediately ignore evensbut can immediately ignore evens

•• so in practice need only test so in practice need only test 0.5 0.5 ln(nln(n))

numbers of size numbers of size nn to locate a primeto locate a prime

–– note this is only the note this is only the ““averageaverage””

–– sometimes primes are close togethersometimes primes are close together

egeg. 1,000,000,000,061 and 1,000,000,000,063 both prime. 1,000,000,000,061 and 1,000,000,000,063 both prime

–– other times are quite far apartother times are quite far apart

egeg. (1001!+2), (1001!+3) . (1001!+2), (1001!+3) …… (1001!+1001)  all composite(1001!+1001)  all composite

Chinese Remainder TheoremChinese Remainder Theorem

•• used to speed up modulo computations used to speed up modulo computations 

•• if working modulo a product of numbers if working modulo a product of numbers 

–– eg. eg. modmod MM == mm11mm22..m..mkk

•• Chinese Remainder theorem lets us work Chinese Remainder theorem lets us work 
in each modulus in each modulus mmii separately separately 

•• since computational cost is proportional to since computational cost is proportional to 

size, this is faster than working in the full size, this is faster than working in the full 
modulus modulus MM



Chinese Remainder TheoremChinese Remainder Theorem

•• can implement CRT in several wayscan implement CRT in several ways

•• to compute to compute AA (mod(mod M)M)

–– first compute all  first compute all  aaii == AA modmod mmii separatelyseparately

–– determine constants determine constants ccii below, where below, where MMii == M/mM/mii

–– then combine results to get answer using:then combine results to get answer using:

Primitive RootsPrimitive Roots

•• from Eulerfrom Euler’’s theorem have s theorem have aaøø(n(n)) modmod nn == 1 1 

•• consider consider aamm == 11 (mod(mod n),n), GCD(a,nGCD(a,n)) == 11

–– must exist for must exist for mm == øø(n(n)) but may be smallerbut may be smaller

–– once powers reach once powers reach mm, cycle will repeat, cycle will repeat

•• if smallest is if smallest is mm == øø(n(n)) then then aa is called a is called a 
primitive rootprimitive root

•• if if pp is prime, then successive powers of is prime, then successive powers of aa
"generate" the group  "generate" the group  mod pmod p

•• these are useful but relatively hard to find these are useful but relatively hard to find 

Powers mod 19Powers mod 19
Discrete LogarithmsDiscrete Logarithms

•• the inverse problem to exponentiation is to find the inverse problem to exponentiation is to find 
the the discrete logarithmdiscrete logarithm of a number of a number bb modulo modulo pp

•• that is to find that is to find ii such that such that bb == aaii (mod p)(mod p)

•• this is written as this is written as ii == dlogdlogaa bb (mod p)(mod p)

•• if if aa is a primitive root is a primitive root modmod pp then then dlogdlogaa always always 
exists, otherwise it may not, exists, otherwise it may not, egeg..
xx == loglog33 44 modmod 1313 has no answer has no answer 

xx == loglog33 33 modmod 1313 == 44 by trying successive powers by trying successive powers 

•• whilst exponentiation is relatively easy, finding whilst exponentiation is relatively easy, finding 
discrete logarithms is generally a discrete logarithms is generally a hardhard problemproblem
(which is good for cryptography, of course) (which is good for cryptography, of course) 



Discrete Logarithms Discrete Logarithms mod 19mod 19


