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Qutline

« will consider:
— prime numbers
— Fermat’s and Euler’s Theorems & @(n)
— Primality Testing
— Chinese Remainder Theorem
— Primitive Roots & Discrete Logarithms

Chapter 8 — Introduction to Number
Theory

The Devil said to Daniel Webster: "Set me a task | can't carry out, and
I'll give you anything in the world you ask for."

Daniel Webster: "Fair enough. Prove that for n greater than 2, the
equation a" + b" = ¢" has no non-trivial solution in the integers."

They agreed on a three-day period for the labor, and the Devil
disappeared.

At the end of three days, the Devil presented himself, haggard, jumpy,
biting his lip. Daniel Webster said to him, "Well, how did you do at
my task? Did you prove the theorem?'

"EhR? No . . . no, | haven't proved it."
"Then | can have whatever | ask for? Money? The Presidency?'

"What? Oh, that—of course. But listen! If we could just prove the
following two lemmas—"

—The Mathematical Magpie, Clifton Fadiman

Prime Numbers

prime numbers only have divisors of 1 and self
— they cannot be written as a product of other numbers
— note: 1 is prime, but is generally not of interest

eg. 2,3,5,7 are prime, 4,6,8,9,10 are not

prime numbers are central to number theory

list of prime number less than 200 is:

2 35711 13 17 19 23 29 31 37 41 43 47 53 59
61 67 71 73 79 83 89 97 101 103 107 109 113 127
131 137 139 149 151 157 163 167 173 179 181 191

193 197 199



Prime Factorisation

to factor a number n is to write it as a
product of other numbers:n=a xb x ¢

note that factoring a number is relatively
hard compared to multiplying the factors
together to generate the number

the prime factorisation of a number n is
when its written as a product of primes

—eg.91=7x13; 3600=2%x3%x5? ]
a = I Ipfﬁ

Fermat's Theorem

«afPt=1 (mod p)

—where p is prime and GCD (a, p) =1
« also known as Fermat’s Little Theorem
e also have: a? = a (mod p)

« useful in public key and primality testing

Relatively Prime Numbers & GCD

« two numbers a, b are relatively prime
(coprime) if they have no common divisors
apart from 1
— eg. 8 and 15 are relatively prime since factors of 8

arel,2,4,8andof15are1,3,5,15and 1 is the
only common factor

« conversely can determine the greatest common
divisor by comparing their prime factorizations
and using least powers

—eg. 300 =2'x3'x5% ; 18 = 2'x3? hence
GCD(18,300) = 21x31x5° =6

Fermat’s Theorem ... sketch proof.

Consider {1, 2. ..., p—1} with p prime.

Consider {1 xa mod p. 2xa mod p. ... . (p—1)xa mod p}. This
permutes {1, 2, ..., p—1} since all of {1, 2, ..., p—1} coprime to p.

In both sets, multiply all the elements together mod p.
So a'x( p—D!'modp=(p-1)! mod p

Since (p—1)! is coprime to p, we can cancel it, getting
Fermat's Theorem:

@ 1'=1 (mod p)




Euler Totient Function @ (n)

when doing arithmetic modulo n
complete set of residues is: 0. .n-1

reduced set of residues is those numbers
(residues) which are relatively prime to n

— eg for n = 10, complete set of residues is
{0111213141516171819}

— reduced set of residuesis {1, 3, 7,9}

number of elements in reduced set of residues is
called the Euler Totient Function g(n)

Euler's Theorem

a generalisation of Fermat's Theorem
a?m =1 (mod n)
— for any a, n where GCD (a, n) =1
eg.
a=3;n=10; 2(10) =4;
hence 3¢ =81 =1 mod 10
a=2;n=11; @(11) =10;
hence 2'°=1024=1mod 11
also have: a?(™+!l = 3 (mod n)

Euler Totient Function @ (n)

» to compute @(n) need to count number of
residues to be excluded

* in general need prime factorization, but

—for p (p prime) @(p)=p-1

—for p.q (p,q prime) @ (p.q)=(p-1)x(g-1)
* eqg.

@(37) = 36

z(21) = (3-1)x(7-1) = 2x6 = 12

Euler’s Totient Function ¢(n) ...forn=p.q

Euler’s Totient Function &(n) is defined to be the number of
integers between | and » which are coprime to n. (Obviously,
the biggest of them is no greater than n—1.)

For a prime p, o(p) =p-1

For a product of two primes, p and g, the integers between 1 and
p-q which are NOT coprime to p.q are:

1. multiples of p (g—1 of them),
2. multiples of ¢ (p—1 of them).

So: ¢o(p.g)=(p.g-D=-[g=-D)+(p-]=pg-p—q+1
i.e.r 0(pg) = (p=1).(g=1) = d(p).0(q)




Euler’s Theorem ... sketch proof.

Suppose a and n are coprime.

Consider {1, xy, ... . x4y } With each x; coprime to n.

Consider {1xa mod n, x;xa mod n, ..., X4 xa mod n}. This
ermutes {1, xy, ..., x since {1.xy, ... x all coprime to n.
2 o(n) 2 O(n)

In both sets, multiply all the elements together mod ».
So a®"x[]; x; mod n = [1; x; mod n
Since [1; x; is coprime to n, we cancel it, getting Euler's Theorem:

a®™ =1 (mod n)

Miller Rabin Algorithm

» atest based on prime properties that result from
Fermat's Theorem

« algorithm is:
TEST (n) is:
1. Find integers k, g, k>0, g 0odd, so that (n-1) = 2%g
2. Select arandom integera, 1 <a<n-1
3. if a?mod n = 1 then return (“inconclusive");
4. forj=0tok-1do
5. if (aqu modn=n - 1)
then return(“inconclusive")
6. return (“composite")

Primality Testing

often need to find large prime numbers

traditionally sieve using trial division

— ie. divide by all numbers (primes) in turn less than the
square root of the number

— only works for small numbers

alternatively can use statistical primality tests

based on properties of primes

— for which all primes numbers satisfy property

— but some composite numbers, called pseudo-primes,
also satisfy the property

can use a slower deterministic primality test

Miller-Rabin ... rationale.

k

Testing a number n=2% + 1 (kis maximal, ¢ is odd).

Pick 1 <a<n—1.
. . . k
IF nis prime, THEN «"' =1 (mod n) ie., a®9=1modn
(by Fermat’s Theorem). So a proper suffix of the sequence:
~ "2 oL
a? mod n, a*? mod n, a= Y mod n, ..., a= 9 mod n,
must be 1 mod n.

IF the firstis 1 mod n THEN the rest are too. IF a later element
is | mod n THEN then its predecessor is —1 mod n=n— 1 mod n

So Miller-Rabin says MAYBE if either of these is seen.




Probabilistic Considerations

if Miller-Rabin returns “composite” the
number is definitely not prime

otherwise is a prime or a pseudo-prime
chance it detects a pseudo-prime is < 1/,

hence if repeat test with different random a
then chance n is prime after t tests is:

— Pr(n prime after t tests) = 1-4

—eq. for t=10 this probability is > 0.99999
could then use the deterministic AKS test

Chinese Remainder Theorem

used to speed up modulo computations

if working modulo a product of numbers
—eg.mod M =mm,..m

Chinese Remainder theorem lets us work
in each modulus m, separately

since computational cost is proportional to
size, this is faster than working in the full
modulus M

Prime Distribution

prime number theorem states that primes occur
roughly every (1n n) integers

but can immediately ignore evens
so in practice need only test 0.5 1n(n)
numbers of size n to locate a prime
— note this is only the “average”
— sometimes primes are close together

eg. 1,000,000,000,061 and 1,000,000,000,063 both prime
— other times are quite far apart

eg. (10011+2), (1001!+3) ... (1001!+1001) all composite

Chinese Remainder Theorem.

Have k mutually coprime numbers my, mo, ... my.
Let M =mpmy. ... .my.

Then, provided 0 < A < M, the number A is uniquely determined
by the k-tuple (a|.a,, ... ay) =(A mod m, A mod my, ... , A mod my).

Arithmetic operations done co-ordinate-wise:
A+Bo (ay+b,ay+by. o aqp + by)
A-Be(ap—bl.ay—Dby, ....a,—Dby)
AXB & (ay X bay X by, ... apxXby)

N.B. Division doesn’t work!




Chinese Remainder Theorem

« can implement CRT in several ways

* to compute A (mod M)
— first compute all a; = A mod m; separately
— determine constants c; below, where M, = M/m;
— then combine results to get answer using:

k
A= (Za;c;)(mod M)
i=1

¢, = M; X (Ml,-_l modm;) forl =i =k

Powers mod 19

a a? o PRE]
T‘ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 4 B 16 1 14 9 18 1 15 11 3 6 12 3 10 1
9 B o 15 2 6 18 16 10 11 14 4 12 1 1 1
4 16 9 1 11 6 = 1 4 16 4 17 11 6 5 1
=y 6 11 17 9 i 16 4 1 - 6 11 17 4 i 16 4 1
6 1 4 = 11 2 16 1 6 4 5 11 9 16 1
i 11 1 7 11 1 7 11 1 7 11 1 11 1 11 1
B i 18 11 12 1 B 7 18 11 12 1 B 7 18 11 12 1
9 3 & 16 11 4 17 1 o 3 & 16 11 4 1
10 = 12 6 11 15 17 18 9 14 1 16 8 4 2 1
11 i 1 11 1 11 7 1 11 i 1 11 1 11 1
12 11 18 B 1 12 11 18 7 B 1 12 11 18 B 1
1 1 12 4 14 11 10 16 18 6 2 15 = 8 9 1
14 6 L 1 10 7 3 4 18 b 13 11 2 9 12 16 15 1
15 16 12 9 2 11 1 o 18 4 3 i) 10 17 8 6 14 1
16 92 11 2 4 17 6 1 16 14 11 5 4 7 17 6 1
17 4 11 16 6 i = 9 1 17 4 11 16 6 i - 9 1
18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1

Primitive Roots

from Euler’s theorem have a? ™) mod n=1
consider a®=1 (modn), GCD(a,n) =1
— must exist for m = @ (n) but may be smaller

— once powers reach m, cycle will repeat

if smallestism = @ (n) then a is called a
primitive root

if p is prime, then successive powers of a
"generate" the group mod p

these are useful but relatively hard to find

Discrete Logarithms

the inverse problem to exponentiation is to find
the discrete logarithm of a number b modulo p

that is to find i such that b = al (mod p)

this is written as 1 = dlog, b (mod p)

if a is a primitive root mod p then dlog, always
exists, otherwise it may not, eg.

x = log; 4 mod 13 has no answer

x = log,; 3 mod 13 = 4 by trying successive powers
whilst exponentiation is relatively easy, finding

discrete logarithms is generally a hard problem
(which is good for cryptography, of course)



Discrete Logarithms mod 19

(a) Discrete logarithms to the base 2, modulo 19

[1[2][3[4a]5][6]7[8]9]W0]|n][1z2][13]14]15]16]17]18]

|IS|1|13|2|16|14|6|3|3|17|l2|15|5|7|ll|4|10|9|

I=

{b) Discrete logarithms to the base 3, modulo 19

() Discrete logarithms to the base 10, modulo 19

[1[2[3[a]5][6]7 8|9 ]w|n]1z][13[14]15]16]17]18]
[Bl7r{ul48]e[3]2[n|2|i5[17[B3][5]|10][16] 9|

log, o{a)

[1[2[3a[s5[e6][7[sJoJw[njrz[3[4[15]16[17]18]

loggote) [WB[1T[5[16]2[4]2[15]w[1[6]3]13[n[7][14[8]09]

{d) Discrete logarithms to the base 13, modulo 19

[1J2[3Ja4[5][6]7[8]9Jw[ufi2]J13[4]15]16]17]18]

loggl) [BJU[Im[4]a[0]2[15]16[7[6]3]1[5][13]8[2]9]

(e) Discrete logarithms to the base 14, modulo 19

[1[2[3[a[s5[6]7[sJoeJw[nJrz[ids[4[15]16]17]18]

[ logystey [18[13[7 [ 8J10[2 63 ua[s5[n2[15[uf1[wrf[1e[4]09]

(f) Discrete logarithms to the base 15, modulo 19

T2 af4dals]Te7le]olwofnfalnlalisle]imliz]

g ta) [B[5|H[10]8 1612154 [13][6|3[7[17[1[2]14]9]




