
Multithreading

Presented by,

Prashant Srivastava

Assistant Professor

CSE Dept (SGI-Allahabad)

Table Of Contents

What is thread

What is multithreading

Advantages of Multithreading

Life Cycle Of a thread

Multithreading Implementation Using Java

What is Threads

• Thread is basically a lightweight sub-process, a smallest unit of processing. Multiprocessing and

‘multithreading, both are used to achieve multitasking.

• multitasking is when multiple processes share common processing resources such as a CPU. Multi

threading extends the idea of multitasking into applications where you can subdivide specific operations

within a single application into individual threads. Each of the threads can run in parallel. The OS divides

processing time not only among different applications, but also among each thread within an

application.

Demo

Multi threaded programming language which means we can develop multi threaded program

using Java. A multi threaded program contains two or more parts that can run concurrently and

each part can handle different task at the same time making optimal use of the available

resources specially when your computer has multiple CPUs.

Multithreading is a conceptual programming paradigm where a program is divided into two or

more subprogram (processes), which can implemented at the same time in parallel.

What is Multithreaded Applications

Advantage of Java Multithreading

1) It doesn't block the user because threads are independent and you can perform multiple operations

at same time.

2) You can perform many operations together so it saves time.

3) Threads are independent so it doesn't affect other threads if exception occur in a single thread.

Life Cycles Of Multithreading

Contd..

New: A new thread begins its life cycle in the new state. It remains in this state until the

program starts the thread. It is also referred to as a born thread.

Runnable: After a newly born thread is started, the thread becomes runnable. A thread in this

state is considered to be executing its task.

Waiting: Sometimes, a thread transitions to the waiting state while the thread waits for another

thread to perform a task.A thread transitions back to the runnable state only when another

thread signals the waiting thread to continue executing.

Timed waiting: A runnable thread can enter the timed waiting state for a specified interval of

time. A thread in this state transitions back to the runnable state when that time interval expires

or when the event it is waiting for occurs.

Contd..

Terminated (Dead): A runnable thread enters the terminated state when it completes its task

or otherwise terminates.

Multithreading Implementation Using java

A new thread can be created in two ways

 By creating a thread class: Define a class that extends Thread class and override its run() method

with the code required by the thread.

 By converting s class to a thread: Define a class that implements Runnable interface. The

Runnable interface has only one method, run(), that is to be defined in the method with the code

to be executed by the thread

Creating threads using the thread class

Class A extends Thread

{

Public void run()

{

for(int i=1;i<=5;i++)

{

System.out.println(“\t From Thread A: i=”+i);

}

System.out.println(“Exit From A”);

}

}

Class B extends Thread

{

Public void run()

{

for(int j=1;j<=5;j++)

{

System.out.println(“\t From Thread B: j=”+j);

}

System.out.println(“Exit From B”);

