
Compiler Design By Prashant Srivastava

SYLLABUS

UNIT I:
Introduction to Compiler: Phases and passes, Bootstrapping, Finite state machines and regular
expressions and their applications to lexical analysis, Implementation of lexical analyzers, lexical-
analyzer generator, LEX-compiler, Formal grammars and their application to syntax analysis,
BNF notation, ambiguity, YACC.
The syntactic specification of programming languages: Context free grammars, derivation

and parse trees, capabilities of CFG.

UNIT II:
Basic Parsing Techniques: Parsers, Shift reduce parsing, operator precedence parsing,
top down parsing, predictive parsers
Automatic Construction of efficient Parsers: LR parsers, the canonical Collection of LR (O)

items, constructing SLR parsing tables, constructing Canonical LR parsing tables, Constructing

LALR parsing tables, using ambiguous grammars, an automatic parser generator, implementation

of LR parsing tables, constructing LALR sets of items.

UNIT III:
Syntax-directed Translation: Syntax-directed Translation schemes, Implementation of

Syntax-directed Translators, Intermediate code, postfix notation, Parse trees & syntax trees,
three address code, quadruple & triples, translation of assignment statements, Boolean
expressions, statements that alter the flow of control, postfix translation, translation with a top
down parser. More about translation: Array references in arithmetic expressions, procedures

call, declarations, case statements.

UNIT IV:
Symbol Tables: Data structure for symbols tables, representing scope information.
Run-Time Administration: Implementation of simple stack allocation scheme, storage allocation
in block structured language.
Error Detection & Recovery: Lexical Phase errors, syntactic phase errors semantic errors.

UNIT V:
Introduction to code optimization: Loop optimization, the DAG representation of basic blocks,

value numbers and algebraic laws, Global Data-Flow analysis.

TEXTBOOK:

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman,
“Compilers: Principles, Techniques, and Tools”
Addison-Wesley.

Compiler Design By Prashant Srivastava

1. INTRODUCTION TO COMPILERS AND ITS PHASES

A compiler is a program takes a program written in a source language and translates it into an

equivalent program in a target language.

Source program COMPILER Target program

This subject discusses the various techniques used to achieve this objective. In addition to the

development of a compiler, the techniques used in compiler design can be applicable to many

problems in computer science.
o Techniques used in a lexical analyzer can be used in text editors, information

retrieval system, and pattern recognition programs.
o Techniques used in a parser can be used in a query processing system such as

SQL.
o Many software having a complex front-end may need techniques used in

compiler design.
A symbolic equation solver which takes an equation as input. That

program should parse the given input equation.
o Most of the techniques used in compiler design can be used in Natural Language

Processing (NLP) systems.

1.1 Major Parts of a Compiler

There are two major parts of a compiler: Analysis and Synthesis
• In analysis phase, an intermediate representation is created from the given source program.

– Lexical Analyzer, Syntax Analyzer and Semantic Analyzer are the phases in this part.
• In synthesis phase, the equivalent target program is created from this intermediate

representation.
– Intermediate Code Generator, Code Generator, and Code Optimizer are the phases in this

part.

1.2 Phases of a Compiler

Source Lexical Syntax Semantic Intermediate Code Code Target
Program Analyzer Analyzer Analyzer Code Generator Optimizer Generator Program

Each phase transforms the source program from one representation into another representation.

They communicate with error handlers and the symbol table.

1.2.1 Lexical Analyzer

• Lexical Analyzer reads the source program character by character and returns the tokens

of the source program.
• A token describes a pattern of characters having same meaning in the source program.

(such as identifiers, operators, keywords, numbers, delimiters and so on)

Example:
In the line of code newval := oldval + 12, tokens are:

newval (identifier)
:= (assignment operator)
oldval (identifier)
+ (add operator)

 12 (a number)

Compiler Design By Prashant Srivastava

• Puts information about identifiers into the symbol table.
• Regular expressions are used to describe tokens (lexical constructs).
• A (Deterministic) Finite State Automaton can be used in the implementation of a lexical

analyzer.

1.2.2 Syntax Analyzer

• A Syntax Analyzer creates the syntactic structure (generally a parse tree) of the given
program.

• A syntax analyzer is also called a parser.
• A parse tree describes a syntactic structure.

Example:
For the line of code newval := oldval + 12, parse tree will be:

assignment

identifier := expression

newval expression + expression

identifier number

oldval 12

• The syntax of a language is specified by a context free grammar (CFG).
• The rules in a CFG are mostly recursive.
• A syntax analyzer checks whether a given program satisfies the rules implied by a CFG or

not.
– If it satisfies, the syntax analyzer creates a parse tree for the given program.

Example:
CFG used for the above parse tree is:

assignment identifier := expression
expression identifier
expression number
expression expression + expression

• Depending on how the parse tree is created, there are different parsing techniques.
• These parsing techniques are categorized into two groups:

– Top-Down Parsing,
– Bottom-Up Parsing

• Top-Down Parsing:
– Construction of the parse tree starts at the root, and proceeds towards the leaves.
– Efficient top-down parsers can be easily constructed by hand.
– Recursive Predictive Parsing, Non-Recursive Predictive Parsing (LL Parsing).

• Bottom-Up Parsing:
– Construction of the parse tree starts at the leaves, and proceeds towards the root.
– Normally efficient bottom-up parsers are created with the help of some software tools.
– Bottom-up parsing is also known as shift-reduce parsing.
– Operator-Precedence Parsing – simple, restrictive, easy to implement
– LR Parsing – much general form of shift-reduce parsing, LR, SLR, LALR

Compiler Design By Prashant Srivastava

1.2.3 Semantic Analyzer

• A semantic analyzer checks the source program for semantic errors and collects the type

information for the code generation.
• Type-checking is an important part of semantic analyzer.
• Normally semantic information cannot be represented by a context-free language used in

syntax analyzers.
• Context-free grammars used in the syntax analysis are integrated with attributes (semantic

rules) . The result is a syntax-directed translation and Attribute grammars

Example:
In the line of code newval := oldval + 12, the type of the identifier newval must match

with type of the expression (oldval+12).

1.2.4 Intermediate Code Generation

• A compiler may produce an explicit intermediate codes representing the source program.
• These intermediate codes are generally machine architecture independent. But the level of

intermediate codes is close to the level of machine codes.

Example:

newval := oldval * fact + 1

id1 := id2 * id3 + 1

MULT id2, id3, temp1
ADD temp1, #1, temp2
MOV temp2, id1

The last form is the Intermediates Code (Quadruples)

1.2.5 Code Optimizer

• The code optimizer optimizes the code produced by the intermediate code generator in the

terms of time and space.

Example:
The above piece of intermediate code can be reduced as follows:

MULT id2, id3, temp1
ADD temp1, #1, id1

1.2.6 Code Generator

• Produces the target language in a specific architecture.

• The target program is normally is a relocatable object file containing the machine codes.

Example:
Assuming that we have architecture with instructions that have at least one operand as a

machine register, the Final Code our line of code will be:

MOVE id2, R1
MULT id3, R1
ADD #1, R1

Compiler Design By Prashant Srivastava

MOVE R1, id1

1.3 Phases v/s Passes

Phases of a compiler are the sub-tasks that must be performed to complete the compilation

process. Passes refer to the number of times the compiler has to traverse through the entire

program.

1.4 Bootstrapping and Cross-Compiler

There are three languages involved in a single compiler- the source language (S), the target

language (A) and the language in which the compiler is written (L).

CL
SA

The language of the compiler and the target language are usually the language of the computer

on which it is working.

CA
SA

If a compiler is written in its own language then the problem would be to how to compile the first

compiler i.e. L=S. For this we take a language, R which is a small part of language S. We write

a compiler of R in language of the computer A. The complier of S is written in R and complied

on the complier of R make a full fledged compiler of S. This is known as Bootstrapping.

CR
SA

 CA
RA

 CA
SA

A Cross Compiler is compiler that runs on one machine (A) and produces a code for another
machine (B).

CB
SA

Compiler Design By Prashant Srivastava

2. LEXICAL ANALYSIS

Lexical Analyzer reads the source program character by character to produce tokens.

Normally a lexical analyzer does not return a list of tokens at one shot; it returns a token

when the parser asks a token from it.

2.1 Token

• Token represents a set of strings described by a pattern. For example, an identifier

represents a set of strings which start with a letter continues with letters and digits. The actual
string is called as lexeme.

• Since a token can represent more than one lexeme, additional information should be held for
that specific lexeme. This additional information is called as the attribute of the token.

• For simplicity, a token may have a single attribute which holds the required information for that
token. For identifiers, this attribute is a pointer to the symbol table, and the symbol table holds
the actual attributes for that token.

• Examples:
– <identifier, attribute> where attribute is pointer to the symbol table
– <assignment operator> no attribute is needed
– <number, value> where value is the actual value of the number

• Token type and its attribute uniquely identify a lexeme.
• Regular expressions are widely used to specify patterns.

2.2 Languages

2.2.1 Terminology

• Alphabet : a finite set of symbols (ASCII characters)
• String : finite sequence of symbols on an alphabet

– Sentence and word are also used in terms of string
– ε is the empty string
– |s| is the length of string s.

• Language: sets of strings over some fixed alphabet
– ∅ the empty set is a language.
– {ε} the set containing empty string is a language
– The set of all possible identifiers is a language.

• Operators on Strings:
 – Concatenation: xy represents the concatenation of strings x and y. s ε = s ε s = s

 – sn = s s s .. s (n times) s0 = ε

2.2.2. Operations on Languages

• Concatenation: L1L2 = { s1s2 | s1 ∈ L1 and s2 ∈ L2 }

• Union: L1 ∪ L2 = { s | s ∈ L1 or s ∈ L2 }

• Exponentiation: L0 = {ε} L1 = L L2 = LL
• Kleene Closure: L* =
• Positive Closure: L+ =

Examples:

• L1 = {a,b,c,d} L2 = {1,2}

• L1L2 = {a1,a2,b1,b2,c1,c2,d1,d2}

Compiler Design By Prashant Srivastava

• L1 ∪ L2 = {a,b,c,d,1,2}
• L1

3 = all strings with length three (using a,b,c,d}
• L1

* = all strings using letters a,b,c,d and empty string

• L1
+ = doesn’t include the empty string

2.3 Regular Expressions and Finite Automata

2.3.1 Regular Expressions

• We use regular expressions to describe tokens of a programming language.
• A regular expression is built up of simpler regular expressions (using defining rules)
• Each regular expression denotes a language.
• A language denoted by a regular expression is called as a regular set.

For Regular Expressions over alphabet Σ

 Regular Expression Language it denotes
 ε {ε}
 a∈ Σ {a}
 (r1) | (r2) L(r1) ∪ L(r2)
 (r1) (r2) L(r1) L(r2)
 (r)* (L(r))*
 (r) L(r)

• (r)+ = (r)(r)*

• (r)? = (r) | ε
• We may remove parentheses by using precedence rules.

 – * Highest

 – concatenation next

•

– | lowest

ab*|c means (a(b)*)|(c)

Examples:

– Σ = {0,1}
– 0|1 = {0,1}
– (0|1)(0|1) = {00,01,10,11}
– 0*

 = {ε ,0,00,000,0000,....}

– (0|1)* = All strings with 0 and 1, including the empty string

2.3.2 Finite Automata

• A recognizer for a language is a program that takes a string x, and answers “yes” if x is a
sentence of that language, and “no” otherwise.

• We call the recognizer of the tokens as a finite automaton.
• A finite automaton can be: deterministic (DFA) or non-deterministic (NFA)
• This means that we may use a deterministic or non-deterministic automaton as a lexical

analyzer.
• Both deterministic and non-deterministic finite automaton recognize regular sets.
• Which one?

– deterministic – faster recognizer, but it may take more space
– non-deterministic – slower, but it may take less space
– Deterministic automatons are widely used lexical analyzers.

Compiler Design By Prashant Srivastava

• First, we define regular expressions for tokens; Then we convert them into a DFA to get a

lexical analyzer for our tokens.

2.3.3 Non-Deterministic Finite Automaton (NFA)

• A non-deterministic finite automaton (NFA) is a mathematical model that consists of:
– S - a set of states
– Σ - a set of input symbols (alphabet)
– move - a transition function move to map state-symbol pairs to sets of states.
– s0 - a start (initial) state
– F- a set of accepting states (final states)

• ε- transitions are allowed in NFAs. In other words, we can move from one state to another one
without consuming any symbol.

• A NFA accepts a string x, if and only if there is a path from the starting state to one of
accepting states such that edge labels along this path spell out x.

Example:

 a

0

 a
1

 b

 2

 Start

 b

 Transition Graph

0 is the start state s0

{2} is the set of final states F

Σ = {a,b}

S = {0,1,2}

 Transition Function:

 a b

 0 {0,1} {0}

 1 {} {2}

 2 {} {}

The language recognized by this NFA is (a|b)*ab

2.3.4 Deterministic Finite Automaton (DFA)

• A Deterministic Finite Automaton (DFA) is a special form of a NFA.
• No state has ε- transition
• For each symbol a and state s, there is at most one labeled edge a leaving s. i.e. transition

function is from pair of state-symbol to state (not set of states)

Compiler Design By Prashant Srivastava

Example:

The DFA to recognize the language (a|b)* ab is as follows.

B a
a

a

1

b

0 2

b

Transition Graph

0 is the start state s0
{2} is the set of final states F

Σ = {a,b}
S = {0,1,2}

Transition Function:

 a b

0 1 0

1 1 2

2 1 0

Note that the entries in this function are single value and not set of values (unlike NFA).

2.3.5 Converting RE to NFA (Thomson Construction)

• This is one way to convert a regular expression into a NFA.
• There can be other ways (much efficient) for the conversion.
• Thomson’s Construction is simple and systematic method.
• It guarantees that the resulting NFA will have exactly one final state, and one start state.
• Construction starts from simplest parts (alphabet symbols).
• To create a NFA for a complex regular expression, NFAs of its sub-expressions are

combined to create its NFA.

• To recognize an empty string ε:

ε

 i f

• To recognize a symbol a in the alphabet Σ:

a
 i f

Compiler Design By Prashant Srivastava

• For regular expression r1 | r2:

 ε
N(r1) ε

i
ε

 f

 ε

 N(r2)

N(r1) and N(r2) are NFAs for regular expressions r1 and r2.

• For regular expression r1 r2

i N(r1) N(r2) f

Here, final state of N(r1) becomes the final state of N(r1r2).

• For regular expression r*

 ε

i
ε

N(r)

 ε

Example:
For a RE (a|b) * a, the NFA construction is shown below.

ε

f

a a

(a | b)

b
b

 ε

 a

(a|b)
*

ε
Ε

 ε

 b

ε

 a

(a|b)
*
 a ε

ε

ε

 b

 ε

ε a ε

ε

b
ε

ε

ε
ε

ε

ε a
ε

Compiler Design By Prashant Srivastava

2.3.6 Converting NFA to DFA (Subset Construction)

We merge together NFA states by looking at them from the point of view of the input characters:

• From the point of view of the input, any two states that are connected by an -transition

may as well be the same, since we can move from one to the other without consuming

any character. Thus states which are connected by an -transition will be represented

by the same states in the DFA.

• If it is possible to have multiple transitions based on the same symbol, then we can

regard a transition on a symbol as moving from a state to a set of states (ie. the union of

all those states reachable by a transition on the current symbol). Thus these states will be

combined into a single DFA state.

To perform this operation, let us define two functions:

• The -closure function takes a state and returns the set of states reachable from it

based on (one or more) -transitions. Note that this will always include the state tself.

We should be able to get from a state to any state in its -closure without consuming

any input.
• The function move takes a state and a character, and returns the set of states reachable

by one transition on this character.

We can generalise both these functions to apply to sets of states by taking the union of

the application to individual states.

For Example, if A, B and C are states, move({A,B,C},`a') = move(A,`a') move(B,`a')

 move(C,`a').

The Subset Construction Algorithm is a follows:

put ε-closure({s0}) as an unmarked state into the set of DFA (DS)

while (there is one unmarked S1 in DS) do

begin

mark S1
for each input symbol a

do begin
S2 ε-closure(move(S1,a)) if

(S2 is not in DS) then
add S2 into DS as an unmarked

state transfunc[S1,a] S2
end

end

• a state S in DS is an accepting state of DFA if a state in S is an accepting state of NFA
• the start state of DFA is ε-closure({s0})

Compil
er
Design
By
Prashan
t
Srivasta
va

Example:

ε

2
a 3 ε

0
ε

1 6
ε

 ε ε

4
b 5

ε

S0 = ε-closure({0}) = {0,1,2,4,7} S0 into DS as an unmarked state

⇓ mark S0
ε-closure(move(S0,a)) = ε-closure({3,8}) = {1,2,3,4,6,7,8} =

S1 ε-closure(move(S0,b)) = ε-closure({5}) = {1,2,4,5,6,7} = S2
transfunc[S0,a] S1 transfunc[S0,b] S2 ⇓ mark

S1
ε-closure(move(S1,a)) = ε-closure({3,8}) = {1,2,3,4,6,7,8} =

S1 ε-closure(move(S1,b)) = ε-closure({5}) = {1,2,4,5,6,7} = S2
transfunc[S1,a] S1 transfunc[S1,b] S2 ⇓ mark

S2
ε-closure(move(S2,a)) = ε-closure({3,8}) = {1,2,3,4,6,7,8} =

S1 ε-closure(move(S2,b)) = ε-closure({5}) = {1,2,4,5,6,7} = S2
transfunc[S2,a] S1 transfunc[S2,b] S2

7
a

 8

S1 into DS
S2 into DS

S0 is the start state of DFA since 0 is a member of S0={0,1,2,4,7}
S1 is an accepting state of DFA since 8 is a member of S1 = {1,2,3,4,6,7,8}

 a

 S1

 a

S0 b
a

b

S2

b

Compiler Design By Prashant Srivastava

2.4 Lexical Analyzer Generator

Regular Expressions Lexical Analyzer Generator Lexical Analyzer

Compiler Design By Prashant Srivastava

Source Program Lexical Analyzer Tokens

LEX is an example of Lexical Analyzer Generator.

2.4.1 Input to LEX

• The input to LEX consists primarily of Auxiliary Definitions and Translation Rules.
• To write regular expression for some languages can be difficult, because their regular

expressions can be quite complex. In those cases, we may use Auxiliary Definitions.
• We can give names to regular expressions, and we can use these names as symbols to

define other regular expressions.
• An Auxiliary Definition is a sequence of the definitions of the form:

d1 → r1

d2 → r2
.
.
dn → rn

where di is a distinct name and ri is a regular expression over symbols in

Σ ∪ {d1,d 2,...,di-1}

basic symbols previously defined names

Example:
For Identifiers in Pascal

letter → A | B | ... | Z | a | b | ... |

z digit → 0 | 1 | ... | 9
id → letter (letter | digit) *

If we try to write the regular expression representing identifiers without using regular definitions,
that regular expression will be complex.

(A|...|Z|a|...|z) ((A|...|Z|a|...|z) | (0|...|9)) *

Example:
For Unsigned numbers in Pascal

digit → 0 | 1 | ... | 9

digits → digit +
opt-fraction → (. digits) ? opt-

exponent → (E (+|-)? digits) ?
unsigned-num → digits opt-fraction opt-exponent

• Translation Rules comprise of a ordered list Regular Expressions and the Program Code to be

executed in case of that Regular Expression encountered.

R1 P1

R2 P2
.

.

Rn Pn

• The list is ordered i.e. the RE’s should be checked in order. If a string matches more than

one RE, the RE occurring higher in the list should be given preference and its Program Code
is executed.

Compiler Design By Prashant Srivastava

2.4.2 Implementation of LEX

•The Regular Expressions are converted into NFA’s. The final states of each NFA correspond
to some RE and its Program Code.
•Different NFA’s are then converted to a single NFA with epsilon moves. Each final state of
the NFA corresponds one-to-one to some final state of individual NFA’s i.e. some RE and its
Program Code. The final states have an order according to the corresponding RE’s. If more
than one final state is entered for some string, then the one that is higher in order is selected.
•This NFA is then converted to DFA. Each final state of DFA corresponds to a set of states
(having at least one final state) of the NFA. The Program Code of each final state (of the DFA)
is the program code corresponding to the final state that is highest in order out of all the final
states in the set of states (of NFA) that make up this final state (of DFA).

Example:

AUXILIARY DEFINITIONS

(none)

TRANSLATION RULES

a {Action1}
abb {Action2}

a*b+ {Action2}

First we construct an NFA for each RE and then convert this into a single NFA:

a { action1 }

abb{ action2 }
a *b + { action3}

start

1 2

start

4 b

3
 a 5 6

start
7 8

ε
start 0 ε

ε

1 2

3 a 4 b 5 6

7 8

This NFA is now converted into a DFA. The transition table for the above DFA is as follows:

State A b Token found

0137 247 8 None

247 7 58 a

8 - 8 a*b+

7 7 8 None

58 - 68 a*b+

68 - 8 abb

Compiler Design By Prashant Srivastava

3. BASICS OF SYNTAX ANALYSIS

• Syntax Analyzer creates the syntactic structure of the given source program.
• This syntactic structure is mostly a parse tree.
• Syntax Analyzer is also known as parser.
• The syntax of a programming is described by a context-free grammar (CFG). We will use BNF

(Backus-Naur Form) notation in the description of CFGs.
• The syntax analyzer (parser) checks whether a given source program satisfies the rules

implied by a context-free grammar or not.
– If it satisfies, the parser creates the parse tree of that program.
– Otherwise the parser gives the error messages.

• A context-free grammar
– gives a precise syntactic specification of a programming language.
– the design of the grammar is an initial phase of the design of a compiler.
– a grammar can be directly converted into a parser by some tools.

3.1 Parser

• Parser works on a stream of tokens.
• The smallest item is a token.

source Lexical
program Analyzer

token

Parser parse

get next token
 tree

• We categorize the parsers into two groups:
• Top-Down Parser

– the parse tree is created top to bottom, starting from the root.
• Bottom-Up Parser

– the parse is created bottom to top; starting from the leaves
• Both top-down and bottom-up parsers scan the input from left to right (one symbol at a time).
• Efficient top-down and bottom-up parsers can be implemented only for sub-classes of

context-free grammars.
– LL for top-down parsing
– LR for bottom-up parsing

3.2 Context Free Grammars

• Inherently recursive structures of a programming language are defined by a context-free

grammar.
• In a context-free grammar, we have:

– A finite set of terminals (in our case, this will be the set of tokens)
– A finite set of non-terminals (syntactic-variables)
– A finite set of productions rules in the following form

A → α where A is a non-terminal and

α is a string of terminals and non-terminals (including the empty string)
– A start symbol (one of the non-terminal symbol)

• L(G) is the language of G (the language generated by G) which is a set of sentences.
• A sentence of L(G) is a string of terminal symbols of G.
• If S is the start symbol of G then

(a) ω is a sentence of L(G) iff S ⇒ ω where ω is a string of terminals of G.
• If G is a context-free grammar, L(G) is a context-free language.

Compiler Design By Prashant Srivastava

• Two grammars are equivalent if they produce the same language.
• S ⇒ α

- If α contains non-terminals, it is called as a sentential form of G.
- If α does not contain non-terminals, it is called as a sentence of G.

3.2.1 Derivations

Example:
(b) E → E + E | E – E | E * E | E / E | - E
(c) E → (E)
(d) E → id

• E ⇒ E+E means that E+E derives from E
– we can replace E by E+E
– to able to do this, we have to have a production rule E→E+E in our grammar.

• E ⇒ E+E ⇒ id+E ⇒ id+id means that a sequence of replacements of non-terminal symbols is
called a derivation of id+id from E.

• In general a derivation step is
αAβ ⇒ αγβ if there is a production rule A→γ in our grammar

where α and β are arbitrary strings of terminal and non-terminal

symbols

α1 ⇒ α2 ⇒ ... ⇒ αn (αn derives from α1 or α1 derives αn)

• At each derivation step, we can choose any of the non-terminal in the sentential form of G for
the replacement.

• If we always choose the left-most non-terminal in each derivation step, this derivation is called
as left-most derivation.

Example:

E ⇒ -E ⇒ -(E) ⇒ -(E+E) ⇒ -(id+E) ⇒ -(id+id)

• If we always choose the right-most non-terminal in each derivation step, this derivation is

called as right-most derivation.

Example:

E ⇒ -E ⇒ -(E) ⇒ -(E+E) ⇒ -(E+id) ⇒ -(id+id)

• We will see that the top-down parsers try to find the left-most derivation of the given source

program.
• We will see that the bottom-up parsers try to find the right-most derivation of the given source

program in the reverse order.

3.2.2 Parse Tree

• Inner nodes of a parse tree are non-terminal symbols.
• The leaves of a parse tree are terminal symbols.
• A parse tree can be seen as a graphical representation of a derivation.

Compiler Design By Prashant Srivastava

Example:

E ⇒ -E
E

⇒ -(E) E
⇒ -(E+E) E

- E

 - E - E

 (E) (E)

 E E E + E

 - E - E

⇒ -(id+E)

⇒ -(id+id)

(E (E)

)

 E + E E + E

 id id id

3.2.3 Ambiguity

• A grammar produces more than one parse tree for a sentence is called as an ambiguous

grammar.
• For the most parsers, the grammar must be unambiguous.
• Unambiguous grammar

Unique selection of the parse tree for a sentence
• We should eliminate the ambiguity in the grammar during the design phase of the compiler.
• An unambiguous grammar should be written to eliminate the ambiguity.
• We have to prefer one of the parse trees of a sentence (generated by an ambiguous

grammar) to disambiguate that grammar to restrict to this choice.
• Ambiguous grammars (because of ambiguous operators) can be disambiguated according to

the precedence and associativity rules.

Example:

To disambiguate the grammar E → E+E | E*E | E^E | id | (E), we can use precedence of

operators as follows:

^ (right to left) *

(left to right) +

(left to right)

We get the following unambiguous grammar:
E → E+T | T
T → T*F | F
F → G^F | G
G → id | (E)

3.3 Left Recursion

• A grammar is left recursive if it has a non-terminal A such that there is a derivation:

A ⇒ Aα for some string α

• Top-down parsing techniques cannot handle left-recursive grammars.

• So, we have to convert our left-recursive grammar into an equivalent grammar which is not

left-recursive.

Compiler Design By Prashant Srivastava

• The left-recursion may appear in a single step of the derivation (immediate left-recursion), or

may appear in more than one step of the derivation.

3.3.1 Immediate Left-Recursion

A → A α | Β where β does not start with A

⇓ Eliminate immediate left recursion
A → β A’

A’ → α A’ | ε an equivalent grammar

In general,
A → A α1 | ... | A αm | β1 | ... | βn where β1 ... βn do not start with A

⇓ Eliminate immediate left recursion
A → β1 A’ | ... | βn A’

A’ → α1 A’ | ... | αm A’ | ε an equivalent grammar

Example:

E → E+T | T
T → T*F | F
F → id | (E)

⇓ Eliminate immediate left recursion

E → T E’
E’ → +T E’ | ε
T → F T’
T’ → *F T’ | ε
F → id | (E)

• A grammar cannot be immediately left-recursive, but it still can be left-recursive.
• By just eliminating the immediate left-recursion, we may not get a grammar which is not

left-recursive.

Example:

S → Aa | b
A → Sc | d

This grammar is not immediately left-recursive, but it is still left-recursive.

S ⇒ Aa ⇒ Sca

Or

A ⇒ Sc ⇒ Aac

causes to a left-recursion

• So, we have to eliminate all left-recursions from our grammar.

3.3.2 Elimination

Arrange non-terminals in some order: A1 ... An

for i from 1 to n do {
for j from 1 to i-1 do { replace

each production

Compiler Design By Prashant Srivastava

Ai → Aj

γ by
Ai → α1 γ | ... | αk γ

where Aj → α1 | ... |

αk
}

eliminate immediate left-recursions among Ai productions
}

Example:

S → Aa | b
A → Ac | Sd | f

Case 1: Order of non-terminals: S, A

for S:

- we do not enter the inner loop.
- there is no immediate left recursion in S.

for A:

- Replace A → Sd with A → Aad | bd

So, we will have A → Ac | Aad | bd | f
- Eliminate the immediate left-recursion in

A A → bdA’ | fA’
A’ → cA’ | adA’ | ε

So, the resulting equivalent grammar which is not left-recursive is:

S → Aa | b
A → bdA’ | fA’
A’ → cA’ | adA’ | ε

Case 2: Order of non-terminals: A, S

for A:

- we do not enter the inner loop.
- Eliminate the immediate left-recursion in A

A → SdA’ | fA’
A’ → cA’ | ε

for S:

- Replace S → Aa with S → SdA’a | fA’a So,

we will have S → SdA’a | fA’a | b
- Eliminate the immediate left-recursion in

S S → fA’aS’ | bS’
S’ → dA’aS’ | ε

So, the resulting equivalent grammar which is not left-recursive is:

S → fA’aS’ | bS’
S’ → dA’aS’ | ε
A → SdA’ | fA’
A’ → cA’ | ε

3.4 Left Factoring

• A predictive parser (a top-down parser without backtracking) insists that the grammar

must be left-factored.

grammar a new equivalent grammar suitable for predictive parsing

Compiler Design By Prashant Srivastava

stmt → if expr then stmt else stmt | if expr then stmt

• when we see if, we cannot now which production rule to choose to re-write stmt in the

derivation
• In general,

A → βα1 | βα2 where α is non-empty and the first symbols

of β1 and β2 (if they have one)are different.
• when processing α we cannot know whether expand

A to βα1 or
A to βα2

• But, if we re-write the grammar as follows
A → αA’
A’ → β1 | β2 so, we can immediately expand A to αA’

3.4.1 Algorithm

• For each non-terminal A with two or more alternatives (production rules) with a common

non-empty prefix, let say

A → βα1 | ... | βαn | γ1 | ... | γm

convert it into

A → αA’ | γ1 | ... | γm
A’ → β1 | ... | βn

Example:

A → abB | aB | cdg | cdeB | cdfB

⇓
A → aA’ | cdg | cdeB |

cdfB A’ → bB | B
⇓

A → aA’ | cdA’’

A’ → bB | B
A’’ → g | eB | fB

Example:

A → ad | a | ab | abc | b

⇓
A → aA’ | b

A’ → d | ε | b | bc
⇓

A → aA’ | b
A’ → d | ε | bA’’

A’’ → ε | c

3.5 YACC

YACC generates C code for a syntax analyzer, or parser. YACC uses grammar rules that allow it

to analyze tokens from LEX and create a syntax tree. A syntax tree imposes a hierarchical structure

on tokens. For example, operator precedence and associativity are apparent in the syntax tree.

Compiler Design By Prashant Srivastava

The next step, code generation, does a depth-first walk of the syntax tree to generate code. Some

compilers produce machine code, while others output assembly.

YACC takes a default action when there is a conflict. For shift-reduce conflicts, YACC will shift. For

reduce-reduce conflicts, it will use the first rule in the listing. It also issues a warning message

whenever a conflict exists. The warnings may be suppressed by making the grammar

unambiguous.

... definitions ...
%%
... rules ...
%%
... subroutines ...

Input to YACC is divided into three sections. The definitions section consists of token

declarations, and C code bracketed by “%{“ and “%}”. The BNF grammar is placed in the

rules section, and user subroutines are added in the subroutines section.

4. TOP-DOWN PARSING

• The parse tree is created top to bottom.
• Top-down parser

– Recursive-Descent Parsing
• Backtracking is needed (If a choice of a production rule does not work, we backtrack to

try other alternatives.)
• It is a general parsing technique, but not widely used.
• Not efficient

– Predictive Parsing

• No backtracking
• Efficient
• Needs a special form of grammars i.e. LL (1) grammars.
• Recursive Predictive Parsing is a special form of Recursive Descent parsing without

backtracking.

• Non-Recursive (Table Driven) Predictive Parser is also known as LL (1) parser.

4.1 Recursive-Descent Parsing (uses Backtracking)

• Backtracking is needed.
• It tries to find the left-most derivation.

Example:
If the grammar is S → aBc; B → bc | b and the input is abc:

 S S

a B c a B c
b c b

4.2 Predictive Parser

Grammar ----- ----- a grammar suitable for predictive
 eliminate left parsing (a LL(1) grammar)
 left recursion factor no %100 guarantee.

• When re-writing a non-terminal in a derivation step, a predictive parser can uniquely choose a

production rule by just looking the current symbol in the input string.

Example:

Compiler Design By Prashant Srivastava

stmt → if |
while |
begin |
for

• When we are trying to write the non-terminal stmt, we have to choose first production

rule.
• When we are trying to write the non-terminal stmt, we can uniquely choose the

production rule by just looking the current token.
• We eliminate the left recursion in the grammar, and left factor it. But it may not be

suitable for predictive parsing (not LL (1) grammar).

Recursive Predictive Parsing

Each non-terminal corresponds to a procedure.

Example:
A → aBb | bAB

proc A {

case of the current token {
‘a’: - match the current token with a, and move to the next token;

- call ‘B’;
- match the current token with b, and move to the next token; ‘b’: -

match the current token with b, and move to the next token;

- call ‘A’;
- call ‘B’;

}
}

4.3.1 Applying ε-productions

A → aA | bB | ε

• If all other productions fail, we should apply an ε-production. For example, if the current

token is not a or b, we may apply the ε-production.
• Most correct choice: We should apply an ε-production for a non-terminal A when the

current token is in the follow set of A (which terminals can follow A in the sentential

forms).

Example:
A → aBe | cBd | C
B → bB | ε
C → f

proc A {

case of the current token {
a: - match the current token with a and move to the next token;

- call B;
- match the current token with e and move to the next token;

c: - match the current token with c and move to the next token;
- call B;
- match the current token with d and move to the next token;

f: - call C //First Set of C
}

}

proc C {

Compiler Design By Prashant Srivastava

match the current token with f and move to the next token;
}

proc B {

case of the current token {
b: - match the current token with b and move to the next token;

- call B
e,d: - do nothing //Follow Set of B

}

}

4.4 Non-Recursive Predictive Parsing -- LL(1) Parser

• Non-Recursive predictive parsing is a table-driven parser.
• It is a top-down parser.
• It is also known as LL(1) Parser.

input buffer

stack Non-recursive output

Predictive Parser

Parsing Table

input buffer

– our string to be parsed. We will assume that its end is marked with a special symbol $.

output

– a production rule representing a step of the derivation sequence (left-most derivation) of

the string in the input buffer.

stack

– contains the grammar symbols
– at the bottom of the stack, there is a special end marker symbol $.
– initially the stack contains only the symbol $ and the starting symbol S. ($S initial stack)
– when the stack is emptied (i.e. only $ left in the stack), the parsing is completed.

parsing table

– a two-dimensional array M[A,a]
– each row is a non-terminal symbol
– each column is a terminal symbol or the special symbol $
– each entry holds a production rule.

4.4.1 Parser Actions

The symbol at the top of the stack (say X) and the current symbol in the input string (say a)

determine the parser action. There are four possible parser actions.

• If X and a are $ parser halts (successful completion)

• If X and a are the same terminal symbol (different from $)

parser pops X from the stack, and moves the next symbol in the input buffer.

Compiler Design By Prashant Srivastava

• If X is a non-terminal parser looks at the parsing table entry M[X,a]. If M[X,a] holds a

production rule X→Y1Y2...Yk, it pops X from the stack and pushes Yk,Yk-1,...,Y1 into the

stack. The parser also outputs the production rule X→Y1Y2...Yk to represent a step of the
derivation.

• None of the above error

– All empty entries in the parsing table are errors.
– If X is a terminal symbol different from a, this is also an error case.

Example:
For the Grammar is S → aBa; B → bB | ε and the following LL(1) parsing table:

 a b $

 S S → aBa

 B B → ε B → bB

stack input output

$S abba$ S → aBa

$aBa abba$
B → bB

$aB bba$

$aBb bba$
B → bB

$aB ba$

$aBb ba$
B → ε

$aB a$

$a a$

$ $ accept, successful completion

Outputs: S → aBa B → bB B → bB B → ε

Derivation (left-most): S⇒aBa⇒abBa⇒abbBa⇒abba

S

a B a

b B

b B

ε

4.4.2 Constructing LL(1) parsing tables

• Two functions are used in the construction of LL(1) parsing tables -FIRST & FOLLOW
• FIRST(α) is a set of the terminal symbols which occur as first symbols in strings derived from α

where α is any string of grammar symbols.

Compiler Design By Prashant Srivastava

• if α derives to ε, then ε is also in FIRST(α) .
• FOLLOW(A) is the set of the terminals which occur immediately after (follow) the non-terminal

A in the strings derived from the starting symbol.
– A terminal a is in FOLLOW(A) if S ⇒ αAaβ
– $ is in FOLLOW(A) if S ⇒ αA

To Compute FIRST for Any String X:
• If X is a terminal symbol FIRST(X)={X}
• If X is a non-terminal symbol and X → ε is a production rule ε is in FIRST(X).
• If X is a non-terminal symbol and X → Y1Y2..Yn is a production rule

if a terminal a in FIRST(Yi) and ε is in all FIRST(Yj) for j=1,...,i-1 then a is in FIRST(X).

if ε is in all FIRST(Yj) for j=1,...,n then ε is in FIRST(X).
• If X is ε FIRST(X)={ε}
• If X is Y1Y2..Yn

if a terminal a in FIRST(Yi) and ε is in all FIRST(Yj) for j=1,...,i-1 then a is in FIRST(X).

if ε is in all FIRST(Yj) for j=1,...,n then ε is in FIRST(X).

To Compute FOLLOW (for non-terminals):
• If S is the start symbol $ is in FOLLOW(S)
• If A → αBβ is a production rule everything in FIRST(β) is FOLLOW(B) except ε
• If (A → αB is a production rule) or (A → αBβ is a production rule and ε is in FIRST(β))

everything in FOLLOW(A) is in FOLLOW(B).
• Apply these rules until nothing more can be added to any follow set.

Algorithm for Constructing LL(1) Parsing Table:
• for each production rule A → α of a grammar G

– for each terminal a in FIRST(α) add A → α to M[A,a]
– If ε in FIRST(α) for each terminal a in FOLLOW(A) add A → α to M[A,a]
– If ε in FIRST(α) and $ in FOLLOW(A) add A → α to M[A,$]

• All other undefined entries of the parsing table are error entries.

Example:

E → TE’

E’ → +TE’ | ε
T → FT’

T’ → *FT’ | ε
F → (E) | id

FIRST(F) = {(,id}

FIRST(T’) = {*, ε}

FIRST(T) = {(,id}

FIRST(E’) = {+, ε}

FIRST(E) = {(,id}

FIRST(TE’) = {(,id}

FIRST(+TE’) = {+}

FIRST(ε) = {ε}

FIRST(FT’) = {(,id}

FIRST(*FT’) = {*}

FIRST((E)) = {(}

FIRST(id) = {id}

FOLLOW(E) = { $,) }

FOLLOW(E’) = { $,) }

FOLLOW(T) = { +,), $ }

FOLLOW(T’) = { +,), $ }

FOLLOW(F) = {+, *,), $ }

Compiler Design By Prashant Srivastava

 LL(1) Parsing Table

E → TE’ FIRST(TE’)={(,id} E → TE’ into M[E,(] and M[E,id]

E’ → +TE’ FIRST(+TE’)={+} E’ → +TE’ into M[E’,+]

E’ → ε FIRST(ε)={ε} none
 but since ε in FIRST(ε)

 and FOLLOW(E’)={$,)} E’ → ε into M[E’,$] and M[E’,)]

T → FT’ FIRST(FT’)={(,id} T → FT’ into M[T,(] and M[T,id]

T’ → *FT’ FIRST(*FT’)={*} T’ → *FT’ into M[T’,*]

T’ → ε FIRST(ε)={ε} none
 but since ε in FIRST(ε)

 and FOLLOW(T’)={$,),+} T’ → ε into M[T’,$], M[T’,)] and M[T’,+]

F → (E) FIRST((E))={(} F → (E) into M[F,(]

F → id FIRST(id)={id} F → id into M[F,id]

 id + * () $

 E E → TE’ E → TE’

 E’ E’ → +TE’ E’ → ε E’ → ε

 T T → FT’ T → FT’

 T’ T’ → ε T’ → *FT’ T’ → ε T’ → ε

 F F → id F → (E)

4.4.3 LL(1) Grammars

LL(1)

input scanned from left to right

left most
derivation

one input symbol used as a look-

head symbol do determine parser

action

• A grammar whose parsing table has no multiply-defined entries is said to be LL(1) grammar.
• The parsing table of a grammar may contain more than one production rule. In this case, we

say that it is not a LL(1) grammar.
• A grammar G is LL(1) if and only if the following conditions hold for two distinctive production

rules A → α and A → β:
1. Both α and β cannot derive strings starting with same terminals.
2. At most one of α and β can derive to ε.
3. If β can derive to ε, then α cannot derive to any string starting with a terminal in

FOLLOW(A).

Compiler Design By Prashant Srivastava

4.4.4 Non- LL(1) Grammars

Example:
S → i C t S E | a
E → e S | ε
C → b

FOLLOW(S) = { $,e }
FOLLOW(E) = { $,e }
FOLLOW(C) = { t }

FIRST(iCtSE) = {i}
FIRST(a) = {a}
FIRST(eS) = {e}
FIRST(ε) = {ε}
FIRST(b) = {b}

 a b e i t $

S S → a S → iCtSE

E
 E → e S

E → ε

 E → ε

C C → b

 two production rules for M[E,e]

The Problem with multiple entries here is that of Ambiguity.

• What do we have to do it if the resulting parsing table contains multiply defined entries?

– If we didn’t eliminate left recursion, eliminate the left recursion in the grammar.
– If the grammar is not left factored, we have to left factor the grammar.
– If its (new grammar’s) parsing table still contains multiply defined entries, that grammar is

ambiguous or it is inherently not a LL(1) grammar.
• A left recursive grammar cannot be a LL(1) grammar.

– A → Aα | β
any terminal that appears in FIRST(β) also appears FIRST(Aα) because Aα ⇒ βα. If

β is ε, any terminal that appears in FIRST(α) also appears in FIRST(Aα) and
FOLLOW(A).

• A grammar is not left factored, it cannot be a LL(1) grammar
– A → αβ1 | αβ2

any terminal that appears in FIRST(αβ1) also appears in FIRST(αβ2).
• An ambiguous grammar cannot be a LL(1) grammar.

Compiler Design By Prashant Srivastava

5. BASIC BOTTOM-UP PARSING TECHNIQUES

• A bottom-up parser creates the parse tree of the given input starting from leaves towards the

root.
• A bottom-up parser tries to find the right-most derivation of the given input in the reverse

order.
(a) S ⇒ ... ⇒ ω (the right-most derivation of ω)
(b) ← (the bottom-up parser finds the right-most derivation in the reverse order)

• Bottom-up parsing is also known as shift-reduce parsing because its two main actions are shift

and reduce.
– At each shift action, the current symbol in the input string is pushed to a stack.
– At each reduction step, the symbols at the top of the stack (this symbol sequence is the

right side of a production) will replaced by the non-terminal at the left side of that
production.

– There are also two more actions: accept and error.

5.1 Shift-Reduce Parsing

• A shift-reduce parser tries to reduce the given input string into the starting symbol.
• At each reduction step, a substring of the input matching to the right side of a production rule

is replaced by the non-terminal at the left side of that production rule.
• If the substring is chosen correctly, the right most derivation of that string is created in the

reverse order.

Example:
For Grammar S → aABb; A → aA | a; B → bB | b and Input string aaabb,

aaabb
⇒ aaAbb
⇒ aAbb
⇒ aABb
⇒ S

The above reduction corresponds to the following rightmost derivation:

S ⇒ aABb ⇒ aAbb ⇒ aaAbb ⇒ aaabb

5.1.1 Handle

• Informally, a handle of a string is a substring that matches the right side of a production rule.

- But not every substring that matches the right side of a production rule is handle.
• A handle of a right sentential form γ (≡ αβω) is a production rule A → β and a position of γ

where the string β may be found and replaced by A to produce the previous right-

sentential form in a rightmost derivation of γ.

S ⇒ αAω ⇒ αβω

• If the grammar is unambiguous, then every right-sentential form of the grammar has exactly
one handle.

• We will see that ω is a string of terminals.

• A right-most derivation in reverse can be obtained by handle-pruning.

Compiler Design By Prashant Srivastava

S=γ0 ⇒ γ1 ⇒ γ2 ⇒ ... ⇒ γn-1 ⇒ γn= ω

input string

• Start from γn, find a handle An→βn in γn, and replace βn in by An to get γn-1.
• Then find a handle An-1→βn-1 in γn-1, and replace βn-1 in by An-1 to get γn-2.
• Repeat this, until we reach S.

Example:

E → E+T | T
T → T*F | F
F → (E) | id

Right-Most Derivation of id+id*id is
E ⇒ E+T ⇒ E+T*F ⇒ E+T*id ⇒ E+F*id⇒ E+id*id ⇒ T+id*id ⇒ F+id*id ⇒ id+id*id

Right-Most Sentential Form Reducing Production
id+id*id F → id
F+id*id T → F
T+id*id E → T
E+id*id F → id
E+F*id T → F
E+T*id F → id
E+T*F T → T*F
E+T E → E+T
E

Handles are underlined in the right-sentential forms.

5.1.2 Stack Implementation

• There are four possible actions of a shift-parser action:
• Shift : The next input symbol is shifted onto the top of the stack.
• Reduce: Replace the handle on the top of the stack by the non-terminal.
• Accept: Successful completion of parsing.
• Error: Parser discovers a syntax error, and calls an error recovery routine.

• Initial stack just contains only the end-marker $.
• The end of the input string is marked by the end-marker $.

Example:

Stack Input Action

$ id+id*id$ shift
$id +id*id$ reduce by F → id

$F +id*id$ reduce by T → F
$T +id*id$ reduce by E → T

$E +id*id$ shift

$E+ id*id$ shift

$E+id *id$ reduce by F → id

Compiler Design By Prashant Srivastava

$E+F *id$ reduce by T → F
$E+T *id$ shift
$E+T* id$ shift
$E+T*id $ reduce by F → id
$E+T*F $ reduce by T → T*F
$E+T $ reduce by E → E+T
$E $ accept

5.1.3 Conflicts during Shift Reduce Parsing

• There are context-free grammars for which shift-reduce parsers cannot be used.
• Stack contents and the next input symbol may not decide action:

– shift/reduce conflict: Whether make a shift operation or a reduction.
– reduce/reduce conflict: The parser cannot decide which of several reductions to make.

• If a shift-reduce parser cannot be used for a grammar, that grammar is called as non-LR(k)
grammar.

LR (k)

input scanned from

left to right Right most derivation

k input symbols used as a look-

head symbol do determine

parser action

• An ambiguous grammar can never be a LR grammar.

5.1.4 Types of Shift Reduce Parsing

There are two main categories of shift-reduce parsers

1. Operator-Precedence Parser
– simple, but only a small class of grammars.

2. LR-Parsers

– Covers wide range of grammars.
• SLR – Simple LR parser
• CLR – most general LR parser (Canonical LR)
• LALR – intermediate LR parser (Look Ahead LR)

– SLR, CLR and LALR work same, only their parsing tables are different.
CFG

CLR

LALR

SLR

Compiler Design By Prashant Srivastava

5.2 Operator Precedence Parsing

• Operator grammar
– small, but an important class of grammars
– we may have an efficient operator precedence parser (a shift-reduce parser) for an

operator grammar.
• In an operator grammar, no production rule can have:

– ε at the right side
– two adjacent non-terminals at the right side.

Examples:

E→AB E→EOE E→E+E |
A→a E→id E*E |
B→b O→+|*|/ E/E | id

not operator grammar not operator grammar operator grammar

5.2.1 Precedence Relations

• In operator-precedence parsing, we define three disjoint precedence relations between certain
pairs of terminals.

a <. b b has higher precedence than a a
=· b b has same precedence as a
a .> b b has lower precedence than a

• The determination of correct precedence relations between terminals are based on the

traditional notions of associativity and precedence of operators. (Unary minus causes a
problem).

• The intention of the precedence relations is to find the handle of a right-sentential form,
<. with marking the left end,
=· appearing in the interior of the handle, and
.> marking the right hand.

• In our input string $a1a2...an$, we insert the precedence relation between the pairs of terminals
(the precedence relation holds between the terminals in that

pair). Example:

E → E+E | E-E | E*E | E/E | E^E | (E) | -E | id
The partial operator-precedence table for this grammar is as shown.

Then the input string id+id*id with the precedence relations inserted will

be:

$ <. id .> + <. id .> * <. id .> $

5.2.2 Using Precedence relations to find Handles

 id + * $

id .> .> .>

+ <. .> <. .>

* <. .> .> .>

$ <. <. <.

• Scan the string from left end until the first .> is encountered.
• Then scan backwards (to the left) over any =· until a <. is encountered.

• The handle contains everything to left of the first .> and to the right of the <. is encountered.

The handles thus obtained can be used to shift reduce a given string.

Compiler Design By Prashant Srivastava

Operator-Precedence Parsing Algorithm

• The input string is w$, the initial stack is $ and a table holds precedence relations between

certain terminals

5.2.3 Parsing Algorithm

The input string is w$, the initial stack is $ and a table holds precedence relations between certain

terminals.

set p to point to the first symbol of w$;

repeat forever
if ($ is on top of the stack and p points to $) then return
else {

let a be the topmost terminal symbol on the stack and let b be the symbol pointed
to by p;
if (a <. b or a =· b) then { /* SHIFT */ push

b onto the stack;
advance p to the next input symbol;

}
else if (a .> b) then /* REDUCE */

repeat pop stack
until (the top of stack terminal is related by <. to the terminal most

recently popped);
else error();

}

Example:

stack input

$ id+id*id$
$id +id*id$
$ +id*id$
$+ id*id$
$+id *id$
$+ *id$
$+* id$
$+*id $
$+* $
$+ $
$ $

action

$ <. id shift
id .> + reduce E → id
shift
shift
id .> * reduce E → id
shift
shift
id .> $ reduce E → id
* .> $ reduce E → E*E
+ .> $ reduce E → E+E
accept

5.2.4 Creating Operator-Precedence Relations from Associativity and Precedence

1. If operator O1 has higher precedence than operator O2,

O1 .> O2 and O2 <. O1

2. If operator O1 and operator O2 have equal precedence,

they are left-associative O1 .> O2 and O2 .> O1 they are

right-associative O1 <. O2 and O2 <. O1

Compiler Design By Prashant Srivastava

Compiler Design By Prashant Srivastava

3. For all operators O,

 O <. id, id .> O, O <. (, (<. O, O .>),) .> O, O .> $, and $ <. O

4. Also, let
 (=·) $ <. (id .>)) .> $
 (<. ($ <. id id .> $) .>)
 (<. id

Example:

The complete table for the Grammar E → E+E | E-E | E*E | E/E | E^E | (E) | -E | id is:

 + - * / ^ id () $

+ .> .> <. <. <. <. <. .> .>

- .> .> <. <. <. <. <. .> .>

* .> .> .> .> <. <. <. .> .>

/ .> .> .> .> <. <. <. .> .>

^ .> .> .> .> <. <. <. .> .>

id .> .> .> .> .> .> .>

(<. <. <. <. <. <. <. =·

) .> .> .> .> .> .> .>

$ <. <. <. <. <. <. <.

5.2.5 Operator-Precedence Grammars

There is another more general way to compute precedence relations among terminals:

1. a = b if there is a right side of a production of the form αaβbγ, where β is either

a single non-terminal or ε.
2. a < b if for some non-terminal A there is a right side of the form αaAβ and A derives

to γbδ where γ is a single non-terminal or ε.
3. a > b if for some non-terminal A there is a right side of the form αAbβ and A derives

to γaδ where δ is a single non-terminal or ε.

Note that the grammar must be unambiguous for this method. Unlike the previous

method, it does not take into account any other property and is based purely on

grammar productions. An ambiguous grammar will result in multiple entries in the table

and thus cannot be used.

5.2.6 Handling Unary Minus

• Operator-Precedence parsing cannot handle the unary minus when we also use

the binary minus in our grammar.
• The best approach to solve this problem is to let the lexical analyzer handle this problem.

– The lexical analyzer will return two different operators for the unary minus and

the binary minus.

– The lexical analyzer will need a look ahead to distinguish the binary minus from

the unary minus.

Compiler Design By Prashant Srivastava

• Then, we make
O <. unary-minus for any operator
unary-minus .> O if unary-minus has higher precedence than O
unary-minus <. O if unary-minus has lower (or equal)

precedence than O

5.2.7 Precedence Functions

• Compilers using operator precedence parsers do not need to store the table of precedence
relations.

• The table can be encoded by two precedence functions f and g that map terminal symbols
to integers.

• For symbols a and b.
f(a) < g(b) whenever a <. b
f(a) = g(b) whenever a =· b

f(a) > g(b) whenever a .> b

5.2.8 Advantages and Disadvantages

• Advantages:
– simple
– powerful enough for expressions in programming languages

• Disadvantages:
– It cannot handle the unary minus (the lexical analyzer should handle the unary minus).
– Small class of grammars.
– Difficult to decide which language is recognized by the grammar.

6. LR PARSING

LR parsing is attractive because:
– LR parsing is most general non-backtracking shift-reduce parsing, yet

it is still efficient.
– The class of grammars that can be parsed using LR methods is a proper

superset of the class of grammars that can be parsed with predictive

parsers.
LL(1)-Grammars ⊂ LR(1)-Grammars

– An LR-parser can detect a syntactic error as soon as it is possible to do so

a left-to-right scan of the input.

6.1 Parser Configuration

stack

input a1 ...

ai ...

an

$

Sm

Xm

Sm-1

output

LR Parsing Algorithm

Xm-1

.

Compiler Design By Prashant Srivastava

. Action Table Goto Table

s

Terminals and $

s

 Non-terminals

S1

 t four different t each item is

X1 a actions a a state number

 t t

S0

 e e

• A configuration of a LR parsing is:

(So X1 S1 ... Xm Sm, ai ai+1 ... an $)

Stack Rest of Input

• Sm and ai decides the parser action by consulting the parsing action table. (Initial

Stack contains just So)

• A configuration of a LR parsing represents the right sentential form:

X1 ... Xm ai ai+1 ... an $
6.2 Parser Actions

1. shift s -- shifts the next input symbol and the state s onto the stack
(So X1 S1 ... Xm Sm, ai ai+1 ... an $) (So X1 S1 ... Xm Sm ai s,

ai+1 ... an $)

2. reduce A→β (or rn where n is a production number)
– pop 2|β| (=r) items from the stack; let us assume that β = Y1Y2...Yr
– then push A and s where s=goto[sm-r,A]

(So X1 S1 ... Xm Sm, ai ai+1 ... an $) (So X1 S1 ... Xm-r Sm-r A s, ai ... an $)

– Output is the reducing production reduce A→β
– In fact, Y1Y2...Yr is a handle.

X1 ... Xm-r A ai ... an $ ⇒ X1 ... Xm Y1...Yr ai ai+1 ... an $
3. Accept – Parsing successfully completed.
4. Error -- Parser detected an error (an empty entry in the action table)

Example:

Let following be the grammar and its LR parsing table.

 1) E → E+T

 2) E → T

 3) T → T*F

 4) T → F

 5) F → (E)

 6) F → id

 Action Goto

state id + * () $ E T F

0 s5 s4 1 2 3

Compiler Design By Prashant Srivastava

1 s6 acc

2 r2 s7 r2 r2

3 r4 r4 r4 r4

4 s5 s4 8 2 3

5 r6 r6 r6 r6

6 s5 s4 9 3

7 s5 s4 10

8 s6 s11

9 r1 s7 r1 r1

10 r3 r3 r3 r3

 r5 r5 r5 r5

The action of the parser would be as follows:

stack input Action output
0 id*id+id$ shift 5

0id5 *id+id$ reduce by F→id F→id
0F3 *id+id$ reduce by T→F T→F
0T2 *id+id$ shift 7

0T2*7 id+id$ shift 5

0T2*7id5 +id$ reduce by F→id F→id
0T2*7F10 +id$ reduce by T→T*F T→T*F
0T2 +id$ reduce by E→T E→T
0E1 +id$ shift 6

0E1+6 id$ shift 5

0E1+6id5 $ reduce by F→id F→id
0E1+6F3 $ reduce by T→F T→F
0E1+6T9 $ reduce by E→E+T E→E+T
0E1 $ accept

6.3 Constructing SLR Parsing tables

• An LR parser using SLR parsing tables for a grammar G is called as the SLR parser for G.
• If a grammar G has an SLR parsing table, it is called SLR grammar.
• Every SLR grammar is unambiguous, but every unambiguous grammar is not a SLR

grammar.

• Augmented Grammar: G’ is G with a new production rule S’→S where S’ is the new starting

symbol.

6.3.1 LR(0) Items

• An LR(0) item of a grammar G is a production of G a dot at the some position of the right

side.

Example:
A → aBb

Possible LR(0) Items (four different possibility):
A → .aBb
A → a.Bb
A → aB.b
A → aBb.

Compiler Design By Prashant Srivastava

• Sets of LR(0) items will be the states of action and goto table of the SLR parser.
• A collection of sets of LR(0) items (the canonical LR(0) collection) is the basis for

constructing SLR parsers.

6.3.2 Closure Operation

If I is a set of LR(0) items for a grammar G, then closure(I) is the set of LR(0) items

constructed from I by the two rules:

1. Initially, every LR(0) item in I is added to closure(I).
2. If A → α.Bβ is in closure(I) and Bγ→ is a production rule of G; then B→.γ

 will be in the closure(I). We will apply this rule
until no more new LR(0) items can be added to closure(I).

Example:

E’ → E ; E → E+T; E → T; T → T*F; T → F; F → (E); F → id
closure({E’ → .E}) = { E’ → .E, E → .E+T, E → .T, T → .T*F, T → .F, F → .(E), F → .id }

6.3.3 GOTO Operation

If I is a set of LR(0) items and X is a grammar symbol (terminal or non-terminal),

then goto(I,X) is defined as follows:
– If A → α.Xβ in I then every item in closure({A → αX.β}) will be in goto(I,X).

Example:

I = { E’ → .E, E → .E+T, E → .T, T → .T*F, T → .F, F → .(E), F →

.id } goto(I,E) = { E’ → E., E → E.+T }
goto(I,T) = { E → T., T →

T.*F } goto(I,F) = {T → F. }
goto(I,() = {F→ (.E), E→ .E+T, E→ .T, T→ .T*F, T→ .F, F→ .(E), F→

.id } goto(I,id) = { F → id. }

6.3.4 Construction of The Canonical LR(0) Collection

To create the SLR parsing tables for a grammar G, we will create the canonical

LR(0) collection of the grammar G’.

Algorithm:
C is { closure({S’→.S}) }
repeat the followings until no more set of LR(0) items can be added to

C. for each I in C and each grammar symbol X
if goto(I,X) is not empty and not in

C add goto(I,X) to C

GOTO function is a DFA on the sets in C.

Example:

For grammar used above, Canonical LR(0) items are as follows-

I0: E’ → .E I1: E’ → E. I6: E → E+.T I9: E → E+T.
E → .E+T E → E.+T T → .T*F T → T.*F
E → .T T → .F

T → .T*F I2: E → T. F → .(E) I10: T → T*F.
T → .F T → T.*F F → .id

F → .(E)

F → .id I3: T → F. I7: T → T*.F I11: F → (E).
 F → .(E)

 I4: F → (.E) F → .id

 E → .E+T

Compiler Design By Prashant Srivastava

 E → .T I8: F → (E.)

 T → .T*F E → E.+T

 T → .F

 F → .(E)

 F → .id

I5: F → id.

Transition Diagram (DFA) of GOTO Function is as follows-

I0 E I1 + I6 T I9 * to I7

 F to I3

T

 (to I4

id to I5

 F I2 * I7
F I10

I3

 (
to I4

id

(

to I5

 id I4 E I8)

T I11

 id
to I2 +

 F

I5

to I3

to I6

 (

to I4
6.3.5 Parsing Table

1. Construct the canonical collection of sets of LR(0) items for G’.
C←{I0,...,In}

2. Create the parsing action table as follows
a. If a is a terminal, Aα→.aβ in Ii and goto(Ii,a)=Ij then action[i,a] is shift j.
b. If Aα→. is in Ii , then action[i,a] is reduce Aα→ for all a in FOLLOW(A) where

A≠S’.
c. If S’→S. is in Ii , then action[i,$] is accept.
d. If any conflicting actions generated by these rules, the grammar is not SLR(1).

3. Create the parsing goto table
a. for all non-terminals A, if goto(Ii,A)=Ij then goto[i,A]=j

4. All entries not defined by (2) and (3) are errors.
5. Initial state of the parser contains S’→.S

Example:

For the Grammar used above, SLR Parsing table is as follows:
 Action Goto

 state id + * () $ E T F

 0 s5 s4 1 2 3

 1 s6 acc

 2 r2 s7 r2 r2

 3 r4 r4 r4 r4

Compiler Design By Prashant Srivastava

 4 s5 s4 8 2 3

 5 r6 r6 r6 r6

 6 s5 s4 9 3

7 s5 s4 10

8 s6 s11

9 r1 s7 r1 r1

10 r3 r3 r3 r3

11 r5 r5 r5 r5

6.3.6 shift/reduce and reduce/reduce conflicts

• If a state does not know whether it will make a shift operation or reduction for a terminal,

we say that there is a shift/reduce conflict.

Example:

S → L=R I0: S’ → .S I1: S’ → S. I6: S → L=.RI9: S → L=R.

S → R S → .L=R R → .L

L→ *R S → .R I2: S → L.=R L→ .*R

L → id L → .*R R → L. L → .id

R → L L → .id

 R → .L I3: S → R.

Problem in I2

I4: L → *.R I7: L → *R.

 R → .L

FOLLOW(R)={=,$} L→ .*R I8: R → L.

= shift 6 L → .id

& reduce by R → L

shift/reduce conflict I5: L → id.

• If a state does not know whether it will make a reduction operation using the production

rule i or j for a terminal, we say that there is a reduce/reduce conflict.

Example:

S → AaAb I0: S’ → .S
S → BbBa S → .AaAb
A → ε S → .BbBa
B → ε A → .

B → .

Problem

FOLLOW(A)={a,b}
FOLLOW(B)={a,b}

a reduce by A → ε

reduce by B → ε

reduce/reduce conflict

b reduce by A → ε

reduce by B → ε

reduce/reduce conflict

If the SLR parsing table of a grammar G has a conflict, we say that that grammar is not SLR

grammar.

Compiler Design By Prashant Srivastava

6.4 Constructing Canonical LR(1) Parsing tables

• In SLR method, the state i makes a reduction by Aα→ when the current token is a:
– if the Aα→. in the Ii and a is FOLLOW(A)

• In some situations, βA cannot be followed by the terminal a in a right-sentential form

when αβ and the state i are on the top stack. This means that making reduction in this

case is not correct.

S → AaAb S⇒AaAb⇒Aab⇒ab S⇒BbBa⇒Bba⇒ba
S → BbBa

A → ε Aab ⇒ ε ab Bba ⇒ ε ba
B → ε AaAb ⇒ Aa ε b BbBa ⇒ Bb ε a

6.4.1 LR(1) Item

• To avoid some of invalid reductions, the states need to carry more information.
• Extra information is put into a state by including a terminal symbol as a second

component in an item.

• A LR(1) item is:
A → α.β,a where a is the look-head of the LR(1)

item
(a is a terminal or end-marker.)

• When β (in the LR(1) item A → α.β,a) is not empty, the look-head does not have any

affect.

• When β is empty (A → α.,a), we do the reduction by Aα→ only if the next input symbol

is a (not for any terminal in FOLLOW(A)).

• A state will contain A → α.,a1 where {a1,...,an} ⊆ FOLLOW(A)
...

A → α.,an

6.4.2 Closure and GOTO Operations

closure(I) is: (where I is a set of LR(1) items)

– every LR(1) item in I is in closure(I)
– if Aα→.Bβ,a in closure(I) and Bγ→ is a production rule of G; then B→.γ,b

will be in the closure(I) for each terminal b in FIRST(βa) .

If I is a set of LR(1) items and X is a grammar symbol (terminal or non-terminal), then

goto(I,X) is defined as follows:
– If A → α.Xβ,a in I then every item in closure({A → αX.β,a}) will be in goto(I,X).

6.4.3 Construction of The Canonical LR(1) Collection

Algorithm:
C is { closure({S’→.S,$}) }
repeat the followings until no more set of LR(1) items can be added to
C. for each I in C and each grammar symbol X
if goto(I,X) is not empty and not in C

add goto(I,X) to C

GOTO function is a DFA on the sets in C.

Compiler Design By Prashant Srivastava

A set of LR(1) items containing the following items

A → α.β,a1
...

A → α.β,an

can be written as A → α.β,a1/a2/.../an

Example:

S’ → S I0:S’ → .S,$
1) S → L=R S → .L=R,$
2) S → R S → .R,$
3) L→ *R L → .*R,$/=
4) L → id L → .id,$/=
5) R → L R → .L,$

I1:S’ → S.,$

S *

L 2:S → L.=R,$

→ L.,$
R

I3:S → R.,$

to I6

id

I4:L → *.R,$/=

R → .L,$/=

L→ .*R,$/=

L → .id,$/=

I5:L → id.,$/=

R to I7

L
* to I8

id to I4

to I5

I6:S → L=.R,$
L

to I9 I9:S → L=R.,$ I13:L → *R.,$

R → .L,$
to I10 I10:R → L.,$

L → .*R,$ *
R

 I4 and I11

to I11

L → .id,$

I11:L → *.R,$ to I13

id L I5 and I12

 to I12 R → .L,$ to I10

*

I7:L → *R.,$/=
 L→ .*R,$

to I11
I7 and I13

 L → .id,$
id

I8: R → L.,$/=

to I12 I8 and I10

I12:L → id.,$

6.4.4 Parsing Table

1. Construct the canonical collection of sets of LR(1) items for G’.
C←{I0,...,In}

2. Create the parsing action table as follows

a. If a is a terminal, Aα→.aβ,b in Ii and goto(Ii,a)=Ij then action[i,a] is shift j.
b. If Aα→.,a is in Ii , then action[i,a] is reduce Aα→ where A≠S’.
c. If S’→S.,$ is in Ii , then action[i,$] is accept.
d. If any conflicting actions generated by these rules, the grammar is not LR(1).

3. Create the parsing goto table

a. for all non-terminals A, if goto(Ii,A)=Ij then goto[i,A]=j

4. All entries not defined by (2) and (3) are errors.

5. Initial state of the parser contains S’→.S,$

Compiler Design By Prashant Srivastava

Example:

For the above used Grammar, the parse table is as follows:

 id * = $ S L R

0 S5 s4 1 2 3

1 acc

2 s6 r5

3 r2

4 S5 s4 8 7

5 r4 r4
no shift/reduce or

6 s12 s11

10 9

 no reduce/reduce conflict

7 r3 r3 ⇓

so, it is a LR(1) grammar

8

r5 r5

9 r1

10 r5

11 s12 s11 10 13

12 r4

13 r3

6.4 Constructing LALR Parsing tables

• LALR stands for LookAhead LR.
• LALR parsers are often used in practice because LALR parsing tables are smaller than

Canonical LR parsing tables.
• The number of states in SLR and LALR parsing tables for a grammar G are equal.
• But LALR parsers recognize more grammars than SLR parsers.
• yacc creates a LALR parser for the given grammar.
• A state of LALR parser will be again a set of LR(1) items.

Canonical LR(1) Parser LALR Parser

shrink # of states

• This shrink process may introduce a reduce/reduce conflict in the resulting LALR parser.

In that case the grammar is NOT LALR.
• This shrink process cannot produce a shift/reduce conflict.

6.4.1 The Core of A Set of LR(1) Items

• The core of a set of LR(1) items is the set of its first component.

Example:
S → L.=R,$ S → L.=R
R → L.,$ R → L.

• We will find the states (sets of LR(1) items) in a canonical LR(1) parser with same cores.

Then we will merge them as a single state.
Example:

I1:L → id.,= I12: L → id.,=

Compiler Design By Prashant Srivastava

L → id.,$

I2:L → id.,$ have same core, merge them

• We will do this for all states of a canonical LR(1) parser to get the states of the LALR

parser.
• In fact, the number of the states of the LALR parser for a grammar will be equal to the

number of states of the SLR parser for that grammar.

6.4.2 Parsing Tables

• Create the canonical LR(1) collection of the sets of LR(1) items for the given grammar.
• Find each core; find all sets having that same core; replace those sets having same

cores with a single set which is their union.
C={I0,...,In} C’={J1,...,Jm} where m ≤ n

• Create the parsing tables (action and goto tables) same as the construction of the
parsing tables of LR(1) parser.

– Note that: If J=I1 ∪ ... ∪ Ik since I1,...,Ik have same cores
cores of goto(I1,X),...,goto(I2,X) must be same.

– So, goto(J,X)=K where K is the union of all sets of items having same cores as

goto(I1,X).

• If no conflict is introduced, the grammar is LALR(1) grammar. (We may only

introduce reduce/reduce conflicts; we cannot introduce a shift/reduce conflict)

6.4.3 Shift/Reduce Conflict

• We say that we cannot introduce a shift/reduce conflict during the shrink process for the

creation of the states of a LALR parser.
• Assume that we can introduce a shift/reduce conflict. In this case, a state of LALR parser

must have:
A → α.,a and B → β.aγ,b

• This means that a state of the canonical LR(1) parser must have:
A → α.,a and B → β.aγ,c

But, this state has also a shift/reduce conflict. i.e. The original
canonical LR(1) parser has a conflict.
(Reason for this, the shift operation does not depend on Lookaheads)

6.4.4 Reduce/Reduce Conflict

But, we may introduce a reduce/reduce conflict during the shrink process for the creation of

the states of a LALR parser.

I1 : A → α.,a I2: A → α.,b

B → β.,b
⇓

B → β.,c

 I12: A → α.,a/b reduce/reduce conflict

 B → β.,b/c

Example:

For the above Canonical LR Parsing table, we can get the following LALR(1) collection

Compiler Design By Prashant Srivastava

S’ → S I0:S’ → .S,$

I1:S’ → S.,$

1) S → L=R
S → .L=R,$

S
 *

2) S → R →

I411:L → *.R,$/=

R → .L,$/=

R

to I713

3) L→ *R S → .R,$ L 2:SL.=R,$

R → L.,$

4) L → id L → .*R,$/=

R

5) R → L L → .id,$/=

R → .L,$
I3:S → R.,$

to I
6 L→ .*R,$/= L

→ .id,$/=
id

I512:L → id.,$/=

L

to I810

to I411

I6:S → L=.R,$
R

R → .L,$

to I9

I9:S → L=R.,$

L

to I810

 L → .*R,$ *

to I411

L → .id,$

id

to I512

 I713:L → *R.,$/=

I810: R → L.,$/=

 id * = $ S L R

0 s5 s4 1 2 3

1 acc

2 s6 r5

3 r2

4 s5 s4 8 7

5 r4 r4

6 s12 s11 10 9

7 r3 r3

8 r5 r5

9 r1

6.4 Using Ambiguous Grammars

to I512

Same Cores

I4 and I11

I5 and I12

I7 and I13

I8 and I10

no shift/reduce or
no reduce/reduce conflict

⇓
so, it is a LALR(1) grammar

• All grammars used in the construction of LR-parsing tables must be un-ambiguous.
• Can we create LR-parsing tables for ambiguous grammars?

– Yes, but they will have conflicts.
– We can resolve these conflicts in favor of one of them to disambiguate the

grammar.

Compiler Design By Prashant Srivastava

– At the end, we will have again an unambiguous grammar.

• Why we want to use an ambiguous grammar?

Compiler Design By Prashant Srivastava

– Some of the ambiguous grammars are much natural, and a corresponding

unambiguous grammar can be very complex.
– Usage of an ambiguous grammar may eliminate unnecessary reductions.

Example:

E → E+T | T
E → E+E | E*E | (E) | id T → T*F | F

F → (E) | id

6.4.1 Sets of LR(0) Items for Ambiguous Grammar

I0: E’ → .E

E → .E+E
E → .E*E
E → .(E)
E → .id

E I1: E’ → E.

 E → E .+E

 E → E .*E

 (

 (

 I2: E → (.E)

 E → .E+E

 E → .E*E

id
E → .(E)

E → .id
id

I3: E → id.

+ I4: E → E +.E

 E → .E+E

 E → .E*E

* E → .(E)
E → .id

I5: E → E *.E
E → .E+E

 E → .E*E

E
E → .(E)

E → .id

 I6: E → (E.)

 E → E.+E

 E → E.*E

E

(

id I2 I3

E
(

id I2 I3

)
+

* I4

I5

I7: E → E+E.

E → E.+E

E → E.*E

I8: E → E*E.

E → E.+E

E → E.*E

I9: E → (E).

+

 I4

*
 I5

+
 I4

*
 I5

6.4.2 SLR-Parsing Tables for Ambiguous Grammar

FOLLOW(E) = { $,+,*,) }

State I7 has shift/reduce conflicts for symbols + and *.

E +

I4

E

I7

I0 I1

when current token is +
shift + is right-associative

reduce + is left-associative

when current token is *

shift * has higher precedence than +

reduce + has higher precedence than *

State I8 has shift/reduce conflicts for symbols + and *.

E

I1 * I5

E

I7

I0

Compiler Design By Prashant Srivastava

when current token is *

shift * is right-associative

reduce * is left-associative

when current token is +

shift + has higher precedence than *

reduce * has higher precedence than +

 id + * () $ E

0 s3 s2 1

1 s4 s5 acc

2 s3 s2 6

3 r4 r4 r4 r4

4 s3 s2 7

5 s3 s2 8

6 s4 s5 s9

7 r1 s5 r1 r1

8 r2 r2 r2 r2

9 r3 r3 r3 r3

Compiler Design By Prashant Srivastava

7. SYNTAX-DIRECTED TRANSLATION

• Grammar symbols are associated with attributes to associate information with the

programming language constructs that they represent.
• Values of these attributes are evaluated by the semantic rules associated with the

production rules.
• Evaluation of these semantic rules:

– may generate intermediate codes

– may put information into the symbol table

– may perform type checking

– may issue error messages

– may perform some other activities

– In fact, they may perform almost any activities.
• An attribute may hold almost any thing.

– A string, a number, a memory location, a complex record.

• Evaluation of a semantic rule defines the value of an attribute. But a semantic rule may

also have some side effects such as printing a value.

Example:

Production Semantic Rule Program Fragment

L → E return print(E.val) print(val[top-1])
E → E1 + T E.val = E1.val + T.val val[ntop] = val[top-2] + val[top]
E → T E.val = T.val

T → T1 * F T.val = T1.val * F.val val[ntop] = val[top-2] * val[top]
T → F T.val = F.val

F → (E) F.val = E.val val[ntop] = val[top-1]

F → digit F.val = digit.lexval val[top] = digit.lexval

• Symbols E, T, and F are associated with an attribute val.
• The token digit has an attribute lexval (it is assumed that it is evaluated by the lexical

analyzer).
• The Program Fragment above represents the implementation of the semantic rule for a

bottom-up parser.
• At each shift of digit, we also push digit.lexval into val-stack.
• At all other shifts, we do not put anything into val-stack because other terminals do not

have attributes (but we increment the stack pointer for val-stack).
• The above model is suited for a desk calculator where the purpose is to evaluate and to

generate code.

7.1 Intermediate Code Generation

• Intermediate codes are machine independent codes, but they are close to machine

instructions.
• The given program in a source language is converted to an equivalent program in an

intermediate language by the intermediate code generator.
• Intermediate language can be many different languages, and the designer of the compiler

decides this intermediate language.
– syntax trees can be used as an intermediate language.
– postfix notation can be used as an intermediate language.

– three-address code (Quadraples) can be used as an intermediate language

• we will use quadraples to discuss intermediate code generation
• quadraples are close to machine instructions, but they are not actual

machine instructions.

Compiler Design By Prashant Srivastava

7.1.1 Syntax Tree

Syntax Tree is a variant of the Parse tree, where each leaf represents an operand and

each interior node an operator.

Example:

Production Semantic Rule

E → E1 op E2 E.val = NODE (op, E1.val, E2.val)
E → (E1) E.val = E1.val
E → - E1 E.val = UNARY (- , E1.val)
E → id E.val = LEAF (id)

A sentence a*(b+d) would have the following syntax tree:

*

a +

b d

7.1.2 Postfix Notation

Postfix Notation is another useful form of intermediate code if the language is

mostly expressions.

Example:

Production Semantic Rule Program Fragment

E → E1 op E2 E.code = E1.code || E2.code || op print op
E → (E1) E.code = E1.code

E → id E.code = id print id

7.1.3 Three Address Code

• We use the term “three-address code” because each statement usually contains three

addresses (two for operands, one for the result).
• The most general kind of three-address code is:

x := y op z
where x, y and z are names, constants or compiler-generated temporaries; op is any
operator.

• But we may also the following notation for quadraples (much better notation because it
looks like a machine code instruction)

op y,z,x
apply operator op to y and z, and store the result in x.

Compiler Design By Prashant Srivastava

7.1.4 Representation of three-address codes

Three-address code can be represented in various forms viz. Quadruples, Triples and

Indirect Triples. These forms are demonstrated by way of an example below.

Example:

A = -B * (C + D)
Three-Address code is as follows:

T1 = -B
T2 = C + D
T3 = T1 * T2
A = T3

Quadruple:

 Operator Operand 1 Operand 2 Result

(1) - B T1

(2) + C D T2

(3) * T1 T2 T3

(4) = A T3

Triple:

 Operator Operand 1 Operand 2

(1) - B

(2) + C D

(3) * (1) (2)

(4) = A (3)

Indirect Triple:

 Statement
 (0) (56)

 (1) (57)

 (2) (58)

 (3) (59)

 Operator Operand 1 Operand 2

(56) - B

(57) + C D

(58) * (56) (57)

(59) = A (58)

7.2 Translation of Assignment Statements

A statement A := - B * (C + D) has the following three-address translation:

T1 := - B

Compiler Design By Prashant Srivastava

T2 := C+D
T3 := T1* T2
A := T3

Production Semantic Action

S → id := E S.code = E.code || gen(id.place = E.place)

E → E1 + E2 E.place = newtemp();

E.code = E1.code || E2.code || gen(E.place = E1.place + E2.place)

E → E1 * E2 E.place = newtemp();

E.code = E1.code || E2.code || gen(E.place = E1.place * E2.place)

E → - E1 E.place = newtemp();

E.code = E1.code || gen(E.place = - E1.place)

E → (E1) E.place = E1.place;

E.code = E1.code

E → id E.place = id.place;

E.code = null

7.3 Translation of Boolean Expressions

Grammar for Boolean Expressions is:

E E or E
E E and E
E not E
E (E)
E id
E id relop id

There are two representations viz. Numerical and Control-Flow.

7.3.1 Numerical Representation of Boolean

TRUE is denoted by 1 and FALSE by 0.
Expressions are evaluated from left to right, in a manner similar to arithmetic expressions.

Example:
The translation for A or B and C is the three-address sequence:

T1 := B and C
T2 := A or T1

Also, the translation of a relational expression such as A < B is the three-address sequence:

(1) if A < B goto (4)
(2) T := 0
(3) goto (5)
(4) T := 1
(5)

Therefore, a Boolean expression A < B or C can be translated as:

(1) if A < B goto (4)
(2) T1 := 0
(3) goto (5)

Compiler Design By Prashant Srivastava

(4) T1 := 1
(5) T2 := T1 or C

Production Semantic Action

E E1 or E2 T = newtemp ();

E.place = T;
Gen (T = E1.place or E2.place)

E E1 and E2 T = newtemp ();

E.place = T;
Gen (T = E1.place and E2.place)

E not E1 T = newtemp ();

E.place = T;
Gen (T = not E1.place)

E → (E1) E.place = E1.place;

E.code = E1.code

E → id E.place = id.place;

E.code = null

E id1 relop id2 T = newtemp ();

E.place = T;
Gen (if id1.place relop id2.place goto NEXTQUAD+3)
Gen (T = 0)
Gen (goto NEXTQUAD+2)

` Gen (T = 1)

Quadruples are being generated and NEXTQUAD indicates the next available entry in the

quadruple array.

7.3.2 Control-Flow Representation of Boolean Expressions

If we evaluate Boolean expressions by program position, we may be able to avoid evaluating

the entire expressions.
In A or B, if we determine A to be true, we need not evaluate B and can declare the entire
expression to be true.
In A and B, if we determine A to be false, we need not evaluate B and can declare the entire
expression to be false.

A better code can thus be generated using the above properties.
Example:

The statement if (A<B || C<D) x = y + z; can be translated as

(1) if A<B goto (4)
(2) if C<D goto (4)
(3) goto (6)
(4) T = y + z
(5) X = T
(6)

Here (4) is a true exit and (6) is a false exit of the Boolean expressions.

7.3.3 Generating 3-address code for Numerical Representation of Boolean expressions

Consider a production E E1 or E2 that represents the OR Boolean expression. If E1 is

true, we know that E is true so we make the location TRUE for E1 be the same as TRUE
for E. If E1 is false, then we must evaluate E2, so we make FALSE for E1 be the first

Compiler Design By Prashant Srivastava

statement in the code for E2. The TRUE and FALSE exits can be made the same as the

TRUE and FALSE exits of E, respectively.
Consider a production E E1 and E2 that represents the AND Boolean expression. If E1
is false, we know that E is false so we make the location FALSE for E1 be the same as
FALSE for E. If E1 is true, then we must evaluate E2, so we make TRUE for E1 be the
first statement in the code for E2. The TRUE and FALSE exits can be made the same as
the TRUE and FALSE exits of E, respectively.
Consider the production E not E that represents the NOT Boolean expression. We
may simply interchange the TRUE and FALSE exits of E1 to get the TRUE and
FALSE exits of E.
To generate quadruples in the manner suggested above, we use three functions-
Makelist, Merge and Backpatch that shall work on the list of quadruples as suggested by
their name.
If we need to proceed to E2 after evaluating E1, we have an efficient way of doing this by

modifying our grammar as follows:

E E or M E
E E and M E
E not E
E (E)
E id
E id relop id
M ε

The translation scheme for this grammar would as follows:

Production Semantic Action

E E1 or M E2 BACKPATCH (E1.FALSE, M.QUAD);

E.TRUE = MERGE (E1.TRUE, E2.TRUE);
E.FALSE = E2.FALSE;

E E1 and M E2 BACKPATCH (E1.TRUE, M.QUAD);

E.TRUE = E2.TRUE;
E.FALSE = MERGE (E1.FALSE, E2.FALSE);

E not E1 E.TRUE = E1.FALSE;

E.FALSE = E1.TRUE(E1) E.TRUE = E1.TRUE;
E.FALSE = E1.FALSE;

E id E.TRUE = MAKELIST (NEXTQUAD);

E.FALSE = MAKELIST (NEXTQUAD + 1);
GEN (if id.PLACE goto _);
GEN (goto _);

E id1 relop id2 E.TRUE = MAKELIST (NEXTQUAD);

E.FALSE = MAKELIST (NEXTQUAD + 1);
GEN (if id1.PLACE relop id2.PLACE goto _);
GEN (goto _);

M ε M.QUAD = NEXTQUAD;

Example:

For the expression P<Q or R<S and T, the parsing steps and corresponding semantic

actions are shown below. We assume that NEXTQUAD has an initial value of 100.

Step 1: P<Q gets reduced to E by E id relop id. The grammatical form is E1 or R<S

and T.

Compiler Design By Prashant Srivastava

We have the following code generated (Makelist).

100: if P<Q goto _
101: goto _

E1 is true if goto of 100 is reached and false if goto of 101 is reached.

Step 2: R<S gets reduced to E by E id relop id. The grammatical form is E1 or E2 and

T.

We have the following code generated (Makelist).

102: if R<S goto _
103: goto _

E2 is true if goto of 102 is reached and false if goto of 103 is reached.

Step 3: T gets reduced to E by E id. The grammatical form is E1 or E2 and E3.

We have the following code generated (Makelist).

104: if T goto _
105: goto _

E3 is true if goto of 104 is reached and false if goto of 105 is reached.

Step 4: E2 and E3 gets reduced to E by E E and E. The grammatical form is E1 or E4.

We have no new code generated but changes are made in the already

generated code (Backpatch).

100: if P<Q goto _
101: goto _
102: if R<S goto 104
103: goto _
104: if T goto _
105: goto _

E4 is true only if E3.TRUE (goto of 104) is reached. E4 is false if E2.FALSE

(goto of 103) or E3.FALSE (goto of 105) is reached (Merge).

Step 5: E1 or E4 gets reduced to E by E E or E. The grammatical form is E.

We have no new code generated but changes are made in the

already generated code (Backpatch).

100: if P<Q goto _
101: goto 102
102: if R<S goto 104
103: goto _
104: if T goto _
105: goto _

E is true only if E1.TRUE (goto of 100) or E2.TRUE (goto of 104) is

reached (Merge). E is false if E4.FALSE (goto of 103 or 105) is reached.

Compiler Design By Prashant Srivastava

7.3.4 Mixed Mode Expressions

Boolean expressions may in practice contain arithmetic sub expressions e.g. (A+B)>C.
We can accommodate such sub-expressions by adding the production E E op E to our
grammar.
We will also add a new field MODE for E. If E has been achieved after reduction using
the above (arithmetic) production, we make E.MODE = arith, otherwise make E.MODE
= bool.
If E.MODE = arith, we treat it arithmetically and use E.PLACE. If E.MODE = bool, we

treat it as Boolean and use E.FALSE and E.TRUE.

7.4 Statements that Alter Flow of Control

In order to implement goto statements, we need to define a LABEL for a statement. A

production can be added for this purpose:

S LABEL : S
LABEL id

The semantic action attached with this production is to record the LABEL and its value

(NEXTQUAD) in the symbol table. It will also Backpatch any previous references to this

LABEL with its current value.

Following grammar can be used to incorporate structured Flow-of-control constructs:

(1) S if E then S
(2) S if E then S else S
(3) S while E do S
(4) S begin L end

(5) S A
(6) L L ; S
(7) L S

Here, S denotes a statement, L a statement-list, A an assignment statement and

E a Boolean-valued expression.

7.4.1 Translation Scheme for statements that alter flow of control

We introduce a new field NEXT for S and L like TRUE and FALSE for E. S.NEXT and

L.NEXT are respectively the pointers to a list of all conditional and unconditional

jumps to the quadruple following statement S and statement-list L in execution order.
We also introduce the marker non-terminal M as in the case of grammar for Boolean
expressions. This is put before statement in if-then, before both statements in if-then-
else and the statement in while-do as we may need to proceed to them after evaluating
E. In case of while-do, we also need to put M before E as we may need to come back
to it after executing S.
In case of if-then-else, if we evaluate E to be true, first S will be executed. After this we

should ensure that instead of second S, the code after this if-then-else statement be

executed. We thus place another non-terminal marker N after first S i.e. before else.
The grammar now is as follows:

(1) S if E then M S
(2) S if E then M S N else M S
(3) S while M E do M S
(4) S begin L end
(5) S A
(6) L L ; M S
(7) L S

Compiler Design By Prashant Srivastava

(8) M ε
(9) N ε

The translation scheme for this grammar would as follows:

Production Semantic Action

S if E then M S1 BACKPATCH (E.TRUE, M.QUAD)

S.NEXT = MERGE (E.FALSE, S1.NEXT)

S if E then M1 S1 N else M2 S2 BACKPATCH (E.TRUE, M1.QUAD)
BACKPATCH (E.FALSE, M2.QUAD)

S.NEXT = MERGE (S1.NEXT, N.NEXT, S2.NEXT)

S while M1 E do M2 S1 BACKPATCH (S1.NEXT, M1.QUAD)
BACKPATCH (E.TRUE, M2.QUAD)
S.NEXT = E.FALSE
GEN (goto M1.QUAD)

S begin L end S.NEXT = L.NEXT

S A S.NEXT = MAKELIST ()

L L1 ; M S BACKPATCH (L1.NEXT, M.QUAD)

L.NEXT = S.NEXT

L S L.NEXT = S.NEXT

M ε M.QUAD = NEXTQUAD

N ε N.NEXT = MAKELIST (NEXTQUAD)

GEN (goto _)

7.5 Postfix Translations

In an production A α, the translation rule of A.CODE consists of the concatenation of the

CODE translations of the non-terminals in α in the same order as the non-terminals appear

in α.
Productions can be factored to achieve Postfix form.

7.5.1 Postfix translation of while statement

The production

S while M1 E do M2 S1

can be factored as

S C S1
C W E do
W while

A suitable translation scheme would be

Production Semantic Action

W while W.QUAD = NEXTQUAD

Compiler Design By Prashant Srivastava

C W E do C.QUAD = W.QUAD

BACKPATCH (E.TRUE, NEXTQUAD)
C.FALSE = E.FALSE

S C S1 BACKPATCH (S1.NEXT, C.QUAD)

S.NEXT = C.FALSE
GEN (goto C.QUAD)

7.5.2 Postfix translation of for statement

Consider the following production which stands for the for-statement

S for L = E1 step E2 to E3 do S1

Here L is any expression with l-value, usually a variable, called the index. E1, E2 and E3 are

expressions called the initial value, increment and limit, respectively. Semantically, the for-

statement is equivalent to the following program.

begin

INDEX = addr (L);
*INDEX = E1; INCR
= E2;
LIMIT = E3;
while *INDEX <= LIMIT do

begin code for statement

S1; *INDEX = *INDEX +

INCR;
end

end

The non-terminals L, E1, E2, E3 and S appear in the same order as in the production. The

production can be factored as

(1) F for L
(2) T F = E1 by E2 to E3 do
(3) S T S1

A suitable translation scheme would be

Production Semantic Action

F for L F.INDEX = L.INDEX

T F = E1 by E2 to E3 do GEN (*F.INDEX = E1.PLACE)
INCR = NEWTEMP ()
LIMIT = NEWTEMP ()
GEN (INCR = E2.PLACE)
GEN (LIMIT = E3.PLACE)
T.QUAD = NEXTQUAD
T.NEXT = MAKELIST (NEXTQUAD)
GEN (IF *F.INDEX > LIMIT goto _)
T.INDEX = F.INDEX
T.INCR = INCR

S T S1 BACKPATCH (S1.NEXT, NEXTQUAD)

GEN (*T.INDEX = *T.INDEX + T.INCR)
GEN (goto T.QUAD)
S.NEXT = T.NEXT

Compiler Design By Prashant Srivastava

7.6 Translation with a Top-Down Parser

Any translation done by top-down parser can be done in a bottom-up parser also.
But in certain situations, translation with a top-down parser is advantageous as tricks such
as placing a marker non-terminal can be avoided.

Semantic routines can be called in the middle of productions in top-down parser.

7.7 Array references in arithmetic expressions

Elements of arrays can be accessed quickly if the elements are stored in a block of

consecutive locations.
For a one-dimensional array A:

Base (A) is the address of the first location of the array A,

width is the width of each array element.
low is the index of the first array element

location of A[i] = baseA+(i-low)*width

baseA+(i-low)*width

can be re-written as

*width + (baseA-low*width)

should be computed at run-time can be computed at compile-time

So, the location of A[i] can be computed at the run-time by evaluating the formula

i*width+c where c is (baseA-low*width) which is evaluated at compile-time.
Intermediate code generator should produce the code to evaluate this formula i*width+c
(one multiplication and one addition operation).
A two-dimensional array can be stored in either row-major (row-by-row) or column-major
(column-by-column).

Most of the programming languages use row-major method.
The location of A[i1,i2] is baseA+ ((i1-low1)*n2+i2-low2)*width

baseA is the location of the array A.

low1 is the index of the first row

low2 is the index of the first column
n2 is the number of elements in each row

width is the width of each array element

Again, this formula can be re-written as

((i1*n2)+i2)*width + (baseA-((low1*n1)+low2)*width)

should be computed at run-time can be computed at compile-time

Arrays of any dimension can be dealt in a similar but general manner.

In general, the location of A[i1,i2,...,ik] is

((... ((i1*n2)+i2) ...)*nk+ik)*width + (baseA-

((...((low1*n1)+low2)...)*nk+lowk)*width)

So, the intermediate code generator should produce the codes to evaluate

the following formula (to find the location of A[i1,i2,...,ik]) :

((... ((i1*n2)+i2) ...)*nk+ik)*width + c

Compiler Design By Prashant Srivastava

To evaluate the ((... ((i1*n2)+i2) ...)*nk+ik portion of this formula, we can use the

recurrence equation:

e1 = i1
em = em-1 * nm + im

7.7.1 Grammar and Translation Scheme

The grammar and suitable translation scheme for arithmetic expressions with array references

is as given below:

Production Semantic Action

S → L = E if (L.OFFSET = NULL) then GEN (L.PLACE = E.PLACE)
 else GEN(L.PLACE [L.OFFSET] = E.PLACE)

E → E1 + E2 E.PLACE = NEWTEMP ()

GEN (E.PLACE = E1.PLACE + E2.PLACE)

E → (E1) E.PLACE = E1.PLACE

E → L if (L.OFFSET = NULL) then E.PLACE = L.PLACE

else {E.PLACE = NEWTEMP (); GEN (E.PLACE =
L.PLACE[L.OFFSET])}

L → id L.PLACE = id.PLACE

L.OFFSET = NULL

L → ELIST] L.PLACE = NEWTEMP()

L.OFFSET = NEWTEMP ()
GEN (L.PLACE = ELIST.ARRAY - C)
GEN (L.OFFSET = ELIST.PLACE * WIDTH (ELIST.ARRAY))

ELIST → ELIST1 , E ELIST.ARRAY = ELIST1.ARRAY

ELIST.PLACE = NEWTEMP ()
ELIST.NDIM = ELIST1.NDIM + 1

GEN (ELIST.PLACE = ELIST1.PLACE * LIMIT (ELIST.ARRAY, ELIST.NDIM))
GEN (ELIST.PLACE = E.PLACE + ELIST.PLACE)

ELIST → id [E ELIST.ARRAY = id.PLACE

ELIST.PLACE = E.PLACE
ELIST.NDIM = 1

Here, NDIM denotes the number of dimensions, LIMIT (AARAY, i) function returns the

upper limit along the ith dimension of ARRAY i.e. ni, WIDTH (ARRAY) returns the number

of bytes for one element of ARRAY.

7. 8 Declarations

Compiler Design By Prashant Srivastava

Following is the grammar and a suitable translation scheme for declaration statements:

Production Semantic Action

D integer, id ENTER (id.PLACE, integer)
D.ATTR = integer

D real, id ENTER (id.PLACE, real)

D.ATTR = real

D D1, id ENTER (id.PLACE, D1.ATTR)
D.ATTR = D1.ATTR

Here, ENTER makes the entry into symbol table while ATTR is used to trace the data type.

7.9 Procedure Calls

Following is the grammar and a suitable translation scheme for Procedure Calls:

Production Semantic Action

S call id (ELIST) for each item p on QUEUE do
GEN (param p)
GEN (call id.PLACE)

ELIST ELIST, E append E.PLACE to the end of QUEUE

ELIST E initialize QUEUE to contain only E.PLACE

QUEUE is used to store the list of parameters in the procedure call.

7.10 Case Statements

The case statement has following syntax:

switch E

begi

n
case V1:
S1 case
V2: S2
.
.
.
case Vn-1: Sn-
1 default: Sn

end

The translation scheme for this shown below:

code to evaluate E into T
goto TEST

L1: code for S1
goto NEXT

L2: code for S2
goto NEXT
.
.
.

Compiler Design By Prashant Srivastava

Ln-1: code for Sn-1
goto NEXT

Ln: code for Sn
goto NEXT

TEST: if T = V1 goto L1
If T = V2 goto L2
.
.
.
if T = Vn-1 goto Ln-
1 goto Ln

NEXT:

8. SYMBOL TABLES

• Symbol table is a data structure meant to collect information about names appearing in the

source program.

• It keeps track about the scope/binding information about names.
• Each entry in the symbol table has a pair of the form (name and information).
• Information consists of attributes (e.g. type, location) depending on the language.
• Whenever a name is encountered, it is checked in the symbol table to see if already occurs. If

not, a new entry is created.
• In some cases, the symbol table record is created by the lexical analyzer as soon as

the name is encountered in the input, and the attributes of the name are entered when
the declarations are processed.

• If same name can be used to denote different program elements in the same block, the

symbol table record is created only when the name’s syntactic role is discovered.

8.1 Operations on a Symbol Table
• Determine whether a given name is in the table
• Add a new name to the table
• Access information associated to a given name
• Add new information for a given name
• Delete a name (or a group of names) from the table

8.2 Implementation
• Each entry in a symbol table can be implemented as a record that consists of several fields.
• The entries in symbol table records are not uniform and depend on the program element

identified by the name.
• Some information about the name may be kept outside of the symbol table record and/or

some fields of the record may be left vacant for the reason of uniformity. A pointer to this
information may be stored in the record.

• The name may be stored in the symbol table record itself, or it can be stored in a separate
array of characters and a pointer to it in the symbol table.

• The information about runtime storage location, to be used at the time of code generation, is
kept in the symbol table.

• There are various approaches to symbol table organization e.g. Linear List, Search Tree and

Hash Table.

8.2.1 Linear List

• It is the simplest approach in symbol table organization.
• The new names are added to the table in the order they arrive.
• A name is searched for its existence linearly.
• The average number of comparisons required are proportional to 0.5*(n+1) where

n=number of entries in the table.
• It takes less space but more access time.

8.2.2 Search Tree

Compiler Design By Prashant Srivastava

• It is more efficient than Linear Trees.
• We provide two links- left and right, which point to record in the search tree.
• A new name is added at a proper location in the tree such that it can be accessed

alphabetically.
• For any node name1 in the tree, all names accessible by following the left link precede

name1 alphabetically.
• Similarly, for any node name1 in the tree, all names accessible by following the right link

succeed name1 alphabetically.

• The time for adding/searching a name is proportional to (m+n) log2 n. 8.2.3 Hash Table

• A hash table is a table of k-pointers from 0 to k-1 that point to the symbol table and record

within the symbol table.
• To search a value, we find out the hash value of the name by applying suitable hash function.
• The hash function maps the name into an integer value between 0 and k-1 and uses it as an index

in the hash table to search the list of the table records that are built on that hash index.

• To add a non-existent name, we create a record for that name and insert it at the head of the

list.

8.3 Scope Information

• Each name possesses a region of validity within the source program called the scope of that

name.

• The rules governing the scope of names in a block-structured language are as follows:
o A name declared within block B is valid only within B.
o If block B1 is nested within B2, then any name that is valid for B2 is also valid for

B1, unless identifier for that name is re-declared in B1.
• These rules require a more complicated symbol table organization that simply a list of

associations between names and attributes.
• One technique is to keep multiple symbol tables for each active block:

o Each table is list of names and their associated attributes, and the tables are
organized on stack.

o Whenever a new block is entered, a new table is pushed on the stack.
o When a declaration is compiled, the table on the stack is searched for the name.
o If name is not found it is inserted.
o When a reference is translated, it is searched in all tables starting from top.

• Another technique is to represent scope information in the symbol table.
o Store the nesting depth of each procedure block in the symbol table.
o Use the (procedure name, nesting depth) pair as the key to accessing the

information from the table.
o The nesting depth of a procedure is a number that is obtained by starting with a

value of one for the main and adding one to it every time we go from an
enclosing to an enclosed procedure. It counts the number of procedure in the
referencing environment of a procedure.

Compiler Design By Prashant Srivastava

9. RUN TIME ADMINISTRATION

• How do we allocate the space for the generated target code and the data object of our

source programs?
• The places of the data objects that can be determined at compile time will be allocated

statically.
• But the places for the some of data objects will be allocated at run-time.
• The allocation of de-allocation of the data objects is managed by the run-time support

package.
– run-time support package is loaded together with the generate target code.
– the structure of the run-time support package depends on the semantics of the

programming language (especially the semantics of procedures in that

language).

9.1 Procedure Activations

• Each execution of a procedure is called as activation of that procedure.
• An execution of a procedure starts at the beginning of the procedure body;
• When the procedure is completed, it returns the control to the point immediately after the

place where that procedure is called.
• Each execution of a procedure is called as its activation.
• Lifetime of an activation of a procedure is the sequence of the steps between the first and

the last steps in the execution of that procedure (including the other procedures called by
that procedure).

• If a and b are procedure activations, then their lifetimes are either non-overlapping or are
nested.

• If a procedure is recursive, a new activation can begin before an earlier activation of the

same procedure has ended.

9.1.1 Activation Tree

• We can use a tree (called activation tree) to show the way control enters and leaves

activations.

• In an activation tree:
– Each node represents an activation of a procedure.
– The root represents the activation of the main program.
– The node a is a parent of the node b iff the control flows from a to b.
– The node a is left to to the node b iff the lifetime of a occurs before the lifetime of b.

Example:

program main; enter main

procedure s; enter p
begin ... end; enter q

procedure p; exit q
procedure q; enter s

begin ... end; exit s
begin q; s; end; exit p

begin p; s; end; enter s
exit s
exit main

Compiler Design By Prashant Srivastava

main

p s

q s

9.1.2 Control Stack

• The flow of the control in a program corresponds to a depth-first traversal of the activation

tree that:
– starts at the root,

– visits a node before its children, and

– recursively visits children at each node an a left-to-right order.
• A stack (called control stack) can be used to keep track of live procedure activations.

– An activation record is pushed onto the control stack as the activation starts.
– That activation record is popped when that activation ends.

• When node n is at the top of the control stack, the stack contains the nodes along the

path from n to the root.

9.1.3 Variable Scopes

• The same variable name can be used in the different parts of the program.
• The scope rules of the language determine which declaration of a name applies when the

name appears in the program.
• An occurrence of a variable (a name) is:

– local: If that occurrence is in the same procedure in which that name is declared.
– non-local: Otherwise (ie. it is declared outside of that procedure)

Example:

procedure p;

var b:real;

procedure p;
a is local

var a: integer;

begin a := 1; b := 2; end; b is non-local

begin ... end;

9.2 Storage Organization

Code

Static Data

Stack

Heap

Compiler Design By Prashant Srivastava

Mem

ory

locati

ons

for

code

are

deter

mine

d at

comp

ile

time.

Locations

of static data can also be

determined at compile time.

Data

objects allocated at run-time.

(Activation Records)

Other

dynamic

ally

allocate

d data

objects

at run-

time.

(For

example

, malloc

area in

C).

Compiler Design By Prashant Srivastava

9.2.1 Activation Records

• Information needed by a single execution of a procedure is managed using a contiguous

block of storage called activation record.

• An activation record is allocated when a procedure is entered, and it is de-allocated when
that procedure exited.

• Size of each field can be determined at compile time (Although actual location of the
activation record is determined at run-time).

– Except that if the procedure has a local variable and its size depends on a

parameter, its size is determined at the run time.

return value

actual parameters

optional control link

optional access link

saved machine status

local data

temporaries

The returned value of the called procedure is returned

in this field to the calling procedure. In practice, we may

use a machine register for the return value.

The field for actual parameters is used by the calling

procedure to supply parameters to the called procedure.

The optional control link points to the activation

record of the caller.

The optional access link is used to refer to nonlocal

data held in other activation records.

The field for saved machine status holds information about

the state of the machine before the procedure is called.

 The field of local data holds data that local to an execution

of a procedure..

Temporay variables is stored in the field of temporaries.

Example:
(For a non-recursive procedure)

program main; main stack

procedure p;

var a:real;

procedure q; p

var b:integer;

begin ... end;

a:

begin q; end;

procedure s;
q

var c:integer;

begin ... end;

b:

begin p; s; end;

 main

p s

q

Compiler Design By Prashant Srivastava

Example:

(For a recursive procedure)

stack

program main; main

procedure p;
p

function

q(3)

q(a:integer):integer;

a: 3

begin

if (a=1) then q:=1; q(2)

else q:=a+q(a-1); a:2

end; q(1)

begin q(3); end; a:1

begin p; end;

9.2.2 Creation of Activation Records

• Who allocates an activation record of a procedure?
– Some part of the activation record of a procedure is created by that procedure

immediately after that procedure is entered.
– Some part is created by the caller of that procedure before that procedure is

entered.

• Who deallocates?
– Callee de-allocates the part allocated by Callee.
– Caller de-allocates the part allocated by Caller.

9.2.3 Displays

• An array of pointers to activation records can be used to access activation records.
• This array is called as displays.
• For each level, there will be an array entry.

1:

2:

3:

Current activation record at level 1

Current activation record at level 2

Current activation record at level 3

Compiler Design By Prashant Srivastava

10. ERROR DETECTION AND RECOVERY

• What should the parser do in an error case?
– The parser should be able to give an error message (as much as possible meaningful error

message).
– It should recover from that error case, and it should be able to continue the parsing with

the rest of the input.

10.1 Error Recovery Techniques

• Panic-Mode Error Recovery
– Skipping the input symbols until a synchronizing token is found.

• Phrase-Level Error Recovery
– Each empty entry in the parsing table is filled with a pointer to a specific error routine to

take care that error case.
• Error-Productions

– If we have a good idea of the common errors that might be encountered, we can augment
the grammar with productions that generate erroneous constructs.

– When an error production is used by the parser, we can generate appropriate error

diagnostics.
– Since it is almost impossible to know all the errors that can be made by the programmers,

this method is not practical.
• Global-Correction

– Ideally, we would like a compiler to make as few change as possible in processing

incorrect inputs.
– We have to globally analyze the input to find the error.
– This is an expensive method, and it is not in practice.

10.2 Error Recovery in Predictive Parsing

• An error may occur in the predictive parsing (LL(1) parsing)
– if the terminal symbol on the top of stack does not match with the current input symbol.
– if the top of stack is a non-terminal A, the current input symbol is a, and the parsing table

entry M[A,a] is empty.

10.2.1 Panic-Mode Error Recovery in LL(1) Parsing
• In panic-mode error recovery, we skip all the input symbols until a synchronizing token is

found.
• What is the synchronizing token?

– All the terminal-symbols in the follow set of a non-terminal can be used as a synchronizing

token set for that non-terminal.
• So, a simple panic-mode error recovery for the LL(1) parsing:

– All the empty entries are marked as synch to indicate that the parser will skip all the input
symbols until a symbol in the follow set of the non-terminal A which on the top of the
stack. Then the parser will pop that non-terminal A from the stack. The parsing continues
from that state.

– To handle unmatched terminal symbols, the parser pops that unmatched terminal symbol

from the stack and it issues an error message saying that that unmatched terminal is

inserted.

Example:

S → AbS | e | ε

A b

c

e $

A → a | cAd

FOLLOW(S)={$}
 S S → AbS sync S → AbS sync S → e S → ε

A

A → a sync

A → cAd

sync sync sync

FOLLOW(A)={b,d}

Compiler Design By Prashant Srivastava

For string aab For string ceadb

Stack Input Output

Stack

Input

Output

$S aab$ S → AbS $S ceadb$ S →

AbS
A → a

A →

$SbA aab$ $SbA ceadb$

cAd

$Sba aab$ $SbdAc ceadb$

$Sb ab$ Error: missing b, $SbdA eadb$ Error:

 inserted (illegal A) unexpected e

$S ab$ S → AbS (Remove all input tokens until first b or

d, pop A)
A → a

$SbA ab$ $Sbd db$

$Sba ab$ $Sb b$

S → ε

$Sb b$
S → ε

 $S $

$S $ $ $ accept

$ $ accept

10.2.2 Phrase-Level Error Recovery

• Each empty entry in the parsing table is filled with a pointer to a special error routine which will

take care that error case.
• These error routines may:

– change, insert, or delete input symbols.
– issue appropriate error messages
– pop items from the stack.

• We should be careful when we design these error routines, because we may put the parser
into an infinite loop.

10.3 Error Recovery in Operator-Precedence Parsing

Error Cases:

– No relation holds between the terminal on the top of stack and the next input symbol.
– A handle is found (reduction step), but there is no production with this handle as a right

side

Error Recovery:

– Each empty entry is filled with a pointer to an error routine.
– Decides the popped handle “looks like” which right hand side. And tries to recover from

that situation.

10.4 Error Recovery in LR Parsing

• An LR parser will detect an error when it consults the parsing action table and finds an

error entry. All empty entries in the action table are error entries.
• Errors are never detected by consulting the goto table.
• An LR parser will announce error as soon as there is no valid continuation for the

scanned portion of the input.
• A canonical LR parser (LR(1) parser) will never make even a single reduction before

announcing an error.
• The SLR and LALR parsers may make several reductions before announcing an error.
• But, all LR parsers (LR(1), LALR and SLR parsers) will never shift an erroneous input

symbol onto the stack.

10.4.1 Panic Mode Error Recovery in LR Parsing

Compiler Design By Prashant Srivastava

• Scan down the stack until a state s with a goto on a particular nonterminal A is found.

(Get rid of everything from the stack before this state s).
• Discard zero or more input symbols until a symbol a is found that can legitimately follow

A.
– The symbol a is simply in FOLLOW (A), but this may not work for all situations.

• The parser stacks the nonterminal A and the state goto[s,A], and it resumes the normal
parsing.

• This nonterminal A is normally is a basic programming block (there can be more than one
choice for A).

– stmt, expr, block, ...

10.4.2 Phrase-Level Error Recovery in LR Parsing

• Each empty entry in the action table is marked with a specific error routine.
• An error routine reflects the error that the user most likely will make in that case.
• An error routine inserts the symbols into the stack or the input (or it deletes the symbols

from the stack and the input, or it can do both insertion and deletion).
– missing operand

– unbalanced right parenthesis

11. CODE OPTIMIZATION

• Code optimization is aimed at obtaining a more efficient code.
• Two constraints on the technique used to perform optimizations

o They must ensure that the transformed program is semantically equivalent to the
original program.

o The improvement of the program efficiency must be achieved without changing
the algorithms which are used in the program.

• Optimization may be classified as Machine dependent and Machine independent.
o Machine dependent optimizations exploit characteristics of the target machine.
o Machine independent optimizations are based on mathematical properties of a

sequence of source statements.

11.1 Optimizing Transformations

11.1.1 Common Sub-expression Elimination

• An expression need not be evaluated if it was previously computed and values of

variables in this expression have not changed since the earlier computations.

Example:

a = d * c;
.
.
.

d = b * c + x –y;

We can eliminate the second evaluation of b*c from this code if none of the intervening

statements has changed its value. The code can be rewritten as given below.

T1 = b * c;

a = T1;
.
.
.
d = T1 + x – y;

Compiler Design By Prashant Srivastava

11.1.2 Compile Time Evaluation

• We can improve the execution efficiency of a program by shifting execution time actions

to compile time.
• We can evaluate an expression by a single value (known as folding).

Example:
A = 2 * (22.0/7.0) * r

Here we can perform the computation 2 * (22.0/7.0) at compile time itself.

• If a variable is assigned a constant value and is used in an expression without being

assigned other value to it, we can evaluate some portion of the expression using the

constant value (known as Constant Propagation).

Example x

= 12.4

y = x / 2.3

Here we evaluate x / 2.3 as 12.4 / 2.3 at compile time.

11.1.3 Variable Propagation

• If a variable is assigned to another variable, we use one in place of another.
• This will be useful to carry out other optimization that were otherwise not possible.

Example: c

= a * b; x =

a;
d = x * b;

Here, if we replace x by a then a * b and x * b will be identified as common sub-

expressions.

11.1.4 Dead Code Elimination

• If the value contained in a variable at that point is not used anywhere in the program

subsequently, the variable is said to be dead at that place.
• If an assignment is made to a dead variable, then that assignment is a dead assignment

and it can be safely removed from the program.
• A piece of code is said to be dead if it computes values that are never used anywhere in

the program.
• Dead Code can be eliminated safely.
• Variable propagation often leads to making assignment statement into dead code.

Example:

c = a * b;

x = a;
.
.
.
d = x * b + 4;

Variable propagation will lead to following changes.

c = a * b;

x = a;

Compiler Design By Prashant Srivastava

.

.

.
d = a * b + 4;

This assignment x = a is now useless and can be removed c = a * b;
d = a * b + 4;

11.1.5 Code Motion

• We aim to improve the execution time of the program by reducing the evaluation

frequency of expressions.

• Evaluation of expressions is moved from one part of the program to another in such a
way that it is evaluated lesser frequently.

• Loops are usually executed several times.
• We can bring the loop-invariant statements out of the loop.

Example:

a = 200; while

(a > 0)

{
b = x + y;
if (a%b == 0)

printf (“%d”, a);
}

The statement b = x + y is executed every time with the loop. But because it is loop-

invariant, we can bring it outside the loop. It will then be executed only once.

a = 200; b =

x + y;

while (a > 0)
{

if (a%b == 0)
printf (“%d”, a);

}

11.1.6 Induction Variables and Strength Reduction

• An induction variable may be defined as an integer scalar variable which is used in loop

for the following kind of assignments i = i + constant.

• Strength Reduction means replacing the high strength operator by a low strength
operator.

• Strength Reduction used on induction variables to achieve a more efficient code.

Example:

i = 1;
while (i < 10)
{
y = i * 4;

}
This code can be replaced by the following code.

i = 1;

t = 4;
while (t < 40)
{

Compiler Design By Prashant Srivastava

y = t;
t = t + 4;
}

11.1.7 Use of Algebraic Identities

• Certain computations that look different to the compiler and are not identified as common

sub-expressions are actually same.
• An expression B op C will usually be treated as being different to C op B.
• However, for certain operations (like addition and multiplication), they will produce the

same result.
• We can achieve further optimization by treating them as common sub-expressions for

such operations.

11.2 Local Optimizations

• Target code generated statement by statement generally contains redundant instructions.
• We can improve the quality of such code by applying optimizing transformations locally

by examining a short sequence of code instructions and replacing them by faster or
shorter sequence, if possible.

• This technique is known as Peephole Optimization where the peephole is a small moving
window on the program.

• Many of the code optimization techniques can be carried out by a single portion of a

program known as Basic Block.

11.2.1 Basic Block

• A basic Block is defined as a sequence of consecutive statements with only one entry (at

the beginning) and one exit (at the end).
• When a Basic Block of a program is entered, all the statements are executed in

sequence without a halt or possibility of branch except at the end.
• In order to determine all the Basic Block in a program, we need to identify the leaders,

the first statement of each Basic Block.
• Any statement that satisfies the following conditions is a leader;

o The first statement is leader.
o Any statement which is the target of any goto (jump) is a leader.

o Any statement that immediately follows a goto (jump) is a leader.

• A basic block is defined as the portion of code from one leader to the statement up to but

including the next leader or the end of the program.

11.2.2 Flow Graph

• It is a directed graph that is used to portray basic block and their successor relationships.
• The nodes of a flow graph are the basic blocks.
• The basic block whose leader is the first statement is known as the initial block.
• There is a directed edge from block B1 to B2 if B2 could immediately follow B1 during

execution.
• To determine whether there should be directed edge from B1 to B2, following criteria is

applied:
o There is a jump from last statement of B1 to the first statement of B2, OR

o B2 immediately follows B1 in order of the program and B1 does not end in an
unconditional jump.

• B1 is known as the predecessor of B2 and B2 is a successor of B1.

11.2.3 Loops

• We need to identify all the loops in a flow graph to carry out many optimizations

Compiler Design By Prashant Srivastava

discussed earlier.

• A loop is a collection of nodes that
o is strongly connected i.e. from any node in the loop to any other, there is a path

of length one or more wholly within the loop, and
o has a unique entry, a node in the loop such that the only way to reach a node in

the loop from a node outside the loop is to first go through the entry.

4. DAG Representation of a Basic Block

 Many optimizing transformations can be implemented using the DAG representation of a

basic block.
 DAG stands for Directed Acyclic Graph i.e. a graph with directed edges and no cycles.
 DAG is very much like a tree but differs in that it may contain shared nodes where shared

nodes indicate common sub-expressions.
 A DAG has following components;

 Leaves are labeled by unique identifiers, either variable names or constants.
o Interior nodes are labeled by an operator symbol.
o Nodes are optionally given an extra set of identifiers known as attached

identifiers.

11.3.1 DAG Construction

• We assume there are initially no nodes and NODE () is undefined for all arguments.
• The 3-address statements has one of three cases:

(i) A = B op C
(ii) A = op B
(iii) A = B

• We shall do the following steps (1) through (3) for each 3-address statement of the basic
block:

(1) If NODE (B) is undefined, create a leaf labeled B, and let NODE (B) be this node. In case
(i), if NODE (C) is undefined, create a leaf labeled C and let that leaf be NODE (C);

(2) In case (i), determine if there is a node labeled op whose left child is NODE (B) and whose

right child is NODE (C). (This is to catch common sub-expressions.) If not create such a

node. In case (ii), determine whether there is a node labeled op whose lone child

is NODE (B). If not create such a node. Let n be the node found or created in both cases.

In case (iii), let n be NODE (B).
(3) Append A to the list of attached identifiers for the node n in (2). Delete A from the list of

attached identifiers for NODE (A). Finally, set NODE (A) to n.

11.3.2 Applications of DAG

• We automatically detect common sub-expressions while constructing DAG.
• It is also known as to which identifiers have there values used in side the block; they are

exactly those for which a leaf is created in Step (1).
• We can also determine which statements compute values which could be used outside the

block; they are exactly those statements S whose node n in step (2) still has NODE
(A) = n at the end of DAG construction, where A is the identifier assigned by statement S

i. e. A is still an attached identifier for n.

11.4 Global Data Flow Analysis

• Certain optimizations can be achieved by examining the entire program and not just a

portion of the program.
• User-defined chaining is one particular problem of this kind.
• Here we try to find out as to which definition of a variable is applicable in a statement

using the value of that variable.

Compiler Design By Prashant Srivastava

PRACTICE QUESTIONS

SHEET#1

1. Why do we divide the compiler into phases?

2. What is the need to carry out compilation in passes?

3. Do you see the application of Compiler Design techniques in any other area also?

4. Discuss the phases of a compiler with respect to the translation of a paragraph from one

human language to another.

5. Write a regular expression to recognize a series of binary digits with pattern 000 at the

end.

6. Construct the DFAs for (a/b)*aba and (a/b)*aba(a/b)*.
7. Starting from RE, compute the DFA to recognize the following keywords and any

identifier in C language.

int, char, long, float, signed, unsigned

8. Construct NFA for the following RE using Thompson’s construction:

a. (0/1)*

b. 01 (0/1)*

c. (0*/1*)*0

d. (0/1)*0(0/1)*

9. Construct DFA for each NFA in Question 8 above.

10. Show that the following RE’s are same by constructing optimized DFA’s:

a. (a/b)*

b. (a*/b*)*

c. (a/b*)*

11. How is Finite Automation useful for Lexical Analysis?

12. Show a step-by-step left most derivation of the following expressions in a suitable

grammar for mathematical expressions.

1+2* ((3+4) +5) +6

13. Consider the context free grammar

S S S + / S S * / a

a. Show how the string aa+a* can be generated by this grammar.

b. Construct a parse tree for this string.

c. What language is generated by this grammar? Justify your answer.

14. What language is generated by the following grammars? In each case justify your

answer?

a. S 0S1| 01

b. S +SS| -SS | a
c. S S(S)S | €

d. S aSbS | bSaS | €

e. S a | S+S | SS | S* | (S)

Compiler Design By Prashant Srivastava

15. How do we prove that a CFG is ambiguous? Apply this method on the following

ambiguous CFG: E E + E / E * E / id

16. Why is it important to check for ambiguity before using a CFG in our language?

17. What is meant by left recursion? Why is it important?

18. How do we eliminate left recursion? Demonstrate with the help of an example.

19. What is left-factoring and how is it useful? Demonstrate with the help of an example.

20. Name and discuss about the popular compiler writing tools.

SHEET#2

1. What is the difference between top-down and bottom-up parsing? Demonstrate with the

help of an example.

2. What are the necessary properties in a grammar so that is can be parsed in a top-down

manner?

3. Determine whether the following grammar can be parsed by a top-down parser or not. In

case it cannot be top-down parsed, make necessary transformations to that effect.

E E+T / T

T T*F / F F

(E) / id

4. Show all steps in parsing the following string w = cad with the given grammar in a top-

down (with backtrack) manner:

S cAd

A ab / a

5. Calculate FIRST and FOLLOW for the grammar (after transformation, if any) in question

3 above.

6. Compute the LL(1) parsing table for the grammar (after transformation, if any) in question

3 above. Determine whether this grammar is LL (1) or not.

7. Consider the grammar below and determine whether it is an operator grammar or not:

E E + E / E * E / id

8. For the grammar in question 7 above, compute the operator precedence table using the

associativity and precedence properties.

9. For the grammar in question 3 compute the operator precedence relation without using

associativity and precedence properties. Determine whether the grammar is operator

precedence or not.

10. Show steps of parsing the string w = id + id * id by table question 8 above.

11. Show steps of parsing the string w = id + id * id by table question 9 above.

12. Consider the following grammar

S AS / b

A SA / a

a. List all the LR (0) items for the above grammar.

b. Construct an NFA whose states are LR (0) items.

Compiler Design By Prashant Srivastava

13. For grammar in question 12 above, determine if the grammar is SLR. If so, construct its

SLR table.

14. For the grammar in question 12 above, list all the LR (1) items and construct an NFA

whose states are these LR (1) items.

15. For grammar in question 12 above, determine if the grammar is CLR. If so, construct its

CLR table.

16. Identify any common cores in the LR (1) items of question 14. List the LR (1) items after

the merger of common core items.

17. Determine whether the grammar in question 12 above is LALR or not. If so, construct the

LALR table for this grammar.

18. What do you understand by Shift-Reduce and Reduce-Reduce conflict? Which kind of

errors can occur while making LALR table for a CLR grammar and why? Which kind of

errors cannot occur while making LALR table for a CLR grammar and why?

19. In SLR, LALR and CLR, which can parse the largest class of grammars and why?

20. In SLR, LALR and CLR, which has least number of states and why?

SHEET#3

Use suitable translation schemes to answer the questions below.

1. For the input expression (4*7+1)*2, construct an parse tree with translations.
2. Construct the parse tree and the syntax tree for the expression ((a)+(b)).
3. Translate the arithmetic expression a*-(b+c) into

a) syntax tree
b) postfix notation
c) three-address code

4. Translate the expression -(a+b) * (c+d) +(a+b+c) into
a) quadruples
b) triples
c) Indirect triples

5. Translate the executable statements of the following C program
main()
{

int i ;
int a[10];

i = 1;
while (i<=10) {

a[i] = 0; i = i+1;
}

}

into
a) a syntax tree
b) postfix notation
c) three-address code.

6. A translation model may translates E id1 < id2 into pair of statements

If id1 < id2 goto……
goto…….

We could translate instead into the single
statement If id1>= id2 goto_

Compiler Design By Prashant Srivastava

and fall through the code when E is true. Devise a translation model to generate code

of this nature.

7. Translate the following statement into three-address code

A[i , j] :=B[i ,j] + C[A[k ,l]] + D[i+j]

8. In C, the for statement has the following form:

for (e1 ; e2 ;e3) stmt
Taking its meaning to be

e1;
while (e2) {

stmt;
e3;

}
Construct a syntax-directed definition to translate C-style for statements into three-

address code.

9. Consider the statement

while a < b do
if c < d then

x := y + z
else

x := y – z
Obtain the code using control-flow translation of Boolean expressions.

10. Using control-flow translation of Boolean expressions obtain the code of the following

expression
a < b or c < d and e < f

SHEET#4

1. What are the attributes that shall be stored in the symbol table?

2. Describe the different data structures for symbol table implementation and compare

them.

3. Describe and illustrate the use of symbol table for each phase of compiler construction

with the help of suitable example.

4. Define an activation record. Write down the structure of a typical activation record.

5. Consider the program fragment given below:

program main(input,

output); procedure p(x, y, z);

begin

y:=y+1;

z:=z + x;

end;

begin

a:=2;

b:=3;

p (a+b, a, a);

print a

Compiler Design By Prashant Srivastava

end

What will be printed by the program assuming Call-by-Value?

6. What will be printed by the program in question 5 above assuming Call-by-Reference?

7. What will be printed by the program in question 5 above assuming Call-by-Name?

8. Consider the following program fragment:

program main

var y: Real;

procedure compute()

var x : Integer;

procedure initialize()

var x: Real;
begin {initialize}
...
end {initialize}

procedure transform()

var z: Real;
begin {transform}
...
end {transform}

begin {compute}
end {compute}

begin {main}
end {main}

What is the scope of the variable x declared in the procedure compute() in the following

program, assuming that procedures are called in the following order: main() calls

compute(), which in turn calls transform(), which in turn calls initialize()?

9. What errors can occur in each of the lexical, syntax and semantic phases? Illustrate

using examples.

10. What is the Panic mode of error-recovery? How do we apply this approach in different

parsers?

