Example Query

• Find all loans of over \$1200

 $\sigma_{amount > 1200}$ (loan)

branch (branch_name, branch_city, assets)
customer (customer_name, customer_street, customer_city)
account (account_number, branch_name, balance)
loan (loan_number, branch_name, amount)
depositor (customer_name, account_number)
borrower (customer_name, loan_number)

 Find the loan number for each loan of an amount greater than \$1200

$$\prod_{loan_number} (\sigma_{amount > 1200} (loan))$$

Find the names of all customers who have a loan, an account, or both, from the bank

 $\Pi_{customer_name}$ (borrower) $\cup \Pi_{customer_name}$ (depositor)

• Find the names of all customers who have a loan at the Perryridge branch.

branch (branch_name, branch_city, assets)

customer (customer_name, customer_street, customer_city)

account (account_number, branch_name, balance)

loan (loan_number, branch_name, amount)

depositor (customer_name, account_number)

borrower (customer_name, loan_number)

 $\Pi_{customer_name} (\sigma_{branch_name="Perryridge"})$ $(\sigma_{borrower.loan number=loan.loan_number}(borrower x loan)))$

Find the names of all customers who have a loan at the Perryridge branch but do not have an account at any branch of the bank.

 $\Pi_{customer_name} (\sigma_{branch_name} = "Perryridge")$

 $(\sigma_{borrower.loan_number} = loan.loan_number(borrower x loan))) - \Pi_{customer_name}(depositor)$

branch (branch_name, branch_city, assets)

customer (customer_name, customer_street, customer_city)

account (account_number, branch_name, balance)

- Find the names of all customers who loan (loan_number, branch_name, amount) have a loan at the Perryridge branch.
 depositor (customer_name, account_number)
 - Query 1

borrower (customer_name, loan_number)

 $\Pi_{customer_name} (\sigma_{branch_name} = "Perryridge" (\sigma_{branch_name} = loan.loan_number (borrower x loan)))$

• Query 2

 $\Pi_{customer_name}(\sigma_{loan.loan_number} = borrower.loan_number ((\sigma_{branch_name} = "Perryridge" (loan)) \times borrower))$

- Find the largest account balance
 - Strategy:
 - Find those balances that are *not* the largest
 - Rename *account* relation as *d* so that we can compare each account balance with all others
 - Use set difference to find those account balances that were *not* found in the earlier step.
 - The query is:

 $\Pi_{balance}(account) - \Pi_{account.balance} \\ (\sigma_{account.balance} < d.balance (account x \rho_d (account)))$

branch (branch_name, branch_city, assets) customer (customer_name, customer_street, customer_city) account (account_number, branch_name, balance) loan (loan_number, branch_name, amount) depositor (customer_name, account_number) borrower (customer_name, loan_number)

Bank Example Queries

Find the names of all customers who have a loan and an account at bank.

```
\Pi_{customer\_name} (borrower) \cap \Pi_{customer\_name} (depositor)
```

• Find the name of all customers who have a loan at the bank and the loan amount

Bank Example Queries

- Find all customers who have an account from at least the "Downtown" and the Uptown" branches.
 - Query 1

 $\Pi_{customer_name} (\sigma_{branch_name} = "Downtown" (depositor \bowtie account)) \cap \\ \Pi_{customer_name} (\sigma_{branch_name} = "Uptown" (depositor \bowtie account))$

• Query 2

 $\Pi_{customer_name, branch_name} (depositor \bowtie account) \\ \div \rho_{temp(branch_name)} (\{("Downtown"), ("Uptown")\})$

Note that Query 2 uses a constant relation.

branch (branch_name, branch_city, assets)

customer (customer_name, customer_street, customer_city)

account (account_number, branch_name, balance)

loan (loan_number, branch_name, amount)

depositor (customer_name, account_number)

borrower (customer_name, loan_number)

Bank Example Queries

• Find all customers who have an account at all branches located in Brooklyn city.

 $\Pi_{customer_name, branch_name} (depositor_{\bowtie} account)$ $\div \Pi_{branch_name} (\sigma_{branch_city = "Brooklyn"} (branch))$

branch (branch_name, branch_city, assets)

customer (customer_name, customer_street, customer_city)

account (account_number, branch_name, balance)

loan (loan_number, branch_name, amount)

depositor (customer_name, account_number)

borrower (customer_name, loan_number)

Deletion Examples

• Delete all account records in the Perryridge branch. $account \leftarrow account - \sigma_{branch name} = "Perryridge" (account)$

■ Delete all loan records with amount in the range of 0 to 50 loan ← loan - σ amount ≥ 0 and amount ≤ 50 (loan)

Delete all accounts at branches located in Needham.

 $r_1 \leftarrow \sigma_{branch_city} = "Needham" (account \bowtie branch)$ $r_2 \leftarrow \Pi_{account_number, branch_name, balance} (r_1)$ $r_3 \leftarrow \Pi_{customer_name, account_number} (r_2 \bowtie depositor)$ $account \leftarrow account - r_2$ $depositor \leftarrow depositor - r_3$

Insertion Examples

• Insert information in the database specifying that Smith has \$1200 in account A-973 at the Perryridge branch.

```
account \leftarrow account \cup {("A-973", "Perryridge", 1200)}
depositor \leftarrow depositor \cup {("Smith", "A-973")}
```

Provide as a gift for all loan customers in the Perryridge branch, a \$200 savings account. Let the loan number serve as the account number for the new savings account.

 $r_{1} \leftarrow (\sigma_{branch_name} = "Perryridge" (borrowet \land loan))$ account \leftarrow account $\cup \prod_{loan_number, branch_name, 200} (r_{1})$ depositor \leftarrow depositor $\cup \prod_{customer_name, loan_number} (r_{1})$

Update Examples

• Make interest payments by increasing all balances by 5 percent.

account $\leftarrow \prod_{account_number, branch_name, balance * 1.05}$ (account)

Pay all accounts with balances over \$10,000 6 percent interest and pay all others 5 percent

account $\leftarrow \prod_{account_number, branch_name, balance * 1.06} (\sigma_{BAL > 10000} (account)) \cup \prod_{account_number, branch_name, balance * 1.05} (\sigma_{BAL \le 10000} (account))$ (account))