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1. INTRODUCTION TO COMPILERS AND ITS PHASES 

 
A compiler is a program takes a program written in a source language and translates it into an 

equivalent program in a target language. 
 

Source program COMPILER Target program 
 
This subject discusses the various techniques used to achieve this objective. In addition to the 

development of a compiler, the techniques used in compiler design can be applicable to many 

problems in computer science.  
o Techniques used in a lexical analyzer can be used in text editors, information 

retrieval system, and pattern recognition programs.   
o Techniques used in a parser can be used in a query processing system such as 

SQL.   
o Many software having a complex front-end may need techniques used in 

compiler design.   
A symbolic equation solver which takes an equation as input. That  

program should parse the given input equation.  
o Most of the techniques used in compiler design can be used in Natural Language 

Processing (NLP) systems.  
 

 

1.1 Major Parts of a Compiler  
 
There are two major parts of a compiler: Analysis and Synthesis  
• In analysis phase, an intermediate representation is created from the given source program.  

–  Lexical Analyzer, Syntax Analyzer and Semantic Analyzer are the phases in this part.   
• In synthesis phase, the equivalent target program is created from this intermediate 

representation.   
– Intermediate Code Generator, Code Generator, and Code Optimizer are the phases in this 

part.  
 
1.2 Phases of a Compiler 

 
Source Lexical Syntax Semantic Intermediate Code Code Target 
Program Analyzer Analyzer Analyzer Code Generator Optimizer Generator Program 

 
Each phase transforms the source program from one representation into another representation. 

They communicate with error handlers and the symbol table. 
 
1.2.1 Lexical Analyzer 
 

• Lexical Analyzer reads the source program character by character and returns the tokens 

of the source program.   
• A token describes a pattern of characters having same meaning in the source program. 

(such as identifiers, operators, keywords, numbers, delimiters and so on)  
 

Example:   
In the line of code newval := oldval + 12, tokens are:  

newval (identifier) 
:= (assignment operator) 
oldval (identifier)  
+ (add operator)  

 12 (a number)  
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• Puts information about identifiers into the symbol table.   
• Regular expressions are used to describe tokens (lexical constructs).  
• A (Deterministic) Finite State Automaton can be used in the implementation of a lexical 

analyzer.  

 
1.2.2 Syntax Analyzer 
 

• A Syntax Analyzer creates the syntactic structure (generally a parse tree) of the given 
program.   

• A syntax analyzer is also called a parser.   
• A parse tree describes a syntactic structure.  

 
Example:  
For the line of code newval := oldval + 12, parse tree will be: 

assignment 

 
identifier := expression 

 
 
 

newval expression   + expression 
 
 

identifier number 
 
 

oldval 12 
 

• The syntax of a language is specified by a context free grammar (CFG).   
• The rules in a CFG are mostly recursive.   
• A syntax analyzer checks whether a given program satisfies the rules implied by a CFG or 

not.  
–  If it satisfies, the syntax analyzer creates a parse tree for the given program.  

 
Example:  
CFG used for the above parse tree is: 

assignment identifier := expression 
expression identifier  
expression number 
expression expression + expression 

 

• Depending on how the parse tree is created, there are different parsing techniques.   
• These parsing techniques are categorized into two groups:   

– Top-Down Parsing,  
– Bottom-Up Parsing  

• Top-Down Parsing:  
–  Construction of the parse tree starts at the root, and proceeds towards the leaves.  
–  Efficient top-down parsers can be easily constructed by hand.  
–  Recursive Predictive Parsing, Non-Recursive Predictive Parsing (LL Parsing).   

• Bottom-Up Parsing:  
–  Construction of the parse tree starts at the leaves, and proceeds towards the root.  
–  Normally efficient bottom-up parsers are created with the help of some software tools.   
–  Bottom-up parsing is also known as shift-reduce parsing.  
–  Operator-Precedence Parsing – simple, restrictive, easy to implement  
–  LR Parsing – much general form of shift-reduce parsing, LR, SLR, LALR  
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1.2.3 Semantic Analyzer  

 
• A semantic analyzer checks the source program for semantic errors and collects the type 

information for the code generation.   
• Type-checking is an important part of semantic analyzer.   
• Normally semantic information cannot be represented by a context-free language used in 

syntax analyzers.   
• Context-free grammars used in the syntax analysis are integrated with attributes (semantic 

rules) . The result is a syntax-directed translation and Attribute grammars  
 

Example:  
In the line of code newval := oldval + 12, the type of the identifier newval must match 

with type of the expression (oldval+12). 
 
1.2.4 Intermediate Code Generation 
 

• A compiler may produce an explicit intermediate codes representing the source program.   
• These intermediate codes are generally machine architecture independent. But the level of 

intermediate codes is close to the level of machine codes.  
 

Example: 
 

newval := oldval * fact + 1 
 
 

id1 := id2 * id3 + 1 
 
 

MULT id2, id3, temp1  
ADD temp1, #1, temp2 
MOV temp2, id1 

 
The last form is the Intermediates Code (Quadruples) 

 
1.2.5 Code Optimizer 
 
• The code optimizer optimizes the code produced by the intermediate code generator in the 

terms of time and space.  
 

Example:  
The above piece of intermediate code can be reduced as follows: 

 
MULT id2, id3, temp1 
ADD temp1, #1, id1 

 
1.2.6 Code Generator 
 
•  Produces the target language in a specific architecture. 
  
• The target program is normally is a relocatable object file containing the machine codes.  
 

Example:   
Assuming that we have architecture with instructions that have at least one operand as a 

machine register, the Final Code our line of code will be:  
 

MOVE id2, R1 
MULT id3, R1 
ADD #1, R1 
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MOVE R1, id1 
 
1.3 Phases v/s Passes 
 
Phases of a compiler are the sub-tasks that must be performed to complete the compilation 

process. Passes refer to the number of times the compiler has to traverse through the entire 

program. 
 
1.4 Bootstrapping and Cross-Compiler 
 
There are three languages involved in a single compiler- the source language (S), the target 

language (A) and the language in which the compiler is written (L).  

CL
SA

 

 
The language of the compiler and the target language are usually the language of the computer 

on which it is working.  

CA
SA

 

 
If a compiler is written in its own language then the problem would be to how to compile the first 

compiler i.e. L=S. For this we take a language, R which is a small part of language S. We write 

a compiler of R in language of the computer A. The complier of S is written in R and complied 

on the complier of R make a full fledged compiler of S. This is known as Bootstrapping.  

CR
SA

 CA
RA

 CA
SA

 

 
A Cross Compiler is compiler that runs on one machine (A) and produces a code for another 
machine (B).  

CB
SA
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2. LEXICAL ANALYSIS 

 
Lexical Analyzer reads the source program character by character to produce tokens.   

Normally a lexical analyzer does not return a list of tokens at one shot; it returns a token 

when the parser asks a token from it.  
 
2.1 Token 
 
• Token represents a set of strings described by a pattern. For example, an identifier 

represents a set of strings which start with a letter continues with letters and digits. The actual 
string is called as lexeme.   

• Since a token can represent more than one lexeme, additional information should be held for 
that specific lexeme. This additional information is called as the attribute of the token.   

• For simplicity, a token may have a single attribute which holds the required information for that 
token. For identifiers, this attribute is a pointer to the symbol table, and the symbol table holds 
the actual attributes for that token.   

• Examples:  
– <identifier, attribute> where attribute is pointer to the symbol table 
– <assignment operator> no attribute is needed 
– <number, value> where value is the actual value of the number  

• Token type and its attribute uniquely identify a lexeme.   
• Regular expressions are widely used to specify patterns.  
 
2.2 Languages 
 
2.2.1 Terminology 
 

• Alphabet : a finite set of symbols (ASCII characters)   
• String : finite sequence of symbols on an alphabet  

–  Sentence and word are also used in terms of string   
–  ε is the empty string  
–  |s| is the length of string s.   

• Language: sets of strings over some fixed alphabet  
–  ∅ the empty set is a language.   
–  {ε} the set containing empty string is a language  
–  The set of all possible identifiers is a language.   

• Operators on Strings:  
 – Concatenation: xy represents the concatenation of strings x and y. s ε = s ε s = s 

 – sn = s s s .. s ( n times) s0 = ε   

2.2.2. Operations on Languages    

• Concatenation: L1L2 = { s1s2 | s1 ∈ L1  and s2 ∈ L2 }  

• Union: L1 ∪ L2 = { s | s ∈ L1 or s ∈ L2 }   

• Exponentiation: L0 = {ε} L1 = L L2 = LL   
• Kleene Closure: L* =   
• Positive Closure: L+ =  
 
Examples:   

• L1 = {a,b,c,d} L2 = {1,2}  

• L1L2  = {a1,a2,b1,b2,c1,c2,d1,d2}  
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• L1 ∪ L2 = {a,b,c,d,1,2}   
• L1

3 = all strings with length three (using a,b,c,d}  
• L1

*  = all strings using letters a,b,c,d and empty string  

• L1
+ = doesn’t include the empty string  

 
2.3 Regular Expressions and Finite Automata 
 
2.3.1 Regular Expressions 
 

• We use regular expressions to describe tokens of a programming language.   
• A regular expression is built up of simpler regular expressions (using defining rules)   
• Each regular expression denotes a language.   
• A language denoted by a regular expression is called as a regular set.  
 
For Regular Expressions over alphabet Σ 
 
  Regular Expression Language it denotes 
  ε  {ε} 
  a∈ Σ {a} 
  (r1) | (r2) L(r1) ∪ L(r2) 
  (r1) (r2) L(r1) L(r2) 
  (r)* (L(r))* 
  (r)  L(r) 

• (r)+ = (r)(r)*  

• (r)? = (r) | ε  
• We may remove parentheses by using precedence rules. 

 

 – * Highest 
 

 – concatenation next 
 

• 

– | lowest 
 

ab*|c  means   (a(b)*)|(c) 
 

 
Examples:  

–  Σ = {0,1}   
–  0|1 = {0,1}  
–  (0|1)(0|1) = {00,01,10,11}   
–  0*

  = {ε ,0,00,000,0000,....}  

–  (0|1)*  = All strings with 0 and 1, including the empty string  
 
2.3.2 Finite Automata  

 

• A recognizer for a language is a program that takes a string x, and answers “yes” if x is a 
sentence of that language, and “no” otherwise.   

• We call the recognizer of the tokens as a finite automaton.   
• A finite automaton can be: deterministic (DFA) or non-deterministic (NFA)   
• This means that we may use a deterministic or non-deterministic automaton as a lexical 

analyzer.  
• Both deterministic and non-deterministic finite automaton recognize regular sets.   
• Which one?  

–  deterministic – faster recognizer, but it may take more space  
–  non-deterministic – slower, but it may take less space  
–  Deterministic automatons are widely used lexical analyzers.  

 
 

 



Compiler Design      By Prashant Srivastava 
 
 
• First, we define regular expressions for tokens; Then we convert them into a DFA to get a 

lexical analyzer for our tokens.  
 
2.3.3 Non-Deterministic Finite Automaton (NFA) 

 

• A non-deterministic finite automaton (NFA) is a mathematical model that consists of:  
–  S - a set of states   
–  Σ - a set of input symbols (alphabet)  
–  move - a transition function move to map state-symbol pairs to sets of states.  
–  s0 - a start (initial) state  
–  F- a set of accepting states (final states)   

• ε- transitions are allowed in NFAs. In other words, we can move from one state to another one 
without consuming any symbol.   

• A NFA accepts a string x, if and only if there is a path from the starting state to one of 
accepting states such that edge labels along this path spell out x.  

 
Example:  

 a      
 

 
0 

 a   
1 

 b 
 

      2 
 

 Start      
 

 b      
 

    Transition Graph  
 

0 is the start state s0      
 

{2} is the set of final states F      
 

Σ = {a,b}      
 

S = {0,1,2}      
 

 Transition Function:    
 

    a  b   
 

          

  0  {0,1}  {0}   
 

          

  1  {}  {2}   
 

          

  2  {}  {}   
 

          

 
The language recognized by this NFA is (a|b)*ab 

 
2.3.4 Deterministic Finite Automaton (DFA) 
 
• A Deterministic Finite Automaton (DFA) is a special form of a NFA.   
• No state has ε- transition  
• For each symbol a and state s, there is at most one labeled edge a leaving s. i.e. transition 

function is from pair of state-symbol to state (not set of states)  
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Example: 
 

The DFA to recognize the language (a|b)* ab is as follows.  

B a 
a 

 

 
 

a 

1 

b 
 

0 2 
 

 
 

b 
 

Transition Graph 
 

0 is the start state s0  
{2} is the set of final states F 

Σ = {a,b}  
S = {0,1,2} 

 
Transition Function: 

 

 a b 
   

0 1 0 
   

1 1 2 
   

2 1 0 
   

 
Note that the entries in this function are single value and not set of values (unlike NFA). 

 
2.3.5 Converting RE to NFA (Thomson Construction) 
 

• This is one way to convert a regular expression into a NFA.   
• There can be other ways (much efficient) for the conversion.  
• Thomson’s Construction is simple and systematic method.  
• It guarantees that the resulting NFA will have exactly one final state, and one start state.  
• Construction starts from simplest parts (alphabet symbols).  
• To create a NFA for a complex regular expression, NFAs of its sub-expressions are 

combined to create its NFA.  

• To recognize an empty string ε:  
 
 

ε 

 i    f 
 
 

• To recognize a symbol a in the alphabet Σ:  
 
 

a  
 i    f 
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• For regular expression r1 | r2:  

 

 ε 
N(r1) ε  

  
 

i 
ε 

 f 
 

  ε  

   
 

  N(r2)  
 

 
 

N(r1) and N(r2) are NFAs for regular expressions r1 and r2. 
 
 
• For regular expression r1 r2  
 

i N(r1) N(r2) f 
 
 

 
Here, final state of N(r1) becomes the final state of N(r1r2). 

 
• For regular expression r* 

 

  ε 
 

i 
ε 

N(r) 
 

 
 

  ε 
 

 
Example:  
For a RE (a|b) * a, the NFA construction is shown below. 

 
 
 

ε 

 
 
 

 

f 

 

a        a
 

(a | b) 

b 
b
 

 
  ε 

 

  a 
 

(a|b) 
*
 

ε 
Ε 

 

 
 

 ε 
 

  b 
  
ε 

 

 
  a 

 

(a|b) 
*
 a ε 

ε 
 

ε  

   

  b 
 

  ε 
 

 
ε a         ε 

 

 
ε 

b 
ε  

 
 

  
 

 
 
 
ε  

ε  
ε 
 
 
 
 
 
ε  

ε a   
ε 
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2.3.6 Converting NFA to DFA (Subset Construction) 
 
We merge together NFA states by looking at them from the point of view of the input characters: 

 
• From the point of view of the input, any two states that are connected by an   -transition 

may as well be the same, since we can move from one to the other without consuming 

any character. Thus states which are connected by an   -transition will be represented 

by the same states in the DFA.  

• If it is possible to have multiple transitions based on the same symbol, then we can 

regard a transition on a symbol as moving from a state to a set of states (ie. the union of 

all those states reachable by a transition on the current symbol). Thus these states will be 

combined into a single DFA state.  

 
To perform this operation, let us define two functions: 

 
• The   -closure function takes a state and returns the set of states reachable from it 

based on (one or more)   -transitions. Note that this will always include the state tself. 

We should be able to get from a state to any state in its   -closure without consuming 

any input.   
• The function move takes a state and a character, and returns the set of states reachable 

by one transition on this character.  

 
We can generalise both these functions to apply to sets of states by taking the union of 

the application to individual states. 
 

For Example, if A, B and C are states, move({A,B,C},`a') = move(A,`a')  move(B,`a') 

 move(C,`a'). 
 
The Subset Construction Algorithm is a follows: 

 
put ε-closure({s0}) as an unmarked state into the set of DFA (DS) 

 
while (there is one unmarked S1 in DS) do 

 
begin  

mark S1 
for each input symbol a 

do begin  
S2 ε-closure(move(S1,a)) if 

(S2 is not in DS) then  
add S2 into DS as an unmarked 

state transfunc[S1,a] S2  
end 

end 
 

• a state S in DS is an accepting state of DFA if a state in S is an accepting state of NFA   
• the start state of DFA is ε-closure({s0})  
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Example: 

 

 

 
ε 

2 
a 3 ε  

  
 

0   
ε

 

    
 

1    6   
ε

 
 

 ε    ε  

  

4 
b 5 

 

   
 

    
 

 

ε 
 
S0 = ε-closure({0}) = {0,1,2,4,7} S0 into DS as an unmarked state 

⇓ mark S0 
ε-closure(move(S0,a)) = ε-closure({3,8}) = {1,2,3,4,6,7,8} = 

S1 ε-closure(move(S0,b)) = ε-closure({5}) = {1,2,4,5,6,7} = S2  
transfunc[S0,a] S1 transfunc[S0,b] S2 ⇓ mark 

S1  
ε-closure(move(S1,a)) = ε-closure({3,8}) = {1,2,3,4,6,7,8} = 

S1 ε-closure(move(S1,b)) = ε-closure({5}) = {1,2,4,5,6,7} = S2  
transfunc[S1,a] S1 transfunc[S1,b] S2 ⇓ mark 

S2  
ε-closure(move(S2,a)) = ε-closure({3,8}) = {1,2,3,4,6,7,8} = 

S1 ε-closure(move(S2,b)) = ε-closure({5}) = {1,2,4,5,6,7} = S2  
transfunc[S2,a]   S1   transfunc[S2,b]   S2 

 
 
 
 

 

7 
a

 8 

 
 
 
 
 
 
 
S1 into DS  
S2 into DS 

 
S0 is the start state of DFA since 0 is a member of S0={0,1,2,4,7}  
S1 is an accepting state of DFA since 8 is a member of S1 = {1,2,3,4,6,7,8} 
 

 a  
 

 S1  
 

 a  
 

S0 b 
a 

 

 
  

b 
 

 

S2 

 

b 
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2.4 Lexical Analyzer Generator 

 

Regular Expressions   Lexical Analyzer Generator  Lexical Analyzer 
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Source Program Lexical Analyzer Tokens  

 
 

    

 
LEX is an example of Lexical Analyzer Generator. 

 
2.4.1 Input to LEX 

 
• The input to LEX consists primarily of Auxiliary Definitions and Translation Rules.   
• To write regular expression for some languages can be difficult, because their regular 

expressions can be quite complex. In those cases, we may use Auxiliary Definitions.   
• We can give names to regular expressions, and we can use these names as symbols to 

define other regular expressions.   
• An Auxiliary Definition is a sequence of the definitions of the form:   

d1 → r1 

d2 → r2  
.  
. 
dn  → rn 

 
where di is a distinct name and ri is a regular expression over symbols in 

Σ ∪ {d1,d 2,...,di-1} 
 

basic symbols previously defined names 
 

Example:  
For Identifiers in Pascal  

letter → A | B | ... | Z | a | b | ... | 

z digit → 0 | 1 | ... | 9  
id → letter (letter | digit ) * 

 
If we try to write the regular expression representing identifiers without using regular definitions, 
that regular expression will be complex.  

(A|...|Z|a|...|z) ( (A|...|Z|a|...|z) | (0|...|9) ) * 
 

Example:  
For Unsigned numbers in Pascal 

digit → 0 | 1 | ... | 9 

digits → digit +  
opt-fraction → ( . digits ) ? opt-

exponent → ( E (+|-)? digits ) ? 
unsigned-num → digits opt-fraction opt-exponent 

 
• Translation Rules comprise of a ordered list Regular Expressions and the Program Code to be 

executed in case of that Regular Expression encountered.  
 

R1 P1 

R2 P2 
.  

.  

Rn Pn 
 
• The list is ordered i.e. the RE’s should be checked in order. If a string matches more than 

one RE, the RE occurring higher in the list should be given preference and its Program Code 
is executed.  
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2.4.2 Implementation of LEX 
 

•The Regular Expressions are converted into NFA’s. The final states of each NFA correspond 
to some RE and its Program Code.  
•Different NFA’s are then converted to a single NFA with epsilon moves. Each final state of 
the NFA corresponds one-to-one to some final state of individual NFA’s i.e. some RE and its 
Program Code. The final states have an order according to the corresponding RE’s. If more 
than one final state is entered for some string, then the one that is higher in order is selected.  
•This NFA is then converted to DFA. Each final state of DFA corresponds to a set of states 
(having at least one final state) of the NFA. The Program Code of each final state (of the DFA) 
is the program code corresponding to the final state that is highest in order out of all the final 
states in the set of states (of NFA) that make up this final state (of DFA). 

 
Example: 

 
AUXILIARY DEFINITIONS 

(none) 
 

TRANSLATION RULES 
 

a {Action1} 
abb {Action2} 

a*b+ {Action2} 
 
First we construct an NFA for each RE and then convert this into a single NFA: 

 

 

a { action1 } 

abb{ action2 }  
a *b + { action3} 

 
start  

1 2 
 
start 

4  b 

  
 

3
  a 5 6 

 

start  
7 8 

 

ε  
start 0  ε 

 
 

ε 

 

1  2 

 

3  a 4  b 5  6 

 

7  8 

 
This NFA is now converted into a DFA. The transition table for the above DFA is as follows: 
 

State A b Token found 
    

0137 247 8 None 
    

247 7 58 a 
    

8 - 8 a*b+ 

7 7 8 None 
    

58 - 68 a*b+ 

68 - 8 abb 
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3. BASICS OF SYNTAX ANALYSIS 
 
• Syntax Analyzer creates the syntactic structure of the given source program.   
• This syntactic structure is mostly a parse tree.   
• Syntax Analyzer is also known as parser.   
• The syntax of a programming is described by a context-free grammar (CFG). We will use BNF 

(Backus-Naur Form) notation in the description of CFGs.   
• The syntax analyzer (parser) checks whether a given source program satisfies the rules 

implied by a context-free grammar or not.   
–  If it satisfies, the parser creates the parse tree of that program.  
–  Otherwise the parser gives the error messages.   

• A context-free grammar  
–  gives a precise syntactic specification of a programming language.  
–  the design of the grammar is an initial phase of the design of a compiler.  
–  a grammar can be directly converted into a parser by some tools.  

 
3.1 Parser 
 
• Parser works on a stream of tokens.   
• The smallest item is a token.   

source Lexical 
program Analyzer 
  

 
 

 
 

token 
  

 

Parser parse  

 
 

get next token 
 tree 

 

  
 

 
• We categorize the parsers into two groups:   
• Top-Down Parser  

–  the parse tree is created top to bottom, starting from the root.   
• Bottom-Up Parser  

–  the parse is created bottom to top; starting from the leaves   
• Both top-down and bottom-up parsers scan the input from left to right (one symbol at a time).   
• Efficient top-down and bottom-up parsers can be implemented only for sub-classes of 

context-free grammars.  
–  LL for top-down parsing  
–  LR for bottom-up parsing  

 
3.2 Context Free Grammars 
 
• Inherently recursive structures of a programming language are defined by a context-free 

grammar.   
• In a context-free grammar, we have:  

–  A finite set of terminals (in our case, this will be the set of tokens)  
–  A finite set of non-terminals (syntactic-variables)  
–  A finite set of productions rules in the following form   

A → α where A is a non-terminal and 
 

α is a string of terminals and non-terminals (including the empty string)   
–  A start symbol (one of the non-terminal symbol)   

• L(G) is the language of G (the language generated by G) which is a set of sentences.   
• A sentence of L(G) is a string of terminal symbols of G.   
• If S is the start symbol of G then  

(a) ω is a sentence of L(G) iff S ⇒ ω where ω is a string of terminals of G.   
• If G is a context-free grammar, L(G) is a context-free language.  
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• Two grammars are equivalent if they produce the same language.   
• S ⇒ α  

- If α contains non-terminals, it is called as a sentential form of G.   
- If α does not contain non-terminals, it is called as a sentence of G.  

 
3.2.1 Derivations 
 

Example:  
(b)  E → E + E  |  E – E  |  E * E  | E / E  |  - E  
(c) E → ( E )   
(d) E → id  

 

• E ⇒ E+E means that E+E derives from E   
–  we can replace E by E+E   
–  to able to do this, we have to have a production rule E→E+E in our grammar.   

• E ⇒ E+E ⇒ id+E ⇒ id+id means that a sequence of replacements of non-terminal symbols is 
called a derivation of id+id from E.   

• In general a derivation step is   
αAβ ⇒ αγβ if there is a production rule A→γ in our grammar  

where α and β are arbitrary strings of terminal and non-terminal 

symbols 
 

α1 ⇒ α2 ⇒ ... ⇒ αn        (αn derives from α1  or  α1 derives αn ) 

 

• At each derivation step, we can choose any of the non-terminal in the sentential form of G for 
the replacement.   

• If we always choose the left-most non-terminal in each derivation step, this derivation is called 
as left-most derivation.  

 
Example:  

 
E ⇒ -E ⇒ -(E) ⇒ -(E+E) ⇒ -(id+E) ⇒ -(id+id)  

 
• If we always choose the right-most non-terminal in each derivation step, this derivation is 

called as right-most derivation.  
 

Example:  
 

E ⇒ -E ⇒ -(E) ⇒ -(E+E) ⇒ -(E+id) ⇒ -(id+id)  
 
• We will see that the top-down parsers try to find the left-most derivation of the given source 

program.   
• We will see that the bottom-up parsers try to find the right-most derivation of the given source 

program in the reverse order.  
 
3.2.2 Parse Tree 
 
• Inner nodes of a parse tree are non-terminal symbols.   
• The leaves of a parse tree are terminal symbols.  
• A parse tree can be seen as a graphical representation of a derivation.  
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Example:          
 

E ⇒ -E 
E  

⇒ -(E) E  
⇒ -(E+E) E  

 

    
 

- E 
    

 

 - E   - E  
 

      
 

   ( E)   ( E ) 
 

 E    E E + E 
 

       
 

 - E   - E    
 

⇒ -(id+E) 
 

⇒ -(id+id) 
    

 

( E ( E ) 

  
 

 )    
 

 E + E  E + E   
 

 id    id  id   
 

 
3.2.3 Ambiguity 
 
• A grammar produces more than one parse tree for a sentence is called as an ambiguous 

grammar.   
• For the most parsers, the grammar must be unambiguous.   
• Unambiguous grammar  

Unique selection of the parse tree for a sentence   
• We should eliminate the ambiguity in the grammar during the design phase of the compiler.   
• An unambiguous grammar should be written to eliminate the ambiguity.   
• We have to prefer one of the parse trees of a sentence (generated by an ambiguous 

grammar) to disambiguate that grammar to restrict to this choice.   
• Ambiguous grammars (because of ambiguous operators) can be disambiguated according to 

the precedence and associativity rules.  
 

Example:  
 

To disambiguate the grammar E → E+E | E*E | E^E | id | (E), we can use precedence of 

operators as follows:  
 

^ (right to left) * 

(left to right) + 

(left to right) 
 

We get the following unambiguous grammar:  
E → E+T | T  
T → T*F | F  
F → G^F | G  
G → id | (E) 

 
3.3 Left Recursion 
 
•  A grammar is left recursive if it has a non-terminal A such that there is a derivation: 
 

A ⇒ Aα for some string α 
 
•  Top-down parsing techniques cannot handle left-recursive grammars. 
 
 
  
• So, we have to convert our left-recursive grammar into an equivalent grammar which is not 

left-recursive.  
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• The left-recursion may appear in a single step of the derivation (immediate left-recursion), or 

may appear in more than one step of the derivation.  
 
3.3.1 Immediate Left-Recursion 

 
A → A α | Β where β does not start with A 

⇓  Eliminate immediate left recursion 
A → β A’    

A’ → α A’ | ε an equivalent grammar 

In general,    
A → A α1 | ... | A αm | β1 | ... | βn where β1 ... βn do not start with A 

⇓   Eliminate immediate left recursion 
A → β1 A’ | ... | βn A’   

A’ → α1 A’ | ... | αm A’ | ε an equivalent grammar 
 
Example: 
 

E → E+T | T  
T → T*F | F  
F → id | (E) 

 
⇓ Eliminate immediate left recursion  

 
E → T E’  
E’ → +T E’ | ε  
T → F T’  
T’ → *F T’ | ε  
F → id | (E) 

 
• A grammar cannot be immediately left-recursive, but it still can be left-recursive.   
• By just eliminating the immediate left-recursion, we may not get a grammar which is not 

left-recursive.  
 

Example:  

 
S → Aa | b  
A → Sc | d 

 
This grammar is not immediately left-recursive, but it is still left-recursive. 

 
S ⇒ Aa ⇒ Sca 

 
Or 

 
A ⇒ Sc ⇒ Aac 

 
causes to a left-recursion 

 
• So, we have to eliminate all left-recursions from our grammar.  

 
 
3.3.2 Elimination 
 
Arrange non-terminals in some order: A1 ... An 
 

for i from 1 to n do {  
for j from 1 to i-1 do { replace 

each production 
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Ai → Aj 

γ by  
Ai → α1 γ | ... | αk γ 

where Aj → α1 | ... | 

αk 
}  

eliminate immediate left-recursions among Ai productions 
} 

 
Example: 
 
S → Aa | b  
A → Ac | Sd | f 
 
Case 1: Order of non-terminals: S, A 
 
for S:  

- we do not enter the inner loop.  
- there is no immediate left recursion in S.  

 
for A:  

- Replace A → Sd with A → Aad | bd 

So, we will have A → Ac | Aad | bd | f  
- Eliminate the immediate left-recursion in 

A A → bdA’ | fA’ 
A’ → cA’ | adA’ | ε 

 
So, the resulting equivalent grammar which is not left-recursive is:  

S → Aa | b  
A → bdA’ | fA’  
A’ → cA’ | adA’ | ε 

 
Case 2: Order of non-terminals: A, S 
 
for A:  

- we do not enter the inner loop.  
- Eliminate the immediate left-recursion in A   

A → SdA’ | fA’  
A’ → cA’ | ε 

 
for S:  

- Replace S → Aa with S → SdA’a | fA’a So, 

we will have S → SdA’a | fA’a | b  
- Eliminate the immediate left-recursion in 

S S → fA’aS’ | bS’  
S’ → dA’aS’ | ε 

 
So, the resulting equivalent grammar which is not left-recursive is:  

S → fA’aS’ | bS’ 
S’ → dA’aS’ | ε  
A → SdA’ | fA’  
A’ → cA’ | ε 

 
3.4 Left Factoring  
 

• A predictive parser (a top-down parser without backtracking) insists that the grammar 

must be left-factored.  
 

grammar   a new equivalent grammar suitable for predictive parsing  
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stmt → if expr then stmt else stmt  |  if expr then stmt 

 
• when we see if, we cannot now which production rule to choose to re-write stmt in the 

derivation   
• In general,  

 
A → βα1 |  βα2 where α is non-empty and the first symbols  

of β1 and β2 (if they have one)are different.  
• when processing α we cannot know whether expand   

A to βα1  or  
A to βα2  

• But, if we re-write the grammar as follows   
A → αA’  
A’ → β1 |  β2 so, we can immediately expand A to αA’ 

 
3.4.1 Algorithm 
 

• For each non-terminal A with two or more alternatives (production rules) with a common 

non-empty prefix, let say  
 

A → βα1 | ... | βαn | γ1 | ... | γm 
 

convert it into 
 

A → αA’ | γ1 | ... | γm  
A’ → β1 | ... | βn 

 
Example: 

 
A → abB | aB | cdg | cdeB | cdfB  

⇓  
A → aA’ | cdg | cdeB | 

cdfB A’ → bB | B 
⇓  

A → aA’ | cdA’’ 

A’ → bB | B  
A’’ → g | eB | fB 

 
Example: 

 
A → ad | a | ab | abc | b  

⇓  
A → aA’ | b 

 
 
 

A’ → d | ε | b | bc  
⇓  

A → aA’ | b  
A’ → d | ε | bA’’ 

A’’ → ε | c 
 
3.5 YACC 
 
YACC generates C code for a syntax analyzer, or parser. YACC uses grammar rules that allow it 

to analyze tokens from LEX and create a syntax tree. A syntax tree imposes a hierarchical structure 

on tokens. For example, operator precedence and associativity are apparent in the syntax tree. 
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The next step, code generation, does a depth-first walk of the syntax tree to generate code. Some 

compilers produce machine code, while others output assembly. 
 
YACC takes a default action when there is a conflict. For shift-reduce conflicts, YACC will shift. For 

reduce-reduce conflicts, it will use the first rule in the listing. It also issues a warning message 

whenever a conflict exists. The warnings may be suppressed by making the grammar 

unambiguous. 
 

... definitions ...  
%% 
... rules ...  
%% 
... subroutines ... 

 
Input to YACC is divided into three sections. The definitions section consists of token 

declarations, and C code bracketed by “%{“ and “%}”. The BNF grammar is placed in the 

rules section, and user subroutines are added in the subroutines section. 

 
4. TOP-DOWN PARSING 
 

• The parse tree is created top to bottom.   
• Top-down parser  

–  Recursive-Descent Parsing  
• Backtracking is needed (If a choice of a production rule does not work, we backtrack to 

try other alternatives.)  
• It is a general parsing technique, but not widely used.  
• Not efficient  

–  Predictive Parsing  

• No backtracking  
• Efficient  
• Needs a special form of grammars i.e. LL (1) grammars.  
• Recursive Predictive Parsing is a special form of Recursive Descent parsing without 

backtracking.   

• Non-Recursive (Table Driven) Predictive Parser is also known as LL (1) parser.  

 
4.1 Recursive-Descent Parsing (uses Backtracking)  
 

• Backtracking is needed.   
• It tries to find the left-most derivation.  

 
Example:   
If the grammar is S → aBc; B → bc | b and the input is abc:  

 
 S   S  

a B c a B c 
b  c  b  

 
 
4.2 Predictive Parser 
 

Grammar ----- ----- a grammar suitable for predictive 
 eliminate left parsing (a LL(1) grammar) 
 left recursion factor no %100 guarantee. 

 
• When re-writing a non-terminal in a derivation step, a predictive parser can uniquely choose a 

production rule by just looking the current symbol in the input string.  
 

Example:  
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stmt → if ...... |  
while ...... | 
begin ...... |  
for ..... 

 
• When we are trying to write the non-terminal stmt, we have to choose first production 

rule.   
• When we are trying to write the non-terminal stmt, we can uniquely choose the 

production rule by just looking the current token.  
• We eliminate the left recursion in the grammar, and left factor it. But it may not be 

suitable for predictive parsing (not LL (1) grammar).  

 

Recursive Predictive Parsing 
 
Each non-terminal corresponds to a procedure. 
 
Example:  
A → aBb | bAB 
 
proc A {  

case of the current token {  
‘a’:  - match the current token with a, and move to the next token; 

- call ‘B’;  
- match the current token with b, and move to the next token; ‘b’: - 

match the current token with b, and move to the next token;  

- call ‘A’;  
- call ‘B’;  

} 
} 
 
4.3.1 Applying ε-productions 
 

A → aA | bB | ε 
 

• If all other productions fail, we should apply an ε-production. For example, if the current 

token is not a or b, we may apply the ε-production.   
• Most correct choice: We should apply an ε-production for a non-terminal A when the 

current token is in the follow set of A (which terminals can follow A in the sentential 

forms).  
 
 
Example:  
A → aBe | cBd | C  
B → bB | ε  
C → f 
 
proc A {  

case of the current token { 
a: - match the current token with a and move to the next token;  

- call B;  
- match the current token with e and move to the next token;  

c: - match the current token with c and move to the next token;  
- call B;  
- match the current token with d and move to the next token;  

f: - call C //First Set of C 
} 

} 
 
proc C {  
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match the current token with f and move to the next token;  
} 
 
proc B {  

case of the current token { 
b: - match the current token with b and move to the next token;  

- call B  
e,d: - do nothing //Follow Set of B 

 
}  

} 
 
 
4.4 Non-Recursive Predictive Parsing -- LL(1) Parser 
 

• Non-Recursive predictive parsing is a table-driven parser.   
• It is a top-down parser.   
• It is also known as LL(1) Parser.  
 

input buffer 
 
 
 

stack  Non-recursive  output 

Predictive Parser 
 
 
 

Parsing Table 
 
 
input buffer  

–  our string to be parsed. We will assume that its end is marked with a special symbol $. 
 
output  

– a production rule representing a step of the derivation sequence (left-most derivation) of 

the string in the input buffer.  
 
stack  

–  contains the grammar symbols  
–  at the bottom of the stack, there is a special end marker symbol $.  
–  initially the stack contains only the symbol $ and the starting symbol S. ($S initial stack)  
–  when the stack is emptied (i.e. only $ left in the stack), the parsing is completed.  

 
parsing table  

–  a two-dimensional array M[A,a]  
–  each row is a non-terminal symbol  
–  each column is a terminal symbol or the special symbol $  
–  each entry holds a production rule.  

 
4.4.1 Parser Actions 
 
The symbol at the top of the stack (say X) and the current symbol in the input string (say a) 

determine the parser action. There are four possible parser actions. 
 
• If X and a are $ parser halts (successful completion)  
 
• If X and a are the same terminal symbol (different from $)  

parser pops X from the stack, and moves the next symbol in the input buffer.  
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• If X is a non-terminal parser looks at the parsing table entry M[X,a]. If M[X,a] holds a 

production rule X→Y1Y2...Yk, it pops X from the stack and pushes Yk,Yk-1,...,Y1 into the 

stack. The parser also outputs the production rule X→Y1Y2...Yk to represent a step of the 
derivation. 

 
• None of the above error  

–   All empty entries in the parsing table are errors.  
–   If X is a terminal symbol different from a, this is also an error case.  

 
Example:  
For the Grammar is S → aBa; B → bB | ε and the following LL(1) parsing table: 
 

  a  b  $  
 

         

 S S → aBa      
 

        
 

 B B → ε  B → bB    
 

        
 

stack input   output 
 

$S abba$ S → aBa 
 

$aBa abba$ 
B → bB 

 

$aB bba$   
 

$aBb bba$   
B → bB 

 

$aB ba$   
 

$aBb ba$   
B → ε 

 

$aB a$   
 

$a   a$   
 

$    $  accept, successful completion 
 

Outputs: S → aBa    B → bB B → bB B → ε   
 

 
Derivation (left-most):  S⇒aBa⇒abBa⇒abbBa⇒abba 
 

S 
 

 

a B a 
 

 

b B 
 

 

b B 

 

ε 
 
4.4.2 Constructing LL(1) parsing tables 
 

• Two functions are used in the construction of LL(1) parsing tables -FIRST & FOLLOW   
• FIRST(α) is a set of the terminal symbols which occur as first symbols in strings derived from α 

where α is any string of grammar symbols.  
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• if α derives to ε, then ε is also in FIRST(α) .   
• FOLLOW(A) is the set of the terminals which occur immediately after (follow) the non-terminal 

A in the strings derived from the starting symbol.  
– A terminal a is in FOLLOW(A)  if  S ⇒ αAaβ  
– $ is in FOLLOW(A) if  S ⇒ αA 

 
To Compute FIRST for Any String X:  
• If X is a terminal symbol   FIRST(X)={X}   
• If X is a non-terminal symbol and X → ε is a production rule   ε is in FIRST(X).   
• If X is a non-terminal symbol and X → Y1Y2..Yn is a production rule  

if a terminal a in FIRST(Yi) and ε is in all FIRST(Yj) for j=1,...,i-1 then a is in FIRST(X). 

if ε is in all FIRST(Yj) for j=1,...,n then ε is in FIRST(X).   
• If X is ε  FIRST(X)={ε}   
• If X is Y1Y2..Yn  

if a terminal a in FIRST(Yi) and ε is in all FIRST(Yj) for j=1,...,i-1 then a is in FIRST(X). 

if ε is in all FIRST(Yj) for j=1,...,n then ε is in FIRST(X).  
 
To Compute FOLLOW (for non-terminals):  
•  If S is the start symbol $ is in FOLLOW(S) 
•  If A → αBβ is a production rule   everything in FIRST(β) is FOLLOW(B) except ε  
• If ( A → αB is a production rule ) or ( A → αBβ is a production rule and ε is in FIRST(β) ) 

everything in FOLLOW(A) is in FOLLOW(B).   
• Apply these rules until nothing more can be added to any follow set.  
 
Algorithm for Constructing LL(1) Parsing Table:  
• for each production rule A → α of a grammar G   

– for each terminal a in FIRST(α)    add A → α to M[A,a]  
– If ε in FIRST(α)    for each terminal a in FOLLOW(A) add A → α to M[A,a] 
– If ε in FIRST(α) and $ in FOLLOW(A)    add A → α to M[A,$] 

•  All other undefined entries of the parsing table are error entries. 
 
 
Example:  

E → TE’   

E’ → +TE’ | ε 
T → FT’   

T’ → *FT’ | ε 
F → (E)  | id 

 
FIRST(F) =  {(,id} 
 
FIRST(T’) = {*, ε} 
 
FIRST(T) = {(,id} 
 
FIRST(E’) = {+, ε} 
 
FIRST(E) = {(,id} 
 
FIRST(TE’) = {(,id} 
 
FIRST(+TE’ ) = {+} 
 
FIRST(ε) = {ε} 
 
FIRST(FT’) = {(,id} 

 
 
 
 
 
 
 
 
 

 
FIRST(*FT’) = {*} 
 
FIRST((E)) = {(} 
 
FIRST(id) = {id} 
 
 
FOLLOW(E) = { $, ) } 

FOLLOW(E’) = { $, ) } 

FOLLOW(T) = { +, ), $ } 

FOLLOW(T’) = { +, ), $ } 

FOLLOW(F) = {+, *, ), $ } 
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   LL(1) Parsing Table      

E → TE’  FIRST(TE’)={(,id} E → TE’  into M[E,(] and M[E,id] 

E’ → +TE’  FIRST(+TE’ )={+} E’ → +TE’ into M[E’,+]  

E’ → ε  FIRST(ε)={ε}  none      
   but since ε in FIRST(ε)        

   and FOLLOW(E’)={$,)} E’ → ε into M[E’,$] and M[E’,)] 

T → FT’  FIRST(FT’)={(,id} T → FT’ into M[T,(] and M[T,id]  

T’ → *FT’  FIRST(*FT’ )={*}  T’ → *FT’ into M[T’,*]  

T’ → ε  FIRST(ε)={ε}  none      
   but since ε in FIRST(ε)        

   and FOLLOW(T’)={$,),+}   T’ → ε into M[T’,$], M[T’,)] and M[T’,+] 

F → (E)  FIRST((E) )={(}  F → (E) into M[F,(]    

F → id  FIRST(id)={id}  F → id into M[F,id]    
             

  id +  *   (  )  $ 
            

 E E → TE’     E → TE’     
             

 E’  E’ → +TE’       E’ → ε  E’ → ε 
            

 T T → FT’     T → FT’     
            

 T’  T’ → ε  T’ → *FT’    T’ → ε  T’ → ε 
            

 F F → id     F → (E)     
             

 
4.4.3 LL(1) Grammars 
 

LL(1)  

input scanned from  left to right 

left most 
derivation 

 
 
 
 
 

 

one input symbol used as a look-

head symbol do determine parser 

action 

 
• A grammar whose parsing table has no multiply-defined entries is said to be LL(1) grammar.   
• The parsing table of a grammar may contain more than one production rule. In this case, we 

say that it is not a LL(1) grammar.   
• A grammar G is LL(1) if and only if the following conditions hold for two distinctive production   

rules  A → α and  A → β:  
1. Both α and β cannot derive strings starting with same terminals.   
2. At most one of α and β can derive to ε.   
3. If β can derive to ε, then α cannot derive to any string starting with a terminal in 

FOLLOW(A). 
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4.4.4 Non- LL(1) Grammars 
 
Example:  
S → i C t S E  |  a  
E → e S  |  ε  
C → b 
 
FOLLOW(S) = { $,e }  
FOLLOW(E) = { $,e }  
FOLLOW(C) = { t } 
 
FIRST(iCtSE) = {i}  
FIRST(a) = {a} 
FIRST(eS) = {e} 
FIRST(ε) = {ε}  
FIRST(b) = {b} 

 
 
 
 
 
 
 
 
 
 

 a b  e i t $ 
 

        
 

S S → a    S → iCtSE   
 

        
 

E 
   E → e S   

E → ε 
 

   E → ε   
 

       
 

C  C → b     
 

         

   two production rules for M[E,e]  
 

 
 
The Problem with multiple entries here is that of Ambiguity. 
 
• What do we have to do it if the resulting parsing table contains multiply defined entries?  

–  If we didn’t eliminate left recursion, eliminate the left recursion in the grammar.  
–  If the grammar is not left factored, we have to left factor the grammar.  
– If its (new grammar’s) parsing table still contains multiply defined entries, that grammar is 

ambiguous or it is inherently not a LL(1) grammar.  
• A left recursive grammar cannot be a LL(1) grammar.  

–  A → Aα | β   
any terminal that appears in FIRST(β ) also appears FIRST(Aα) because Aα ⇒ βα. If 

β is ε, any terminal that appears in FIRST(α) also appears in FIRST(Aα) and  
FOLLOW(A). 

• A grammar is not left factored, it cannot be a LL(1) grammar  
–  A → αβ1 | αβ2   

any terminal that appears in FIRST(αβ1) also appears in FIRST(αβ2).  
•  An ambiguous grammar cannot be a LL(1) grammar.
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5. BASIC BOTTOM-UP PARSING TECHNIQUES 
 
• A bottom-up parser creates the parse tree of the given input starting from leaves towards the 

root.   
• A bottom-up parser tries to find the right-most derivation of the given input in the reverse 

order.   
(a) S ⇒ ... ⇒ ω (the right-most derivation of ω)   
(b) ← (the bottom-up parser finds the right-most derivation in the reverse order) 

 
• Bottom-up parsing is also known as shift-reduce parsing because its two main actions are shift 

and reduce.   
–  At each shift action, the current symbol in the input string is pushed to a stack.  
– At each reduction step, the symbols at the top of the stack (this symbol sequence is the 

right side of a production) will replaced by the non-terminal at the left side of that 
production.   

–  There are also two more actions: accept and error.  
 
5.1 Shift-Reduce Parsing 
 

• A shift-reduce parser tries to reduce the given input string into the starting symbol.   
• At each reduction step, a substring of the input matching to the right side of a production rule 

is replaced by the non-terminal at the left side of that production rule.   
• If the substring is chosen correctly, the right most derivation of that string is created in the 

reverse order.  
 
Example:  
For Grammar S → aABb; A → aA | a; B → bB | b and Input string aaabb, 
 

aaabb  
⇒ aaAbb   
⇒ aAbb   
⇒ aABb  
⇒ S  

 
The above reduction corresponds to the following rightmost derivation:  

S ⇒ aABb ⇒ aAbb ⇒ aaAbb ⇒ aaabb 
 
 
5.1.1 Handle 
 
• Informally, a handle of a string is a substring that matches the right side of a production rule.  

- But not every substring that matches the right side of a production rule is handle.   
• A handle of a right sentential form γ (≡ αβω) is a production rule A → β and a position of γ 

where the string β may be found and replaced by A to produce the previous right-

sentential form in a rightmost derivation of γ.  
 

S ⇒ αAω ⇒ αβω  

 

• If the grammar is unambiguous, then every right-sentential form of the grammar has exactly 
one handle.   

• We will see that ω is a string of terminals.  
 
• A right-most derivation in reverse can be obtained by handle-pruning.  
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S=γ0 ⇒ γ1 ⇒ γ2 ⇒ ... ⇒ γn-1 ⇒ γn= ω 

 
input string 

 
• Start from γn, find a handle An→βn in γn, and replace βn in by An to get γn-1.   
• Then find a handle An-1→βn-1 in γn-1, and replace βn-1 in by An-1 to get γn-2.  
• Repeat this, until we reach S.  
 
Example: 
 
E → E+T | T  
T → T*F | F  
F → (E) | id 
 
Right-Most Derivation of id+id*id is  
E ⇒ E+T ⇒ E+T*F ⇒ E+T*id ⇒ E+F*id⇒ E+id*id ⇒ T+id*id ⇒ F+id*id ⇒ id+id*id 
 
Right-Most Sentential Form Reducing Production  
id+id*id F → id  
F+id*id T → F  
T+id*id E → T  
E+id*id F → id  
E+F*id T → F  
E+T*id F → id  
E+T*F T → T*F  
E+T E → E+T  
E 
 
Handles are underlined in the right-sentential forms. 
 
5.1.2 Stack Implementation 
 

• There are four possible actions of a shift-parser action:   
• Shift : The next input symbol is shifted onto the top of the stack.   
• Reduce: Replace the handle on the top of the stack by the non-terminal.   
• Accept: Successful completion of parsing.   
• Error: Parser discovers a syntax error, and calls an error recovery routine.   

• Initial stack just contains only the end-marker $.   
• The end of the input string is marked by the end-marker $.  
 
Example:    

Stack Input Action  

$ id+id*id$ shift  
$id +id*id$ reduce by F → id  

$F +id*id$ reduce by T → F  
$T +id*id$ reduce by E → T  

$E +id*id$ shift  

$E+ id*id$ shift  

$E+id *id$ reduce by F → id  
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$E+F *id$ reduce by T → F 
$E+T *id$ shift 
$E+T* id$ shift 
$E+T*id $ reduce by F → id 
$E+T*F $ reduce by T → T*F 
$E+T $ reduce by E → E+T 
$E $ accept 

 
 
5.1.3 Conflicts during Shift Reduce Parsing 
 

• There are context-free grammars for which shift-reduce parsers cannot be used.   
• Stack contents and the next input symbol may not decide action:   

– shift/reduce conflict: Whether make a shift operation or a reduction.  
– reduce/reduce conflict: The parser cannot decide which of several reductions to make.  

• If a shift-reduce parser cannot be used for a grammar, that grammar is called as non-LR(k) 
grammar.  

 

LR (k) 
 
 
input scanned from  

left to right Right most derivation 

 
 
 

 

k input symbols used as a look-

head symbol do determine 

parser action 

 

•  An ambiguous grammar can never be a LR grammar. 
 
5.1.4 Types of Shift Reduce Parsing 
 

There are two main categories of shift-reduce parsers 
 

1. Operator-Precedence Parser   
–   simple, but only a small class of grammars.  

 
2. LR-Parsers   

–   Covers wide range of grammars.  
• SLR – Simple LR parser  
• CLR – most general LR parser (Canonical LR)  
• LALR – intermediate LR parser (Look Ahead LR)  

–   SLR, CLR and LALR work same, only their parsing tables are different.   
CFG 

 
CLR 

 
LALR 

 
SLR 
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5.2 Operator Precedence Parsing 

 

• Operator grammar   
– small, but an important class of grammars  
– we may have an efficient operator precedence parser (a shift-reduce parser) for an 

operator grammar.  
• In an operator grammar, no production rule can have:   

– ε at the right side  
– two adjacent non-terminals at the right side.  

 
Examples:   

E→AB E→EOE E→E+E | 
A→a E→id E*E | 
B→b O→+|*|/ E/E | id 

not operator grammar not operator grammar operator grammar 
 
 
5.2.1 Precedence Relations 

 

• In operator-precedence parsing, we define three disjoint precedence relations between certain 
pairs of terminals.  

 
a <. b b has higher precedence than a a 
=· b b has same precedence as a  
a .> b  b has lower precedence than a 

 
• The determination of correct precedence relations between terminals are based on the 

traditional notions of associativity and precedence of operators. (Unary minus causes a 
problem).   

• The intention of the precedence relations is to find the handle of a right-sentential form, 
<. with marking the left end,   
=· appearing in the interior of the handle, and  
.> marking the right hand.  

• In our input string $a1a2...an$, we insert the precedence relation between the pairs of terminals  
(the precedence relation holds between the terminals in that 

pair). Example: 
 
E → E+E | E-E | E*E | E/E | E^E | (E) | -E | id  
The partial operator-precedence table for this grammar is as shown. 
 
 
Then the input string id+id*id with the precedence relations inserted will 

be: 
 

$ <. id .> + <. id .> * <. id .> $ 
 
5.2.2 Using Precedence relations to find Handles 

 
 
 
 

 id + * $ 
     

id  .> .> .> 
     

+ <. .> <. .> 
     

* <. .> .> .> 
     

$ <. <. <.  
     

 

• Scan the string from left end until the first .> is encountered.   
• Then scan backwards (to the left) over any =· until a <.  is encountered.  

• The handle contains everything to left of the first .> and to the right of the <.  is encountered.  
 
The handles thus obtained can be used to shift reduce a given string. 
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Operator-Precedence Parsing Algorithm 
 
• The input string is w$, the initial stack is $ and a table holds precedence relations between 

certain terminals  
 
5.2.3 Parsing Algorithm 
 
The input string is w$, the initial stack is $ and a table holds precedence relations between certain 

terminals. 
 
set p to point to the first symbol of w$ ; 

repeat forever  
if ( $ is on top of the stack and p points to $ ) then return 
else {  

let a be the topmost terminal symbol on the stack and let b be the symbol pointed 
to by p;  
if ( a <. b or a =· b ) then { /* SHIFT */ push 

b onto the stack;  
advance p to the next input symbol; 

}  
else if ( a .> b ) then /* REDUCE */ 

repeat pop stack  
until ( the top of stack terminal is related by <. to the terminal most 

recently popped);  
else error(); 

} 
 
Example: 
 
stack input 
 
$ id+id*id$  
$id +id*id$ 
$ +id*id$  
$+ id*id$  
$+id *id$  
$+ *id$ 
$+* id$  
$+*id $  
$+* $  
$+ $  
$ $ 

 
action 
 
$ <. id  shift 
id .> +  reduce E → id 
shift 
shift 
id .> *  reduce E → id  
shift 
shift 
id .> $  reduce E → id 
* .> $   reduce E → E*E 
+ .> $  reduce E → E+E  
accept 

 
 
5.2.4 Creating Operator-Precedence Relations from Associativity and Precedence 
 

1. If operator O1 has higher precedence than operator O2, 

O1 .> O2 and O2 <. O1 
 

2. If operator O1 and operator O2 have equal precedence, 

they are left-associative O1 .> O2 and O2 .> O1 they are 

right-associative O1 <. O2 and O2 <. O1 
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3. For all operators O,   

 O <. id, id .> O,  O <. (, (<. O,  O .> ), ) .> O,  O .> $, and  $ <. O 

4. Also, let    
 (=·) $ <. ( id .> ) ) .> $ 
 ( <. ( $ <. id id .> $ ) .> ) 
 ( <. id    

 
Example: 
 
The complete table for the Grammar E → E+E | E-E | E*E | E/E | E^E | (E) | -E | id is: 
 

 + - * / ^ id ( ) $ 
          

+ .> .> <. <. <. <. <. .> .> 
          

- .> .> <. <. <. <. <. .> .> 
          

* .> .> .> .> <. <. <. .> .> 
          

/ .> .> .> .> <. <. <. .> .> 
          

^ .> .> .> .> <. <. <. .> .> 
          

id .> .> .> .> .>   .> .> 
          

( <. <. <. <. <. <. <. =·  
          

) .> .> .> .> .>   .> .> 
          

$ <. <. <. <. <. <. <.   
          

 
5.2.5 Operator-Precedence Grammars 
 

There is another more general way to compute precedence relations among terminals: 
 

1. a = b if there is a right side of a production of the form αaβbγ, where β is either 

a single non-terminal or ε.   
2. a < b if for some non-terminal A there is a right side of the form αaAβ and A derives 

to γbδ where γ is a single non-terminal or ε.   
3. a > b if for some non-terminal A there is a right side of the form αAbβ and A derives 

to γaδ where δ is a single non-terminal or ε.  
 

Note that the grammar must be unambiguous for this method. Unlike the previous 

method, it does not take into account any other property and is based purely on 

grammar productions. An ambiguous grammar will result in multiple entries in the table 

and thus cannot be used. 
 
5.2.6 Handling Unary Minus 
 

• Operator-Precedence parsing cannot handle the unary minus when we also use 

the binary minus in our grammar.   
• The best approach to solve this problem is to let the lexical analyzer handle this problem.  

– The lexical analyzer will return two different operators for the unary minus and 

the binary minus.  
 

 
– The lexical analyzer will need a look ahead to distinguish the binary minus from 

the unary minus.  
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• Then, we make   
O <. unary-minus for any operator 
unary-minus .> O if unary-minus has higher precedence than O  
unary-minus <. O if unary-minus has lower (or equal) 

precedence than O 
 
5.2.7 Precedence Functions 

 

• Compilers using operator precedence parsers do not need to store the table of precedence 
relations.   

• The table can be encoded by two precedence functions f and g that map terminal symbols 
to integers.   

• For symbols a and b.  
f(a) < g(b) whenever a <. b 
f(a) = g(b) whenever a =· b 

f(a) > g(b) whenever a .> b 
 
5.2.8 Advantages and Disadvantages 
 

• Advantages:   
– simple  
– powerful enough for expressions in programming languages  

 

• Disadvantages:  
– It cannot handle the unary minus (the lexical analyzer should handle  the unary minus).  
– Small class of grammars.   
– Difficult to decide which language is recognized by the grammar.  

 
6. LR PARSING 
 

LR parsing is attractive because:  
– LR parsing is most general non-backtracking shift-reduce parsing, yet 

it is still efficient.   
– The class of grammars that can be parsed using LR methods is a proper 

superset of the class of grammars that can be parsed with predictive 

parsers.   
LL(1)-Grammars ⊂ LR(1)-Grammars  

– An LR-parser can detect a syntactic error as soon as it is possible to do so 

a left-to-right scan of the input.  
 
6.1 Parser Configuration  
 
 

stack 
                 

 

  

input a1 ... 
 

ai ... 
 

an 
 

$ 
  

 

        
 

Sm 
                 

 

                 
 

                  
 

Xm                  
 

                  
 

Sm-1 
               

output 

 

     

LR Parsing Algorithm 

   
 

         
 

Xm-1 
          

 

                 
 

                   

                  
 

.                  
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.   Action Table       Goto Table 
 

  

s 

Terminals and $   

s 

  Non-terminals 
 

S1 
               

 

               
 

  t four different      t  each item is 
 

X1  a actions      a  a state number 
 

  t        t        
 

S0 
            

 

 e        e        
 

                  
 

                   

                  
 

 
 

• A configuration of a LR parsing is:  
 

( So X1 S1 ... Xm Sm, ai ai+1 ... an $ ) 
 
 
 

Stack Rest of Input 
 

• Sm and ai decides the parser action by consulting the parsing action table. (Initial 

Stack contains just So )  
 

• A configuration of a LR parsing represents the right sentential form:  
 

X1 ... Xm ai ai+1 ... an $ 
6.2 Parser Actions  
 

1.  shift s -- shifts the next input symbol and the state s onto the stack   
( So X1 S1 ... Xm Sm, ai ai+1 ... an $ ) ( So X1 S1 ... Xm Sm ai s, 

ai+1 ... an $ ) 
 

2.  reduce A→β (or rn where n is a production number)  
–   pop 2|β| (=r) items from the stack; let us assume that β = Y1Y2...Yr   
– then push A and s where s=goto[sm-r,A] 

 
( So X1 S1 ... Xm Sm, ai ai+1 ... an $ )  (So X1 S1 ... Xm-r Sm-r A s, ai ... an $ ) 

 
–   Output is the reducing production reduce A→β   
–   In fact, Y1Y2...Yr is a handle.   

X1 ... Xm-r A ai ... an $ ⇒ X1 ... Xm Y1...Yr ai ai+1 ... an $  
3. Accept – Parsing successfully completed.  
4. Error -- Parser detected an error (an empty entry in the action table)  

 
Example: 
 
Let following be the grammar and its LR parsing table. 
 

   1) E → E+T       

   2) E → T       

   3) T → T*F       

   4) T → F       

   5) F → (E)       

   6) F → id       

   Action     Goto  

state id + * ( ) $  E  T F 

0 s5   s4    1  2 3 
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1  s6    acc      
            

2  r2 s7  r2 r2      
            

3  r4 r4  r4 r4      
            

4 s5   s4    8  2 3 
            

5  r6 r6  r6 r6      
            

6 s5   s4      9 3 
            

7 s5   s4       10 
            

8  s6   s11       
            

9  r1 s7  r1 r1      
            

10  r3 r3  r3 r3      
            

  r5 r5  r5 r5      
            

 
The action of the parser would be as follows: 
 
 
stack input Action output 
0 id*id+id$ shift 5  

0id5 *id+id$ reduce by F→id F→id 
0F3 *id+id$ reduce by T→F T→F 
0T2 *id+id$ shift 7  

0T2*7 id+id$ shift 5  

0T2*7id5 +id$ reduce by F→id F→id 
0T2*7F10 +id$ reduce by T→T*F T→T*F 
0T2 +id$ reduce by E→T E→T 
0E1 +id$ shift 6  

0E1+6 id$ shift 5  

0E1+6id5 $ reduce by F→id F→id 
0E1+6F3 $ reduce by T→F T→F 
0E1+6T9 $ reduce by E→E+T E→E+T 
0E1 $ accept  
 
 
6.3 Constructing SLR Parsing tables 
 
• An LR parser using SLR parsing tables for a grammar G is called as the SLR parser for G.   
• If a grammar G has an SLR parsing table, it is called SLR grammar.  
• Every SLR grammar is unambiguous, but every unambiguous grammar is not a SLR 

grammar.  

• Augmented Grammar: G’ is G with a new production rule S’→S where S’ is the new starting 

symbol.  
 
6.3.1 LR(0) Items 
 

• An LR(0) item of a grammar G is a production of G a dot at the some position of the right 

side.  

Example:   
A → aBb 

 
Possible LR(0) Items (four different possibility):  
A → .aBb  
A → a.Bb  
A → aB.b  
A → aBb. 
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• Sets of LR(0) items will be the states of action and goto table of the SLR parser.   
• A collection of sets of LR(0) items (the canonical LR(0) collection) is the basis for 

constructing SLR parsers.  
 
6.3.2 Closure Operation 
 

If I is a set of LR(0) items for a grammar G, then closure(I) is the set of LR(0) items 

constructed from I by the two rules: 
 

1. Initially, every LR(0) item in I is added to closure(I).  
2. If A → α.Bβ is in closure(I) and Bγ→ is a production rule of G; then B→.γ 

 will be in the closure(I). We will apply this rule 
until no more new LR(0) items can be added to closure(I). 

 
Example: 

 
E’ → E ; E → E+T; E → T; T → T*F; T → F; F → (E); F → id  
closure({E’ → .E}) = { E’ → .E, E → .E+T, E → .T, T → .T*F, T → .F, F → .(E), F → .id } 
 
6.3.3 GOTO Operation 
 

If I is a set of LR(0) items and X is a grammar symbol (terminal or non-terminal), 

then goto(I,X) is defined as follows:  
–   If A → α.Xβ in I then every item in closure({A → αX.β}) will be in goto(I,X).  

 
Example:  

I = { E’ → .E, E → .E+T, E → .T, T → .T*F, T → .F, F → .(E), F → 

.id } goto(I,E) = { E’ → E., E → E.+T } 
goto(I,T) = { E → T., T → 

T.*F } goto(I,F) = {T → F. }  
goto(I,() = {F→ (.E), E→ .E+T, E→ .T, T→ .T*F, T→ .F, F→ .(E), F→ 

.id } goto(I,id) = { F → id. } 
 
6.3.4 Construction of The Canonical LR(0) Collection 
 

To create the SLR parsing tables for a grammar G, we will create the canonical 

LR(0) collection of the grammar G’. 
 

Algorithm:  
C is { closure({S’→.S}) }  
repeat the followings until no more set of LR(0) items can be added to 

C. for each I in C and each grammar symbol X  
if goto(I,X) is not empty and not in 

C add goto(I,X) to C 
 

GOTO function is a DFA on the sets in C. 
 
Example:    

For grammar used above, Canonical LR(0) items are as follows-  

I0: E’ → .E I1: E’ → E. I6: E → E+.T I9: E → E+T. 
E → .E+T E → E.+T T → .T*F T → T.*F 
E → .T  T → .F  

T → .T*F I2: E → T. F → .(E) I10: T → T*F. 
T → .F T → T.*F F → .id  

F → .(E)    

F → .id I3: T → F. I7: T → T*.F I11: F → (E). 
  F → .(E)  

 I4: F → (.E) F → .id  

 E → .E+T   
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 E → .T I8: F → (E.)  

 T → .T*F E → E.+T  

 T → .F   

 F → .(E)   

 F → .id   
 

I5: F → id. 
 

 

Transition Diagram (DFA) of GOTO Function is as follows-   
 

I0 E I1 +  I6 T I9 * to I7 
 

      F to I3   
 

 
T 

    ( to I4   
 

     

id to I5 
  

 

        
 

 F I2 *  I7 
F I10 

  
 

        
 

  
I3 

   ( 
to I4 

  
 

     
id 

  
 

  

( 
   

to I5 
  

 

        
 

 id I4 E  I8 )    
 

   

T I11 
  

 

  id  
to I2 + 

  
 

    F    
 

  

I5 

 

to I3 

 

to I6 

  
 

   (    
 

         
 

to I4  
6.3.5 Parsing Table  
 

1. Construct the canonical collection of sets of LR(0) items for G’.   
C←{I0,...,In}  

2. Create the parsing action table as follows   
a.  If a is a terminal, Aα→.aβ in Ii and goto(Ii,a)=Ij then action[i,a] is shift j.   
b. If Aα→. is in Ii , then action[i,a] is reduce Aα→ for all a in FOLLOW(A) where 

A≠S’. 
c. If S’→S. is in Ii , then action[i,$] is accept.   
d. If any conflicting actions generated by these rules, the grammar is not SLR(1).  

3. Create the parsing goto table  
a. for all non-terminals A, if goto(Ii,A)=Ij then goto[i,A]=j  

4. All entries not defined by (2) and (3) are errors.   
5. Initial state of the parser contains S’→.S  

 
Example:             

For the Grammar used above, SLR Parsing table is as follows:     
    Action      Goto  

 state id + * ( ) $   E  T F 

 0 s5   s4     1  2 3 
              

 1  s6    acc       
              

 2  r2 s7  r2 r2       
              

 3  r4 r4  r4 r4       
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 4 s5   s4     8  2 3 
              

 5  r6 r6  r6 r6       
              

 6 s5   s4       9 3 
              

7 s5   s4      10 
           

8  s6   s11      
           

9  r1 s7  r1 r1     
           

10  r3 r3  r3 r3     
           

11  r5 r5  r5 r5     
           

 
6.3.6 shift/reduce and reduce/reduce conflicts 
 

• If a state does not know whether it will make a shift operation or reduction for a terminal, 

we say that there is a shift/reduce conflict.  
 

Example:    
 

S → L=R I0: S’ → .S I1: S’ → S. I6: S → L=.RI9: S → L=R. 
 

S → R S → .L=R  R → .L 
 

L→ *R S → .R I2: S → L.=R L→ .*R 
 

L → id L → .*R R → L. L → .id 
 

R → L L → .id   
 

 R → .L I3: S → R.  
 

 
Problem in I2 

I4: L → *.R I7: L → *R. 
 

 R → .L  
 

FOLLOW(R)={=,$} L→ .*R I8: R → L. 
 

= shift 6 L → .id  
 

& reduce by R → L   
 

shift/reduce conflict I5: L → id.  
 

 
• If a state does not know whether it will make a reduction operation using the production 

rule i or j for a terminal, we say that there is a reduce/reduce conflict.  
 

Example: 
 

S → AaAb I0: S’ → .S  
S → BbBa S → .AaAb  
A → ε S → .BbBa  
B → ε A → .  

B → . 
 
Problem  

FOLLOW(A)={a,b}  
FOLLOW(B)={a,b} 

 
a reduce by A → ε 

reduce by B → ε 

reduce/reduce conflict 

 
 
 
 
 
 

b reduce by A → ε 

reduce by B → ε 

reduce/reduce conflict 

 
If the SLR parsing table of a grammar G has a conflict, we say that that grammar is not SLR 

grammar. 
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6.4 Constructing Canonical LR(1) Parsing tables 
 

• In SLR method, the state i makes a reduction by Aα→ when the current token is a:   
– if the Aα→. in the Ii and a is FOLLOW(A) 

 
• In some situations, βA cannot be followed by the terminal a in a right-sentential form 

when αβ and the state i are on the top stack. This means that making reduction in this 

case is not correct.  
 

S → AaAb S⇒AaAb⇒Aab⇒ab S⇒BbBa⇒Bba⇒ba 
S → BbBa   

A → ε Aab ⇒ ε ab Bba ⇒ ε ba 
B → ε AaAb ⇒ Aa ε b BbBa ⇒ Bb ε a 

 
6.4.1 LR(1) Item 
 

• To avoid some of invalid reductions, the states need to carry more information.   
• Extra information is put into a state by including a terminal symbol as a second 

component in an item.  
 

• A LR(1) item is:   
A → α.β,a where a is the look-head of the LR(1)  

item 
(a is a terminal or end-marker.) 

• When β ( in the LR(1) item A → α.β,a ) is not empty, the look-head does not have any 

affect.  

• When β is empty (A → α.,a ), we do the reduction by Aα→ only if the next input symbol 

is a (not for any terminal in FOLLOW(A)).  
 

• A state will contain A → α.,a1 where {a1,...,an} ⊆ FOLLOW(A)  
...  

A → α.,an 
 
6.4.2 Closure and GOTO Operations 
 
closure(I) is:  ( where I is a set of LR(1) items)  

– every LR(1) item in I is in closure(I)  
– if Aα→.Bβ,a in closure(I) and Bγ→ is a production rule of G; then B→.γ,b  

will be in the closure(I) for each terminal b in FIRST(βa) . 
 

If I is a set of LR(1) items and X is a grammar symbol (terminal or non-terminal), then 

goto(I,X) is defined as follows:  
–   If A → α.Xβ,a in I then every item in closure({A → αX.β,a}) will be in goto(I,X).  

 
6.4.3 Construction of The Canonical LR(1) Collection  
 

Algorithm:  
C is { closure({S’→.S,$}) }  
repeat the followings until no more set of LR(1) items can be added to 
C. for each I in C and each grammar symbol X  
if goto(I,X) is not empty and not in C 

add goto(I,X) to C 
 

GOTO function is a DFA on the sets in C. 
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A set of LR(1) items containing the following items 

A → α.β,a1 
... 

A → α.β,an 
 

can be written as   A → α.β,a1/a2/.../an 
 
Example: 

 
S’ → S I0:S’ → .S,$ 
1) S → L=R S → .L=R,$ 
2) S → R S → .R,$ 
3) L→ *R L → .*R,$/= 
4) L → id L → .id,$/= 
5) R → L R → .L,$ 

 
I1:S’ → S.,$  

S *  

L 2:S → L.=R,$ 

→ L.,$  
R 

I3:S → R.,$ 

 
 

 

to I6 
 

 

id 

 
I4:L → *.R,$/= 

R → .L,$/= 

L→ .*R,$/= 

L → .id,$/= 
 
 
I5:L → id.,$/= 

 
 

R to I7  

 
 

L 
* to I8 

 

id to I4 

to I5 

 

 

I6:S → L=.R,$ 
L 

to I9 I9:S → L=R.,$   I13:L → *R.,$  
 

R → .L,$ 
to I10 I10:R → L.,$ 

    
 

L → .*R,$ * 
R 

 I4 and I11  

to I11 

  
 

L → .id,$ 
 

I11:L → *.R,$ to I13 
  

 

id L I5 and I12 
 

 to I12 R → .L,$ to I10  

  

* 
  

 

I7:L → *R.,$/= 
  L→ .*R,$ 

to I11 
I7 and I13 

 

  L → .id,$ 
id 

  
 

I8: R → L.,$/= 
   

to I12 I8 and I10 
 

  
I12:L → id.,$  

 

       
 

 
6.4.4 Parsing Table  
 

1. Construct the canonical collection of sets of LR(1) items for G’.   
C←{I0,...,In} 

 
2.  Create the parsing action table as follows  

a. If a is a terminal, Aα→.aβ,b in Ii and goto(Ii,a)=Ij then action[i,a] is shift j. 
b. If Aα→.,a is in Ii , then action[i,a] is reduce Aα→ where A≠S’. 
c. If S’→S.,$ is in Ii , then action[i,$] is accept.   
d. If any conflicting actions generated by these rules, the grammar is not LR(1).  

 
3. Create the parsing goto table   

a. for all non-terminals A, if goto(Ii,A)=Ij then goto[i,A]=j  
 

4. All entries not defined by (2) and (3) are errors.  

 
5. Initial state of the parser contains S’→.S,$  
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Example: 
 
For the above used Grammar, the parse table is as follows: 
 

 id * = $ S L R  
 

0 S5 s4   1 2 3  
 

1    acc     
 

2   s6 r5     
 

3    r2     
 

4 S5 s4    8 7  
 

5   r4 r4    
no shift/reduce or  

6 s12 s11 
   

10 9 
 

   no reduce/reduce conflict 
 

7   r3 r3    ⇓ 
 

        

so, it is a LR(1) grammar 
 

8 
  

r5 r5 
   

 

      
 

9    r1     
 

10    r5     
 

11 s12 s11    10 13  
 

12    r4     
 

13    r3     
 

          

 
6.4 Constructing LALR Parsing tables  
 

• LALR stands for LookAhead LR.   
• LALR parsers are often used in practice because LALR parsing tables are smaller than 

Canonical LR parsing tables.   
• The number of states in SLR and LALR parsing tables for a grammar G are equal.  
• But LALR parsers recognize more grammars than SLR parsers.  
• yacc creates a LALR parser for the given grammar.  
• A state of LALR parser will be again a set of LR(1) items.  

 
Canonical LR(1) Parser LALR Parser  

shrink # of states 
 

• This shrink process may introduce a reduce/reduce conflict in the resulting LALR parser. 

In that case the grammar is NOT LALR.   
• This shrink process cannot produce a shift/reduce conflict.  

 
6.4.1 The Core of A Set of LR(1) Items 
 

• The core of a set of LR(1) items is the set of its first component.  
 

Example:  
S → L.=R,$ S → L.=R  
R → L.,$ R → L. 

 
• We will find the states (sets of LR(1) items) in a canonical LR(1) parser with same cores. 

Then we will merge them as a single state.   
Example:  

I1:L → id.,= I12: L → id.,= 
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L → id.,$ 

I2:L → id.,$ have same core, merge them 
 

• We will do this for all states of a canonical LR(1) parser to get the states of the LALR 

parser.   
• In fact, the number of the states of the LALR parser for a grammar will be equal to the 

number of states of the SLR parser for that grammar.  
 
6.4.2 Parsing Tables 
 

• Create the canonical LR(1) collection of the sets of LR(1) items for the given grammar.   
• Find each core; find all sets having that same core; replace those sets having same 

cores with a single set which is their union.   
C={I0,...,In} C’={J1,...,Jm}   where m ≤ n  

• Create the parsing tables (action and goto tables) same as the construction of the 
parsing tables of LR(1) parser.  

– Note that: If J=I1 ∪ ... ∪ Ik since I1,...,Ik have same cores  
cores of goto(I1,X),...,goto(I2,X) must be same.  

– So, goto(J,X)=K where K is the union of all sets of items having same cores as 

goto(I1,X).  
 

• If no conflict is introduced, the grammar is LALR(1) grammar. (We may only 

introduce reduce/reduce conflicts; we cannot introduce a shift/reduce conflict) 

 
6.4.3 Shift/Reduce Conflict 
 

• We say that we cannot introduce a shift/reduce conflict during the shrink process for the 

creation of the states of a LALR parser.   
• Assume that we can introduce a shift/reduce conflict. In this case, a state of LALR parser 

must have:  
A → α.,a and B → β.aγ,b  

• This means that a state of the canonical LR(1) parser must have:   
A → α.,a and B → β.aγ,c  

But, this state has also a shift/reduce conflict. i.e. The original 
canonical LR(1) parser has a conflict.  
(Reason for this, the shift operation does not depend on Lookaheads) 

 
 
 
6.4.4 Reduce/Reduce Conflict 
 

But, we may introduce a reduce/reduce conflict during the shrink process for the creation of 

the states of a LALR parser. 
 

I1 : A → α.,a I2: A → α.,b 
 

B → β.,b 
⇓ 

B → β.,c 
 

  
 

 I12: A → α.,a/b reduce/reduce conflict 
 

 B → β.,b/c  
 

 
Example: 
 
For the above Canonical LR Parsing table, we can get the following LALR(1) collection 
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S’ → S I0:S’ → .S,$ 

I1:S’ → S.,$ 
 

 

1) S → L=R 
S → .L=R,$

S
 * 

 

 
 

2) S → R →  

  
 

 
I411:L → *.R,$/=  

R → .L,$/= 

 
R 

 

to I713 

3) L→ *R S → .R,$ L 2:SL.=R,$ 
 

R → L.,$ 
 

4) L → id L → .*R,$/=  
 

R 
 

 

5) R → L L → .id,$/=  
 

    

R → .L,$ 
I3:S → R.,$ 

 

 
 

to I
6 L→ .*R,$/= L 

→ .id,$/=  
id 

I512:L → id.,$/= 

L 
 
to I810 

 

to I411 

 

I6:S → L=.R,$  
R 

     
 

 

R → .L,$ 
 

to I9 
 

I9:S → L=R.,$ 
 

  

L 
 

 

       
 

     

to I810 
   

 

 L → .*R,$  *    
 

  

to I411 

   
 

 
L → .id,$ 

 
id 

   
 

  

to I512 
   

 

         
 

 I713:L → *R.,$/=       
 

I810: R → L.,$/=       
 

           
 

  id * = $ S  L R  
 

0  s5 s4   1  2 3  
 

1     acc      
 

2    s6 r5      
 

3     r2      
 

4  s5 s4     8 7  
 

5    r4 r4      
 

6  s12 s11     10 9  
 

7    r3 r3      
 

8    r5 r5      
 

9     r1      
 

 
 
6.4 Using Ambiguous Grammars 

to I512 
 
 

Same Cores 
 

I4 and I11 
 
 

I5 and I12 
 
 

I7 and I13 
 
 

I8 and I10 
 
 
 
 
 
 
 
 

 
no shift/reduce or  
no reduce/reduce conflict  

⇓  
so, it is a LALR(1) grammar 

 
• All grammars used in the construction of LR-parsing tables must be  un-ambiguous.  
• Can we create LR-parsing tables for ambiguous grammars?  

–   Yes, but they will have conflicts.  
– We can resolve these conflicts in favor of one of them to disambiguate the 

grammar.   
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–   At the end, we will have again an unambiguous grammar.  

• Why we want to use an ambiguous grammar?  
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– Some of the ambiguous grammars are much natural, and a corresponding 

unambiguous grammar can be very complex.  
–   Usage of an ambiguous grammar may eliminate unnecessary reductions.  

 
Example:  

E → E+T | T  
E → E+E | E*E | (E) | id T → T*F | F  

F → (E) | id 
 
6.4.1 Sets of LR(0) Items for Ambiguous Grammar 

 

I0: E’ → .E 

E → .E+E  
E → .E*E  
E → .(E)  
E → .id 

 
 

E I1: E’ → E.  
 

 E → E .+E  
 

 E → E .*E  
 

 (  
 

 (  
 

 I2: E → (.E)  
 

 E → .E+E  
 

 E → .E*E  
 

id 
E → .(E)  

 

E → .id 
id    

  

I3: E → id. 

 
 

+ I4: E → E +.E  

 
 

 E → .E+E 
 

 E → .E*E 
  

* E → .(E) 
E → .id 

 

 

I5: E → E *.E  
E → .E+E  

 E → .E*E 
 

E 
E → .(E) 

 

E → .id  

 
 

 I6: E → (E.) 
 

 E → E.+E 
 

 E → E.*E 
 

 
E  

(  

id I2 I3 
 

 

E 
(  

id I2 I3 
 
 
 

)  
+ 

*  I4 

I5 

 
I7: E → E+E. 

E → E.+E 

E → E.*E 
 
 
 

 
I8: E → E*E. 

E → E.+E 

E → E.*E 
 
 
 

 
I9: E → (E). 

 
+

 I4 

*
 I5 

 
 

 

+
  I4 

*
 I5 

 
6.4.2 SLR-Parsing Tables for Ambiguous Grammar 
 
FOLLOW(E) = { $,+,*,) } 
 
State I7 has shift/reduce conflicts for symbols + and *. 
 

E + 

I4 

E 

I7 

 

I0 I1  
  

when current token is +  
shift + is right-associative 

reduce + is left-associative 
 
when current token is *  

shift * has higher precedence than + 

reduce + has higher precedence than * 
 
State I8 has shift/reduce conflicts for symbols + and *.  

E 

I1     * I5 

E 

I7 

 

I0  
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when current token is *  

shift * is right-associative 

reduce * is left-associative 
 
 
when current token is +  

shift + has higher precedence than * 

reduce * has higher precedence than + 
 

 id + * ( ) $  E 
         

0 s3   s2    1 
         

1  s4 s5   acc   
         

2 s3   s2    6 
         

3  r4 r4  r4 r4   
         

4 s3   s2    7 
         

5 s3   s2    8 
         

6  s4 s5  s9    
         

7  r1 s5  r1 r1   
         

8  r2 r2  r2 r2   
         

9  r3 r3  r3 r3   
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7. SYNTAX-DIRECTED TRANSLATION  
 

• Grammar symbols are associated with attributes to associate information with the 

programming language constructs that they represent.   
• Values of these attributes are evaluated by the semantic rules associated with the 

production rules.  
• Evaluation of these semantic rules:  

– may generate intermediate codes  

– may put information into the symbol table  

– may perform type checking  

– may issue error messages  

– may perform some other activities  

– In fact, they may perform almost any activities.  
• An attribute may hold almost any thing.  

– A string, a number, a memory location, a complex record.  

• Evaluation of a semantic rule defines the value of an attribute. But a semantic rule may 

also have some side effects such as printing a value.  
 

Example:   

Production Semantic Rule Program Fragment 

L → E return print(E.val) print(val[top-1]) 
E → E1 + T E.val = E1.val + T.val val[ntop] = val[top-2] + val[top] 
E → T E.val = T.val  

T → T1 * F T.val = T1.val * F.val val[ntop] = val[top-2] * val[top] 
T → F T.val = F.val  

F → ( E ) F.val = E.val val[ntop] = val[top-1] 

F → digit F.val = digit.lexval val[top] = digit.lexval 
 

• Symbols E, T, and F are associated with an attribute val.   
• The token digit has an attribute lexval (it is assumed that it is evaluated by the lexical 

analyzer).  
• The Program Fragment above represents the implementation of the semantic rule for a 

bottom-up parser.  
• At each shift of digit, we also push digit.lexval into val-stack.  
• At all other shifts, we do not put anything into val-stack because other terminals do not 

have attributes (but we increment the stack pointer for val-stack).  
• The above model is suited for a desk calculator where the purpose is to evaluate and to 

generate code.  
 

7.1 Intermediate Code Generation  
 

• Intermediate codes are machine independent codes, but they are close to machine 

instructions.   
• The given program in a source language is converted to an   equivalent program in an 

intermediate language by the intermediate code generator. 
• Intermediate language can be many different languages, and the designer of the compiler 

decides this intermediate language.   
– syntax trees can be used as an intermediate language.  
– postfix notation can be used as an intermediate language.  

– three-address code (Quadraples) can be used as an intermediate language  

• we will use quadraples to discuss intermediate code generation  
• quadraples are close to machine instructions, but they are not actual 

machine instructions.  
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7.1.1 Syntax Tree 
 

Syntax Tree is a variant of the Parse tree, where each leaf represents an operand and 

each interior node an operator. 
 

Example: 
 

Production Semantic Rule 
 

E → E1 op E2 E.val = NODE (op, E1.val, E2.val)  
E → (E1) E.val = E1.val  
E → - E1 E.val = UNARY ( - , E1.val) 
E → id E.val = LEAF ( id ) 

 
A sentence a*(b+d) would have the following syntax tree: 

 

* 

 

a + 
 
 

 
b d 

 
 
7.1.2 Postfix Notation 
 

Postfix Notation is another useful form of intermediate code if the language is 

mostly expressions. 
 

Example: 
 

Production Semantic Rule Program Fragment 

E → E1 op E2 E.code = E1.code || E2.code || op print op 
E → (E1) E.code = E1.code  

E → id E.code = id print id 

7.1.3 Three Address Code   
 

• We use the term “three-address code” because each statement usually contains three 

addresses (two for operands, one for the result).   
• The most general kind of three-address code is:  

x := y op z  
where x, y and z are names, constants or compiler-generated temporaries; op is any 
operator.  

• But we may also the following notation for quadraples (much better notation because it   
looks like a machine code instruction) 

op y,z,x  
apply operator op to y and z, and store the result in x. 
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7.1.4 Representation of three-address codes 
 

Three-address code can be represented in various forms viz. Quadruples, Triples and 

Indirect Triples. These forms are demonstrated by way of an example below. 
 

Example: 
 

A = -B * (C + D)  
Three-Address code is as follows: 

T1 = -B 
T2 = C + D  
T3 = T1 * T2 
A = T3 

 
Quadruple: 

 

 Operator Operand 1 Operand 2 Result 

(1) - B  T1 

(2) + C D T2 

(3) * T1 T2 T3 

(4) = A T3  

Triple:     

 

 Operator Operand 1 Operand 2 

(1) - B  

(2) + C D 

(3) * (1) (2) 

(4) = A (3) 

Indirect Triple:    

  Statement  
 (0) (56)  

 (1) (57)  

 (2) (58)  

 (3) (59)  

 Operator Operand 1 Operand 2 

(56) - B  

(57) + C D 

(58) * (56) (57) 

(59) = A (58) 
 
7.2 Translation of Assignment Statements 
 
A statement A := - B * (C + D) has the following three-address translation: 
 
T1 := - B  
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T2 := C+D 
T3 := T1* T2  
A := T3 
 
Production Semantic Action 
 
S → id := E S.code = E.code || gen( id.place = E.place ) 
 
E → E1 + E2 E.place = newtemp();  

E.code = E1.code || E2.code || gen( E.place = E1.place + E2.place ) 
 
E → E1 * E2 E.place = newtemp();  

E.code = E1.code || E2.code || gen( E.place = E1.place * E2.place ) 
 
E → - E1 E.place = newtemp();  

E.code = E1.code || gen( E.place = - E1.place ) 
 
E → ( E1 ) E.place = E1.place;  

E.code = E1.code 
 
E → id E.place = id.place;  

E.code = null 
 
7.3 Translation of Boolean Expressions 
 
Grammar for Boolean Expressions is: 
 
E   E or E  
E   E and E  
E   not E 
E   ( E ) 
E   id  
E   id relop id 
 
There are two representations viz. Numerical and Control-Flow. 
 
7.3.1 Numerical Representation of Boolean 
 
TRUE is denoted by 1 and FALSE by 0.   
Expressions are evaluated from left to right, in a manner similar to arithmetic expressions.  
 
Example:  
The translation for A or B and C is the three-address sequence: 
 
T1 := B and C  
T2 := A or T1 
 
Also, the translation of a relational expression such as A < B is the three-address sequence: 
 

(1) if A < B goto (4)   
(2) T := 0  
(3) goto (5)  
(4) T := 1  
(5) 

 
Therefore, a Boolean expression A < B or C can be translated as: 
 

(1) if A < B goto (4)   
(2) T1 := 0  
(3) goto (5)  
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(4) T1 := 1  
(5) T2 := T1 or C  

 
Production Semantic Action 
 
E   E1 or E2 T = newtemp ();  

E.place = T; 
Gen (T = E1.place or E2.place) 

 
E   E1 and E2 T = newtemp ();  

E.place = T;  
Gen (T = E1.place and E2.place) 

 
E   not E1 T = newtemp ();  

E.place = T; 
Gen (T = not E1.place) 

 
E → ( E1 ) E.place = E1.place;  

E.code = E1.code 
 
E → id E.place = id.place;  

E.code = null 
 
E   id1 relop id2 T = newtemp ();  

E.place = T;  
Gen (if id1.place relop id2.place goto NEXTQUAD+3) 
Gen (T = 0) 
Gen (goto NEXTQUAD+2)  

` Gen (T = 1) 
 

Quadruples are being generated and NEXTQUAD indicates the next available entry in the 

quadruple array.  
 
7.3.2 Control-Flow Representation of Boolean Expressions 
 

If we evaluate Boolean expressions by program position, we may be able to avoid evaluating 

the entire expressions.  
In A or B, if we determine A to be true, we need not evaluate B and can declare the entire 
expression to be true.  
In A and B, if we determine A to be false, we need not evaluate B and can declare the entire 
expression to be false.   

A better code can thus be generated using the above properties.  
Example: 
 
The statement if (A<B || C<D) x = y + z; can be translated as 
 

(1) if A<B goto (4)   
(2) if C<D goto (4)  
(3) goto (6)  
(4) T = y + z  
(5) X = T  
(6) 

 
Here (4) is a true exit and (6) is a false exit of the Boolean expressions. 
 
7.3.3 Generating 3-address code for Numerical Representation of Boolean expressions  
 

Consider a production E E1 or E2 that represents the OR Boolean expression. If E1 is 

true, we know that E is true so we make the location TRUE for E1 be the same as TRUE 
for E. If E1 is false, then we must evaluate E2, so we make FALSE for E1 be the first 
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statement in the code for E2. The TRUE and FALSE exits can be made the same as the 

TRUE and FALSE exits of E, respectively.  
Consider a production E E1 and E2 that represents the AND Boolean expression. If E1 
is false, we know that E is false so we make the location FALSE for E1 be the same as 
FALSE for E. If E1 is true, then we must evaluate E2, so we make TRUE for E1 be the 
first statement in the code for E2. The TRUE and FALSE exits can be made the same as 
the TRUE and FALSE exits of E, respectively.   
Consider the production E not E that represents the NOT Boolean expression. We 
may simply interchange the TRUE and FALSE exits of E1 to get the TRUE and 
FALSE exits of E.  
To generate quadruples in the manner suggested above, we use three functions-
Makelist, Merge and Backpatch that shall work on the list of quadruples as suggested by 
their name.  
If we need to proceed to E2 after evaluating E1, we have an efficient way of doing this by 

modifying our grammar as follows:  
 

E   E or M E  
E   E and M E  
E   not E 
E   ( E ) 
E   id 
E   id relop id 
M   ε 

 
The translation scheme for this grammar would as follows:  

 
Production Semantic Action 

 
E   E1 or M E2 BACKPATCH (E1.FALSE, M.QUAD);  

E.TRUE = MERGE (E1.TRUE, E2.TRUE);  
E.FALSE = E2.FALSE; 

 
E   E1 and M E2 BACKPATCH (E1.TRUE, M.QUAD);  

E.TRUE = E2.TRUE; 
E.FALSE = MERGE (E1.FALSE, E2.FALSE); 

 
E   not E1 E.TRUE = E1.FALSE;  

E.FALSE = E1.TRUE( E1 ) E.TRUE = E1.TRUE;  
E.FALSE = E1.FALSE; 

 
E   id E.TRUE = MAKELIST (NEXTQUAD);  

E.FALSE = MAKELIST (NEXTQUAD + 1); 
GEN (if id.PLACE goto _ ); 
GEN (goto _ ); 

 
E   id1 relop id2 E.TRUE = MAKELIST (NEXTQUAD);  

E.FALSE = MAKELIST (NEXTQUAD + 1);  
GEN ( if id1.PLACE relop id2.PLACE goto _ ); 
GEN (goto _ ); 

 
M   ε M.QUAD = NEXTQUAD; 

 
 

Example: 
 

For the expression P<Q or R<S and T, the parsing steps and corresponding semantic 

actions are shown below. We assume that NEXTQUAD has an initial value of 100. 
 

Step 1: P<Q gets reduced to E by E id relop id. The grammatical form is E1 or R<S 

and T. 
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We have the following code generated (Makelist). 

 
100: if P<Q goto _   
101: goto _  

 
E1 is true if goto of 100 is reached and false if goto of 101 is reached. 

 
Step 2: R<S gets reduced to E by E id relop id. The grammatical form is E1 or E2 and 

T. 
 
 

We have the following code generated  (Makelist). 
 

102: if R<S goto _   
103: goto _  

 
E2 is true if goto of 102 is reached and false if goto of 103 is reached. 

 
Step 3: T gets reduced to E by E   id. The grammatical form is E1 or E2 and E3. 

 
We have the following code generated (Makelist). 

 
104: if T goto _   
105: goto _  

 
E3 is true if goto of 104 is reached and false if goto of 105 is reached. 

 
Step 4: E2 and E3 gets reduced to E by E   E and E. The grammatical form is E1 or E4. 

 
We have no new code generated but changes are made in the already 

generated code (Backpatch). 
 
 

 
100: if P<Q goto _   
101: goto _  
102: if R<S goto 104  
103: goto _  
104: if T goto _  
105: goto _  

 
E4 is true only if E3.TRUE (goto of 104) is reached. E4 is false if E2.FALSE 

(goto of 103) or E3.FALSE (goto of 105) is reached (Merge). 
 

Step 5: E1 or E4 gets reduced to E by E   E or E. The grammatical form is E. 
 

We have no new code generated but changes are made in the 

already generated code (Backpatch). 
 

100: if P<Q goto _   
101: goto 102  
102: if R<S goto 104  
103: goto _  
104: if T goto _  
105: goto _  

 
E is true only if E1.TRUE (goto of 100) or E2.TRUE (goto of 104) is 

reached (Merge). E is false if E4.FALSE (goto of 103 or 105) is reached. 
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7.3.4 Mixed Mode Expressions  
 

Boolean expressions may in practice contain arithmetic sub expressions e.g. (A+B)>C.   
We can accommodate such sub-expressions by adding the production E E op E to our 
grammar.   
We will also add a new field MODE for E. If E has been achieved after reduction using 
the above (arithmetic) production, we make E.MODE = arith, otherwise make E.MODE 
= bool.  
If E.MODE = arith, we treat it arithmetically and use E.PLACE. If E.MODE = bool, we 

treat it as Boolean and use E.FALSE and E.TRUE.  
 
7.4 Statements that Alter Flow of Control 
 

In order to implement goto statements, we need to define a LABEL for a statement. A 

production can be added for this purpose:  
 

S LABEL : S  
LABEL    id 

 
The semantic action attached with this production is to record the LABEL and its value 

(NEXTQUAD) in the symbol table. It will also Backpatch any previous references to this 

LABEL with its current value.  
 

Following grammar can be used to incorporate structured Flow-of-control constructs:  
 

(1) S   if E then S   
(2) S   if E then S else S  
(3) S   while E do S  
(4) S   begin L end  

(5) S   A  
(6) L   L ; S   
(7) L   S  

 
Here, S denotes a statement, L a statement-list, A an assignment statement and 

E a Boolean-valued expression. 
 
7.4.1 Translation Scheme for statements that alter flow of control  
 

We introduce a new field NEXT for S and L like TRUE and FALSE for E. S.NEXT and 

L.NEXT are respectively the pointers to a list of all conditional and unconditional 

jumps to the quadruple following statement S and statement-list L in execution order.   
We also introduce the marker non-terminal M as in the case of grammar for Boolean 
expressions. This is put before statement in if-then, before both statements in if-then-
else and the statement in while-do as we may need to proceed to them after evaluating 
E. In case of while-do, we also need to put M before E as we may need to come back 
to it after executing S.   
In case of if-then-else, if we evaluate E to be true, first S will be executed. After this we 

should ensure that instead of second S, the code after this if-then-else statement be 

executed. We thus place another non-terminal marker N after first S i.e. before else.   
The grammar now is as follows:  

 
(1) S   if E then M S   
(2) S   if E then M S N else M S  
(3) S   while M E do M S  
(4) S   begin L end  
(5) S   A  
(6) L   L ; M S  
(7) L   S   
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(8) M   ε   
(9) N   ε  

 
The translation scheme for this grammar would as follows:  

 
Production Semantic Action 

 
S   if E then M S1 BACKPATCH (E.TRUE, M.QUAD)  

S.NEXT = MERGE (E.FALSE, S1.NEXT) 
 

S   if E then M1 S1 N else M2 S2 BACKPATCH (E.TRUE, M1.QUAD)  
BACKPATCH (E.FALSE, M2.QUAD) 

S.NEXT = MERGE (S1.NEXT, N.NEXT, S2.NEXT) 
 

S   while M1 E do M2 S1 BACKPATCH (S1.NEXT, M1.QUAD)  
BACKPATCH (E.TRUE, M2.QUAD) 
S.NEXT = E.FALSE  
GEN (goto M1.QUAD) 

 
S   begin L end S.NEXT = L.NEXT 

 
S   A S.NEXT = MAKELIST ( ) 

 
L   L1 ; M S BACKPATCH (L1.NEXT, M.QUAD)  

L.NEXT = S.NEXT 
 
 

L   S L.NEXT = S.NEXT 
 

 
M   ε M.QUAD = NEXTQUAD 

 
N   ε N.NEXT = MAKELIST (NEXTQUAD)  

GEN (goto _) 
 
7.5 Postfix Translations  

 
In an production A α, the translation rule of A.CODE consists of the concatenation of the 

CODE translations of the non-terminals in α in the same order as the non-terminals appear 

in α.  
Productions can be factored to achieve Postfix form.  

 
7.5.1 Postfix translation of while statement 
 
The production 
 
S   while M1 E do M2 S1 
 
can be factored as 
 
S   C S1  
C   W E do  
W   while 
 
A suitable translation scheme would be 
 

Production Semantic Action 
 

W   while W.QUAD = NEXTQUAD 
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C   W E do C.QUAD = W.QUAD  

BACKPATCH (E.TRUE, NEXTQUAD) 
C.FALSE = E.FALSE 

 
S   C S1 BACKPATCH (S1.NEXT, C.QUAD)  

S.NEXT = C.FALSE  
GEN (goto C.QUAD) 

 
7.5.2 Postfix translation of for statement 
 
Consider the following production which stands for the for-statement 
 
S   for L = E1 step E2 to E3 do S1 
 
Here L is any expression with l-value, usually a variable, called the index. E1, E2 and E3 are 

expressions called the initial value, increment and limit, respectively. Semantically, the for-

statement is equivalent to the following program. 
 
begin  

INDEX = addr ( L ); 
*INDEX = E1; INCR 
= E2; 
LIMIT = E3; 
while *INDEX <= LIMIT do 

begin  code for statement 

S1; *INDEX = *INDEX + 

INCR; 
end 

end 
 
The non-terminals L, E1, E2, E3 and S appear in the same order as in the production. The 

production can be factored as 
 

(1) F   for L   
(2) T   F = E1 by E2 to E3 do  
(3) S   T S1  

 
A suitable translation scheme would be 
 

Production Semantic Action 
 

F   for L F.INDEX = L.INDEX 
 

T   F = E1 by E2 to E3 do GEN (*F.INDEX = E1.PLACE)  
INCR = NEWTEMP ( ) 
LIMIT = NEWTEMP ( ) 
GEN (INCR = E2.PLACE)  
GEN (LIMIT = E3.PLACE) 
T.QUAD = NEXTQUAD 
T.NEXT = MAKELIST (NEXTQUAD)  
GEN (IF *F.INDEX > LIMIT goto _) 
T.INDEX = F.INDEX 
T.INCR = INCR 

 
S   T S1 BACKPATCH (S1.NEXT, NEXTQUAD)  

GEN (*T.INDEX = *T.INDEX + T.INCR)  
GEN (goto T.QUAD) 
S.NEXT = T.NEXT 
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7.6 Translation with a Top-Down Parser  
 

Any translation done by top-down parser can be done in a bottom-up parser also.   
But in certain situations, translation with a top-down parser is advantageous as tricks such 
as placing a marker non-terminal can be avoided.  

Semantic routines can be called in the middle of productions in top-down parser.  
 
7.7 Array references in arithmetic expressions  
 

Elements of arrays can be accessed quickly if the elements are stored in a block of 

consecutive locations.   
For a one-dimensional array A:  

 
Base (A) is the address of the first location of the array A, 

width is the width of each array element. 
low is the index of the first array element 

 
location of A[i] = baseA+(i-low)*width 

 
baseA+(i-low)*width 

 
can be re-written as 

 

 
*width + (baseA-low*width) 

 
should be computed at run-time can be computed at compile-time 

 
So, the location of A[i] can be computed at the run-time by evaluating the formula 

i*width+c where c is (baseA-low*width) which is evaluated at compile-time.   
Intermediate code generator should produce the code to evaluate this formula i*width+c 
(one multiplication and one addition operation).   
A two-dimensional array can be stored in either row-major (row-by-row) or column-major 
(column-by-column).   

Most of the programming languages use row-major method.  
The location of A[i1,i2] is baseA+ ((i1-low1)*n2+i2-low2)*width  

 
baseA is the location of the array A. 

low1 is the index of the first row 

low2 is the index of the first column  
n2 is the number of elements in each row 

width is the width of each array element 
 

Again, this formula can be re-written as 
 

((i1*n2)+i2)*width + (baseA-((low1*n1)+low2)*width) 
 

should be computed at run-time can be computed at compile-time 
 

Arrays of any dimension can be dealt in a similar but general manner.  
 

In general, the location of A[i1,i2,...,ik] is 
 

(( ... ((i1*n2)+i2) ...)*nk+ik)*width + (baseA-

((...((low1*n1)+low2)...)*nk+lowk)*width) 
 

So, the intermediate code generator should produce the codes to evaluate 

the following formula (to find the location of A[i1,i2,...,ik]) : 
 

(( ... ((i1*n2)+i2) ...)*nk+ik)*width + c 
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To evaluate the (( ... ((i1*n2)+i2) ...)*nk+ik portion of this formula, we can use the 

recurrence equation: 
 

e1 = i1  
em = em-1 * nm + im 

 
7.7.1 Grammar and Translation Scheme 
 
The grammar and suitable translation scheme for arithmetic expressions with array references 

is as given below: 
 

Production Semantic Action  

S → L = E if (L.OFFSET = NULL) then GEN (L.PLACE = E.PLACE)  
 else GEN(L.PLACE [ L.OFFSET ] = E.PLACE)  

E → E1 + E2 E.PLACE = NEWTEMP ( )  

   

   

   
GEN (E.PLACE = E1.PLACE + E2.PLACE) 

 
E → ( E1 ) E.PLACE = E1.PLACE 
 
E → L if (L.OFFSET = NULL) then E.PLACE = L.PLACE  

else {E.PLACE = NEWTEMP ( ); GEN (E.PLACE = 
L.PLACE[L.OFFSET])} 

 
L → id L.PLACE = id.PLACE  

L.OFFSET = NULL 
 
L → ELIST ] L.PLACE = NEWTEMP( )  

L.OFFSET = NEWTEMP ( ) 
GEN (L.PLACE = ELIST.ARRAY - C) 
GEN (L.OFFSET = ELIST.PLACE * WIDTH (ELIST.ARRAY)) 

 
ELIST → ELIST1 , E   ELIST.ARRAY = ELIST1.ARRAY  

ELIST.PLACE = NEWTEMP ( ) 
ELIST.NDIM = ELIST1.NDIM + 1  

GEN (ELIST.PLACE = ELIST1.PLACE * LIMIT (ELIST.ARRAY, ELIST.NDIM)) 
GEN (ELIST.PLACE = E.PLACE + ELIST.PLACE) 

 
ELIST → id [ E ELIST.ARRAY = id.PLACE  

ELIST.PLACE = E.PLACE  
ELIST.NDIM = 1 

 
Here, NDIM denotes the number of dimensions, LIMIT (AARAY, i) function returns the 

upper limit along the ith dimension of ARRAY i.e. ni, WIDTH (ARRAY) returns the number 

of bytes for one element of ARRAY. 
 
7. 8 Declarations 
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Following is the grammar and a suitable translation scheme for declaration statements: 
 

Production Semantic Action 
 

D   integer, id ENTER (id.PLACE, integer)  
D.ATTR = integer 

 
D   real, id ENTER (id.PLACE, real)  

D.ATTR = real 
 

D   D1, id ENTER (id.PLACE, D1.ATTR)  
D.ATTR = D1.ATTR 

 
Here, ENTER makes the entry into symbol table while ATTR is used to trace the data type. 
 
7.9 Procedure Calls 
 
Following is the grammar and a suitable translation scheme for Procedure Calls: 
 

Production Semantic Action 
 

S   call id (ELIST) for each item p on QUEUE do  
GEN (param p) 
GEN (call id.PLACE) 

 
 

ELIST   ELIST, E append E.PLACE to the end of QUEUE 
 

ELIST   E initialize QUEUE to contain only E.PLACE 
 
QUEUE is used to store the list of parameters in the procedure call. 
 
7.10 Case Statements 
 
The case statement has following syntax: 
 

switch E 

begi

n  
case V1: 
S1 case 
V2: S2  
. 
.  
. 
case Vn-1: Sn-
1 default: Sn  

end 
 
The translation scheme for this shown below: 
 

code to evaluate E into T  
goto TEST  

L1: code for S1 
goto NEXT 

L2: code for S2  
goto NEXT 
.  
. 
. 
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Ln-1:   code for Sn-1  
goto NEXT 

Ln: code for Sn 
goto NEXT 

TEST: if T = V1 goto L1  
If T = V2 goto L2 
.  
. 
. 
if T = Vn-1 goto Ln-
1 goto Ln  

NEXT: 
 
8. SYMBOL TABLES 
 
• Symbol table is a data structure meant to collect information about names appearing in the 

source program.  

• It keeps track about the scope/binding information about names.  
• Each entry in the symbol table has a pair of the form (name and information).  
• Information consists of attributes (e.g. type, location) depending on the language.  
• Whenever a name is encountered, it is checked in the symbol table to see if already occurs. If 

not, a new entry is created.   
• In some cases, the symbol table record is created by the lexical analyzer as soon as 

the name is encountered in the input, and the attributes of the name are entered when 
the declarations are processed.  

• If same name can be used to denote different program elements in the same block, the 

symbol table record is created only when the name’s syntactic role is discovered.  
 
8.1 Operations on a Symbol Table  
• Determine whether a given name is in the table   
• Add a new name to the table  
• Access information associated to a given name  
• Add new information for a given name  
• Delete a name (or a group of names) from the table  
 
8.2 Implementation  
• Each entry in a symbol table can be implemented as a record that consists of several fields.   
• The entries in symbol table records are not uniform and depend on the program element 

identified by the name.  
• Some information about the name may be kept outside of the symbol table record and/or 

some fields of the record may be left vacant for the reason of uniformity. A pointer to this 
information may be stored in the record.  

• The name may be stored in the symbol table record itself, or it can be stored in a separate 
array of characters and a pointer to it in the symbol table.   

• The information about runtime storage location, to be used at the time of code generation, is 
kept in the symbol table.   

• There are various approaches to symbol table organization e.g. Linear List, Search Tree and 

Hash Table.  
 
8.2.1 Linear List 
 
•  It is the simplest approach in symbol table organization.  
•  The new names are added to the table in the order they arrive. 
•  A name is searched for its existence linearly.  
• The average number of comparisons required are proportional to 0.5*(n+1) where 

n=number of entries in the table.  
•  It takes less space but more access time. 
 
8.2.2 Search Tree 
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• It is more efficient than Linear Trees.   
• We provide two links- left and right, which point to record in the search tree.  
• A new name is added at a proper location in the tree such that it can be accessed 

alphabetically.   
• For any node name1 in the tree, all names accessible by following the left link precede 

name1 alphabetically.  
• Similarly, for any node name1 in the tree, all names accessible by following the right link 

succeed name1 alphabetically.   

• The time for adding/searching a name is proportional to (m+n) log2 n. 8.2.3 Hash Table 
 
• A hash table is a table of k-pointers from 0 to k-1 that point to the symbol table and record 

within the symbol table.  
• To search a value, we find out the hash value of the name by applying suitable hash function.   
• The hash function maps the name into an integer value between 0 and k-1 and uses it as an index 

in the hash table to search the list of the table records that are built on that hash index.  

• To add a non-existent name, we create a record for that name and insert it at the head of the 

list.  
 
8.3 Scope Information 
 
• Each name possesses a region of validity within the source program called the scope of that 

name.  

• The rules governing the scope of names in a block-structured language are as follows:  
o  A name declared within block B is valid only within B.  
o If block B1 is nested within B2, then any name that is valid for B2 is also valid for 

B1, unless identifier for that name is re-declared in B1.   
• These rules require a more complicated symbol table organization that simply a list of 

associations between names and attributes.   
• One technique is to keep multiple symbol tables for each active block:  

o Each table is list of names and their associated attributes, and the tables are 
organized on stack.  

o  Whenever a new block is entered, a new table is pushed on the stack. 
o When a declaration is compiled, the table on the stack is searched for the name.  
o If name is not found it is inserted.  
o When a reference is translated, it is searched in all tables starting from top.  

• Another technique is to represent scope information in the symbol table.  
o Store the nesting depth of each procedure block in the symbol table.  
o Use the (procedure name, nesting depth) pair as the key to accessing the 

information from the table.   
o The nesting depth of a procedure is a number that is obtained by starting with a 

value of one for the main and adding one to it every time we go from an 
enclosing to an enclosed procedure. It counts the number of procedure in the 
referencing environment of a procedure.  
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9. RUN TIME ADMINISTRATION  
 

• How do we allocate the space for the generated target code and the data object of our 

source programs?   
• The places of the data objects that can be determined at compile time will be allocated 

statically.   
• But the places for the some of data objects will be allocated at run-time.  
• The allocation of de-allocation of the data objects is managed by the run-time support 

package.   
–   run-time support package is loaded together with the generate target code.  
– the structure of the run-time support package depends on the semantics of the 

programming language (especially the semantics of procedures in that 

language).  
 
9.1 Procedure Activations  
 

• Each execution of a procedure is called as activation of that procedure.   
• An execution of a procedure starts at the beginning of the procedure body;  
• When the procedure is completed, it returns the control to the point immediately after the 

place where that procedure is called.  
• Each execution of a procedure is called as its activation.  
• Lifetime of an activation of a procedure is the sequence of the steps between the first and 

the last steps in the execution of that procedure (including the other procedures called by 
that procedure).   

• If a and b are procedure activations, then their lifetimes are either non-overlapping or are 
nested.  

• If a procedure is recursive, a new activation can begin before an earlier activation of the 

same procedure has ended.  
 
9.1.1 Activation Tree 
 

• We can use a tree (called activation tree) to show the way control enters and leaves 

activations.  
 

• In an activation tree:   
–   Each node represents an activation of a procedure.  
–   The root represents the activation of the main program.  
–   The node a is a parent of the node b iff the control flows from a to b.  
– The node a is left to to the node b iff the lifetime of a occurs before the lifetime of b.  

 
Example: 

 
program main; enter main  

procedure s; enter p  
begin ... end; enter q 

procedure p; exit q 
procedure q; enter s  

begin ... end; exit s 
begin q; s; end; exit p 

begin p; s; end; enter s  
exit s 
exit main 
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main 
 
 

p s 
 
 

q s 
 
9.1.2 Control Stack 
 

• The flow of the control in a program corresponds to a depth-first traversal of the activation 

tree that:   
– starts at the root,  

–   visits a node before its children, and  

–   recursively visits children at each node an a left-to-right order.  
• A stack (called control stack) can be used to keep track of live procedure activations.  

–   An activation record is pushed onto the control stack as the activation starts.  
–   That activation record is popped when that activation ends.  

• When node n is at the top of the control stack, the stack contains the nodes along the 

path from n to the root.  
 
9.1.3 Variable Scopes 
 

• The same variable name can be used in the different parts of the program.   
• The scope rules of the language determine which declaration of a name applies when the 

name appears in the program.   
• An occurrence of a variable (a name) is:  

–   local: If that occurrence is in the same procedure in which that name is declared.  
–   non-local: Otherwise (ie. it is declared outside of that procedure)  

Example: 
 

procedure p;     
 

var b:real;    
 

procedure p; 
a is local 

 

var a: integer; 
 

begin a := 1;  b := 2; end; b is non-local 
 

begin ... end;    
 

 
9.2 Storage Organization 
 

Code 
 
 

Static Data 
 
 

Stack 
 
 
 
 
 
 
 
 

Heap 
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9.2.1 Activation Records 
 

• Information needed by a single execution of a procedure is managed using a contiguous 

block of storage called activation record.  

• An activation record is allocated when a procedure is entered, and it is de-allocated when 
that procedure exited.  

• Size of each field can be determined at compile time (Although actual location of the 
activation record is determined at run-time).  

– Except that if the procedure has a local variable and its size depends on a 

parameter, its size is determined at the run time.  
 

 
return value 

 
actual parameters 

 
optional control link 

 
optional access link 

 
saved machine status 
 
 

local data 

 
temporaries 

 
The returned value of the called procedure is returned 

in this field to the calling procedure. In practice, we may 

use a machine register for the return value. 
 
The field for actual parameters is used by the calling 

procedure to supply parameters to the called procedure. 
 
The optional control link points to the activation 

record of the caller. 
 
The optional access link is used to refer to nonlocal 

data held in other activation records. 
 
The field for saved machine status holds information about 

the state of the machine before the procedure is called. 

 The field of local data holds data that local to an execution 

of a procedure.. 
 
Temporay variables is stored in the field of temporaries. 

 
Example:  
(For a non-recursive procedure) 
 

program main;  main stack 
 

procedure p;    
 

var a:real;    
 

procedure q;  p  
 

var b:integer;    
 

begin ... end;  

a: 
 

 

begin q; end;   
 

procedure s;  
q 

 
 

var c:integer;   
 

   
 

begin ... end;  

b: 

 
 

begin p; s; end;   
 

 main  
 

p  s  
 

q    
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Example: 

 
(For a recursive procedure) 

 
  

stack 
 

program main; main  

 
 

procedure p; 
p  

 

function  
 

   

q(3) 
  

q(a:integer):integer;  
 

a: 3 
 

 

begin  
 

if (a=1) then q:=1; q(2)  
 

else q:=a+q(a-1); a:2  
 

end; q(1)  
 

begin q(3); end; a:1  
 

begin p; end;   
 

 
9.2.2 Creation of Activation Records 
 

• Who allocates an activation record of a procedure?   
– Some part of the activation record of a procedure is created by that procedure 

immediately after that procedure is entered.   
– Some part is created by the caller of that procedure before that procedure is 

entered.  
 

• Who deallocates?   
–   Callee de-allocates the part allocated by Callee.  
–   Caller de-allocates the part allocated by Caller.  

 
9.2.3 Displays 
 

• An array of pointers to activation records can be used to access activation records.   
• This array is called as displays.  
• For each level, there will be an array entry.  

 
 
1: 
 
2: 
 
3: 

 
 
Current activation record at level 1 

Current activation record at level 2 

Current activation record at level 3 
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10. ERROR DETECTION AND RECOVERY 
 

• What should the parser do in an error case?   
– The parser should be able to give an error message (as much as possible meaningful error 

message).  
– It should recover from that error case, and it should be able to continue the parsing with 

the rest of the input.  
 
10.1 Error Recovery Techniques 
 

• Panic-Mode Error Recovery  
–  Skipping the input symbols until a synchronizing token is found.   

• Phrase-Level Error Recovery  
– Each empty entry in the parsing table is filled with a pointer to a specific error routine to 

take care that error case.  
• Error-Productions  

– If we have a good idea of the common errors that might be encountered, we can augment 
the grammar with productions that generate erroneous constructs.   

– When an error production is used by the parser, we can generate appropriate error 

diagnostics.   
– Since it is almost impossible to know all the errors that can be made by the programmers, 

this method is not practical.   
• Global-Correction  

– Ideally, we would like a compiler to make as few change as possible in processing 

incorrect inputs.   
–  We have to globally analyze the input to find the error.  
–  This is an expensive method, and it is not in practice.  

 
 
10.2 Error Recovery in Predictive Parsing 
 

• An error may occur in the predictive parsing (LL(1) parsing)   
– if the terminal symbol on the top of stack does not match with the current input symbol.  
– if the top of stack is a non-terminal A, the current input symbol is a, and the parsing table 

entry M[A,a] is empty.  
 
10.2.1 Panic-Mode Error Recovery in LL(1) Parsing  
• In panic-mode error recovery, we skip all the input symbols until a synchronizing token is 

found.   
• What is the synchronizing token?  

– All the terminal-symbols in the follow set of a non-terminal can be used as a synchronizing 

token set for that non-terminal.  
• So, a simple panic-mode error recovery for the LL(1) parsing:  

– All the empty entries are marked as synch to indicate that the parser will skip all the input 
symbols until a symbol in the follow set of the non-terminal A which on the top of the 
stack. Then the parser will pop that non-terminal A from the stack. The parsing continues 
from that state.   

– To handle unmatched terminal symbols, the parser pops that unmatched terminal symbol 

from the stack and it issues an error message saying that that unmatched terminal is 

inserted.  
 

Example:               
 

S → AbS | e | ε 
             

 

     
A b 

 
c 

  
e $  

A → a | cAd         
 

              

FOLLOW(S)={$} 
  S  S → AbS sync  S → AbS  sync S → e S → ε 

 

             
 

  

A 
  

A → a sync 
 

A → cAd 
 

sync sync sync 
 

FOLLOW(A)={b,d}      
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For string aab         For string ceadb  
 

Stack Input Output 
    

Stack 
 

Input 
 

Output 
 

      
 

$S aab$ S → AbS     $S  ceadb$  S → 
 

AbS  
A → a 

          
A → 

 

$SbA aab$     $SbA  ceadb$  
 

cAd               
 

$Sba aab$       $SbdAc ceadb$   
 

$Sb ab$ Error: missing b,     $SbdA eadb$  Error: 
 

 inserted (illegal A)          unexpected e 
 

$S ab$ S → AbS     (Remove all input tokens until first b or 
 

d, pop A)  
A → a 

           
 

$SbA ab$     $Sbd  db$   
 

$Sba ab$       $Sb  b$  

S → ε 
 

$Sb b$ 
S → ε 

    $S  $   
 

$S $     $   $   accept 
 

$ $ accept              
 

 
10.2.2 Phrase-Level Error Recovery 
 
• Each empty entry in the parsing table is filled with a pointer to a special error routine which will 

take care that error case.   
• These error routines may:  

–  change, insert, or delete input symbols.  
–  issue appropriate error messages  
–  pop items from the stack.   

• We should be careful when we design these error routines, because we may put the parser 
into an infinite loop.  

 
10.3 Error Recovery in Operator-Precedence Parsing 
 
Error Cases:  

–  No relation holds between the terminal on the top of stack and the next input symbol.   
– A handle is found (reduction step), but there is no production with this handle as a right 

side  
 
Error Recovery:  

–  Each empty entry is filled with a pointer to an error routine.   
– Decides the popped handle “looks like” which right hand side. And tries to recover from 

that situation.  
 
10.4 Error Recovery in LR Parsing  
 

• An LR parser will detect an error when it consults the parsing action table and finds an 

error entry. All empty entries in the action table are error entries.  
• Errors are never detected by consulting the goto table.   
• An LR parser will announce error as soon as there is no valid continuation for the 

scanned portion of the input.  
• A canonical LR parser (LR(1) parser) will never make even a single reduction before 

announcing an error.  
• The SLR and LALR parsers may make several reductions before announcing an error.  
• But, all LR parsers (LR(1), LALR and SLR parsers) will never shift an erroneous input 

symbol onto the stack.  
 
10.4.1 Panic Mode Error Recovery in LR Parsing 
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• Scan down the stack until a state s with a goto on a particular nonterminal A is found. 

(Get rid of everything from the stack before this state s).   
• Discard zero or more input symbols until a symbol a is found that can legitimately follow 

A.   
– The symbol a is simply in FOLLOW (A), but this may not work for all situations.  

• The parser stacks the nonterminal A and the state goto[s,A], and it resumes the normal 
parsing.   

• This nonterminal A is normally is a basic programming block (there can be more than one 
choice for A).  

– stmt, expr, block, ...  
 
 
10.4.2 Phrase-Level Error Recovery in LR Parsing 
 

• Each empty entry in the action table is marked with a specific error routine.   
• An error routine reflects the error that the user most likely will make in that case.  
• An error routine inserts the symbols into the stack or the input (or it deletes the symbols 

from the stack and the input, or it can do both insertion and deletion).  
– missing operand  

– unbalanced right parenthesis 

 

11. CODE OPTIMIZATION  
 

• Code optimization is aimed at obtaining a more efficient code.   
• Two constraints on the technique used to perform optimizations   

o They must ensure that the transformed program is semantically equivalent to the 
original program.   

o The improvement of the program efficiency must be achieved without changing 
the algorithms which are used in the program.   

• Optimization may be classified as Machine dependent and Machine independent.  
o Machine dependent optimizations exploit characteristics of the target machine.  
o Machine independent optimizations are based on mathematical properties of a 

sequence of source statements.  
 

11.1 Optimizing Transformations  
 
11.1.1 Common Sub-expression Elimination 
 

• An expression need not be evaluated if it was previously computed and values of 

variables in this expression have not changed since the earlier computations. 

Example:  
 

a = d * c;   
.  
.  
.  

 
d = b * c + x –y;  

 
We can eliminate the second evaluation of b*c from this code if none of the intervening 

statements has changed its value. The code can be rewritten as given below.  
 

T1 = b * c; 

a = T1;   
.  
.  
.  
d = T1 + x – y;  
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11.1.2 Compile Time Evaluation 
 

• We can improve the execution efficiency of a program by shifting execution time actions 

to compile time.   
• We can evaluate an expression by a single value (known as folding).  

 
Example:   
A = 2 * (22.0/7.0) * r  

 

Here we can perform the computation 2 * (22.0/7.0) at compile time itself.  
 

• If a variable is assigned a constant value and is used in an expression without being 

assigned other value to it, we can evaluate some portion of the expression using the 

constant value (known as Constant Propagation).  
 

Example x 

= 12.4  

y = x / 2.3 
 

Here we evaluate x / 2.3 as 12.4 / 2.3 at compile time. 
 
11.1.3 Variable Propagation 
 

• If a variable is assigned to another variable, we use one in place of another.   
• This will be useful to carry out other optimization that were otherwise not possible.  

 
Example: c 

= a * b; x = 

a;  
d = x * b; 

 
Here, if we replace x by a then a * b and x * b will be identified as common sub-

expressions. 
 
 
 
11.1.4 Dead Code Elimination 
 

• If the value contained in a variable at that point is not used anywhere in the program 

subsequently, the variable is said to be dead at that place.   
• If an assignment is made to a dead variable, then that assignment is a dead assignment 

and it can be safely removed from the program.  
• A piece of code is said to be dead if it computes values that are never used anywhere in 

the program.  
• Dead Code can be eliminated safely.  
• Variable propagation often leads to making assignment statement into dead code. 

Example:  

 
c = a * b; 

x = a; 
. 
.  
. 
d = x * b + 4; 

 
Variable propagation will lead to following changes. 

 
c = a * b; 

x = a; 
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. 

.  

. 
d = a * b + 4; 

 
This assignment x = a is now useless and can be removed c = a * b;  
d = a * b + 4; 

 
11.1.5 Code Motion 
 

• We aim to improve the execution time of the program by reducing the evaluation 

frequency of expressions.  

• Evaluation of expressions is moved from one part of the program to another in such a 
way that it is evaluated lesser frequently.  

• Loops are usually executed several times.  
• We can bring the loop-invariant statements out of the loop. 

Example:  

 
a = 200; while 

(a > 0)  

{  
b = x + y;  
if ( a%b == 0)  

printf (“%d”, a);  
}  

 
The statement b = x + y is executed every time with the loop. But because it is loop-

invariant, we can bring it outside the loop. It will then be executed only once.  
 

a = 200; b = 

x + y;  

while (a > 0)  
{  

if ( a%b == 0)  
printf (“%d”, a);  

}  
 
 
11.1.6 Induction Variables and Strength Reduction 
 

• An induction variable may be defined as an integer scalar variable which is used in loop 

for the following kind of assignments i = i + constant.  

• Strength Reduction means replacing the high strength operator by a low strength 
operator.  

• Strength Reduction used on induction variables to achieve a more efficient code.  
 

Example: 
 

i = 1;  
while (i < 10) 
{  
y = i * 4; 

} 
This code can be replaced by the following code. 

 
i = 1; 

t = 4;  
while (t < 40)  
{ 
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y = t;  
t = t + 4; 
} 

 
11.1.7 Use of Algebraic Identities 
 

• Certain computations that look different to the compiler and are not identified as common 

sub-expressions are actually same.   
• An expression B op C will usually be treated as being different to C op B.  
• However, for certain operations (like addition and multiplication), they will produce the 

same result.  
• We can achieve further optimization by treating them as common sub-expressions for 

such operations.  
 

11.2 Local Optimizations  
 

• Target code generated statement by statement generally contains redundant instructions.   
• We can improve the quality of such code by applying optimizing transformations locally 

by examining a short sequence of code instructions and replacing them by faster or 
shorter sequence, if possible.   

• This technique is known as Peephole Optimization where the peephole is a small moving 
window on the program.   

• Many of the code optimization techniques can be carried out by a single portion of a 

program known as Basic Block.  
 
11.2.1 Basic Block 
 

• A basic Block is defined as a sequence of consecutive statements with only one entry (at 

the beginning) and one exit (at the end).   
• When a Basic Block of a program is entered, all the statements are executed in 

sequence without a halt or possibility of branch except at the end.  
• In order to determine all the Basic Block in a program, we need to identify the leaders, 

the first statement of each Basic Block.   
• Any statement that satisfies the following conditions is a leader;  

o  The first statement is leader.  
o Any statement which is the target of any goto (jump) is a leader. 

o Any statement that immediately follows a goto (jump) is a leader. 

 
• A basic block is defined as the portion of code from one leader to the statement up to but 

including the next leader or the end of the program.  
 
11.2.2 Flow Graph 
 

• It is a directed graph that is used to portray basic block and their successor relationships.   
• The nodes of a flow graph are the basic blocks.  
• The basic block whose leader is the first statement is known as the initial block.  
• There is a directed edge from block B1 to B2 if B2 could immediately follow B1 during 

execution.   
• To determine whether there should be directed edge from B1 to B2, following criteria is 

applied:  
o  There is a jump from last statement of B1 to the first statement of B2, OR  

o B2 immediately follows B1 in order of the program and B1 does not end in an 
unconditional jump.  

• B1 is known as the predecessor of B2 and B2 is a successor of B1.  
 
 
11.2.3 Loops 
 

• We need to identify all the loops in a flow graph to carry out many optimizations 
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discussed earlier.  

• A loop is a collection of nodes that  
o is strongly connected i.e. from any node in the loop to any other, there is a path 

of length one or more wholly within the loop, and   
o has a unique entry, a node in the loop such that the only way to reach a node in 

the loop from a node outside the loop is to first go through the entry.  
 

4. DAG Representation of a Basic Block  
 

 Many optimizing transformations can be implemented using the DAG representation of a 

basic block.   
 DAG stands for Directed Acyclic Graph i.e. a graph with directed edges and no cycles.  
 DAG is very much like a tree but differs in that it may contain shared nodes where shared 

nodes indicate common sub-expressions.  
 A DAG has following components;  

 Leaves are labeled by unique identifiers, either variable names or constants.  
o  Interior nodes are labeled by an operator symbol. 
o Nodes are optionally given an extra set of identifiers known as attached 

identifiers.  
 

11.3.1 DAG Construction  
 

• We assume there are initially no nodes and NODE ( ) is undefined for all arguments.   
• The 3-address statements has one of three cases:  

(i) A = B op C  
(ii) A = op B  
(iii) A = B  

• We shall do the following steps (1) through (3) for each 3-address statement of the basic  
block:  

(1) If NODE (B) is undefined, create a leaf labeled B, and let NODE (B) be this node. In case 
(i), if NODE (C) is undefined, create a leaf labeled C and let that leaf be NODE (C);   

(2) In case (i), determine if there is a node labeled op whose left child is NODE (B) and whose 

right child is NODE (C). (This is to catch common sub-expressions.) If not create such a 

node. In case (ii), determine whether there is a node labeled op whose lone child  

 
 

 
is NODE (B). If not create such a node. Let n be the node found or created in both cases. 

In case (iii), let n be NODE (B). 
(3) Append A to the list of attached identifiers for the node n in (2). Delete A from the list of 

attached identifiers for NODE (A). Finally, set NODE (A) to n.  
 
11.3.2 Applications of DAG  
 

• We automatically detect common sub-expressions while constructing DAG.   
• It is also known as to which identifiers have there values used in side the block; they are 

exactly those for which a leaf is created in Step (1).   
• We can also determine which statements compute values which could be used outside the 

block; they are exactly those statements S whose node n in step (2) still has NODE   
(A) = n at the end of DAG construction, where A is the identifier assigned by statement S 

i. e. A is still an attached identifier for n.  
 
 

11.4 Global Data Flow Analysis  
 

• Certain optimizations can be achieved by examining the entire program and not just a 

portion of the program.   
• User-defined chaining is one particular problem of this kind.  
• Here we try to find out as to which definition of a variable is applicable in a statement 

using the value of that variable.  
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PRACTICE QUESTIONS 

 
SHEET#1 
 

1. Why do we divide the compiler into phases?  
 

2. What is the need to carry out compilation in passes?  
 

3. Do you see the application of Compiler Design techniques in any other area also?  
 

4. Discuss the phases of a compiler with respect to the translation of a paragraph from one 

human language to another.  

5. Write a regular expression to recognize a series of binary digits with pattern 000 at the 

end.  
 

6. Construct the DFAs for (a/b)*aba and (a/b)*aba(a/b)*.   
7. Starting from RE, compute the DFA to recognize the following keywords and any  

 
identifier in C language. 

 
int, char, long, float, signed, unsigned 

 
8. Construct NFA for the following RE using Thompson’s construction:  

 
a. (0/1)*  

 
b. 01 (0/1)*  

 
c. (0*/1*)*0  

 
d. (0/1)*0(0/1)*  

 
9. Construct DFA for each NFA in Question 8 above.  

 
10. Show that the following RE’s are same by constructing optimized DFA’s:  

 
a. (a/b)*  

 
b. (a*/b*)*  

 
c. (a/b*)*  

 
11. How is Finite Automation useful for Lexical Analysis?  

 
12. Show a step-by-step left most derivation of the following expressions in a suitable 

grammar for mathematical expressions.  

1+2* ((3+4) +5) +6  
 

13. Consider the context free grammar  
 

S   S S + / S S * / a 
 

a. Show how the string aa+a* can be generated by this grammar.  
 

b. Construct a parse tree for this string.  
 

c. What language is generated by this grammar? Justify your answer.  
 

14. What language is generated by the following grammars? In each case justify your 

answer?  

a. S   0S1| 01  
 

b. S   +SS| -SS | a  
c. S   S(S)S | €  

 
d. S   aSbS | bSaS | €  

 
e. S   a | S+S | SS | S* | (S)  
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15. How do we prove that a CFG is ambiguous? Apply this method on the following 

ambiguous CFG: E E + E / E * E / id  

16. Why is it important to check for ambiguity before using a CFG in our language?  
 

17. What is meant by left recursion? Why is it important?  
 

18. How do we eliminate left recursion? Demonstrate with the help of an example.  
 

19. What is left-factoring and how is it useful? Demonstrate with the help of an example.  
 

20. Name and discuss about the popular compiler writing tools.  
 
SHEET#2 

 
1. What is the difference between top-down and bottom-up parsing? Demonstrate with the 

help of an example.  

2. What are the necessary properties in a grammar so that is can be parsed in a top-down 

manner?  

3. Determine whether the following grammar can be parsed by a top-down parser or not. In  
 

case it cannot be top-down parsed, make necessary transformations to that effect. 

E E+T / T 

T T*F / F F 

(E) / id 

4. Show all steps in parsing the following string w = cad with the given grammar in a top-

down (with backtrack) manner:  

S   cAd 
 

A   ab / a 
 

5. Calculate FIRST and FOLLOW for the grammar (after transformation, if any) in question 

3 above.  

6. Compute the LL(1) parsing table for the grammar (after transformation, if any) in question 

3 above. Determine whether this grammar is LL (1) or not.  

7. Consider the grammar below and determine whether it is an operator grammar or not:  
 

E   E + E / E * E / id 
 

8. For the grammar in question 7 above, compute the operator precedence table using the 

associativity and precedence properties.  

9. For the grammar in question 3 compute the operator precedence relation without using 

associativity and precedence properties. Determine whether the grammar is operator 

precedence or not.  

10. Show steps of parsing the string w = id + id * id by table question 8 above.  
 

11. Show steps of parsing the string w = id + id * id by table question 9 above.  
 

12. Consider the following grammar  
 

S   AS / b 
 

A   SA / a 
 

a. List all the LR (0) items for the above grammar.  
 

b. Construct an NFA whose states are LR (0) items.  
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13. For grammar in question 12 above, determine if the grammar is SLR. If so, construct its 

SLR table.  

14. For the grammar in question 12 above, list all the LR (1) items and construct an NFA 

whose states are these LR (1) items.  

15. For grammar in question 12 above, determine if the grammar is CLR. If so, construct its 

CLR table.  

16. Identify any common cores in the LR (1) items of question 14. List the LR (1) items after 

the merger of common core items.  

17. Determine whether the grammar in question 12 above is LALR or not. If so, construct the 

LALR table for this grammar.  

18. What do you understand by Shift-Reduce and Reduce-Reduce conflict? Which kind of 

errors can occur while making LALR table for a CLR grammar and why? Which kind of 

errors cannot occur while making LALR table for a CLR grammar and why?  
 

19. In SLR, LALR and CLR, which can parse the largest class of grammars and why?  
 

20. In SLR, LALR and CLR, which has least number of states and why?  
 

SHEET#3 
 
Use suitable translation schemes to answer the questions below. 

 
1. For the input expression (4*7+1)*2, construct an parse tree with translations.   
2. Construct the parse tree and the syntax tree for the expression ((a)+(b)).  
3. Translate the arithmetic expression a*-( b+c) into  

a) syntax tree  
b) postfix notation  
c) three-address code  

4. Translate the expression -( a+b) * (c+d) +( a+b+c) into  
a) quadruples  
b) triples   
c) Indirect triples  

5. Translate the executable statements of the following C program  
main() 
{  

int i ; 
int a[10]; 

i = 1;  
while (i<=10) { 

a[i] = 0; i = i+1; 
}  

} 
 

into  
a) a syntax tree  
b) postfix notation   
c) three-address code.  

 
6. A translation model may translates E    id1 < id2 into pair of statements   

If id1 < id2 goto…… 
goto…….  

We could translate instead into the single 
statement If id1>= id2 goto_  
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and fall through the code when E is true. Devise a translation model to generate code 

of this nature. 
 

7. Translate the following statement into three-address code 

A[i , j] :=B[i ,j] + C[A[k ,l]] + D[i+j] 
 

8. In C, the for statement has the following form: 

for (e1 ; e2 ;e3 ) stmt 
Taking its meaning to be 

e1;  
while (e2) { 

stmt; 
e3; 

} 
Construct a syntax-directed definition to translate C-style for statements into three-

address code. 
 

9. Consider the statement 

while a < b do 
if c < d then 

x := y + z  
else  

x := y – z 
Obtain the code using control-flow translation of Boolean expressions. 

 
10. Using control-flow translation of Boolean expressions obtain the code of the following 

expression   
a < b or c < d and e < f  

 
 
 
SHEET#4 
 

1. What are the attributes that shall be stored in the symbol table?  
 

2. Describe the different data structures for symbol table implementation and compare 

them.  

3. Describe and illustrate the use of symbol table for each phase of compiler construction 

with the help of suitable example.  

4. Define an activation record. Write down the structure of a typical activation record.  
 

5. Consider the program fragment given below:  
 

program main(input, 

output); procedure p(x, y, z); 

begin 

y:=y+1; 

z:=z + x; 
 

end; 

begin 

a:=2; 
 

b:=3; 
 

p (a+b, a, a); 

print a 
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end 
 

What will be printed by the program assuming Call-by-Value? 
 

6. What will be printed by the program in question 5 above assuming Call-by-Reference?  
 

7. What will be printed by the program in question 5 above assuming Call-by-Name?  
 

8. Consider the following program fragment:  
 

program main 

var y: Real; 
 

procedure compute() 

var x : Integer; 
 

procedure initialize() 

var x: Real; 
begin {initialize} 
... 
end {initialize} 

 
procedure transform() 

var z: Real;  
begin {transform} 
... 
end {transform} 

 
begin {compute}  
end {compute} 

begin {main}  
end {main}  

What is the scope of the variable x declared in the procedure compute() in the following 

program, assuming that procedures are called in the following order: main() calls 

compute(), which in turn calls transform(), which in turn calls initialize()? 
 

9. What errors can occur in each of the lexical, syntax and semantic phases? Illustrate 

using examples.  

10. What is the Panic mode of error-recovery? How do we apply this approach in different 

parsers?  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


