
Packages In Java

Demonstrated By,

Prashant Srivastava

Asst. Prof.

Department of Computer Science & Engg.

Shambhunath Group Of Institutions-Allahabad

Introduction
 The main feature of OOP is its ability to support the reuse of code:

 Extending the classes (via inheritance)

 Extending interfaces

 The features in basic form limited to reusing the classes within a program.

 What if we need to use classes from other programs without physically copying
them into the program under development ?

 In Java, this is achieved by using what is known as “packages”, a concept similar
to “class libraries” in other languages.

Packages

Packages are Java’s way of grouping a number of related classes and/or interfaces
together into a single unit. That means, packages act as “containers” for classes.

 The benefits of organising classes into packages are:

 The classes contained in the packages of other programs/applications can be
reused.

 In packages classes can be unique compared with classes in other packages. That
two classes in two different packages can have the same name. If there is a naming
clash, then classes can be accessed with their fully qualified name.

 Classes in packages can be hidden if we don’t want other packages to access them.
 Packages also provide a way for separating “design” from coding.

Types of package:

1) User defined package: The package we create is called user-defined package.

2) Built-in package: The already defined package like java.io.*, java.lang.* etc are

known as built-in packages.

Java Foundation Packages
Java provides a large number of classes groped into different packages based on their functionality.

The six foundation Java packages are:
java.lang

Contains classes for primitive types, strings, math functions, threads, and exception
java.util

Contains classes such as vectors, hash tables, date etc.
java.io

Stream classes for I/O
java.awt

Classes for implementing GUI – windows, buttons, menus etc.
java.net

Classes for networking
java.applet

Classes for creating and implementing applets

Accessing Classes from Packages
There are two ways of accessing the classes stored in packages:

Using fully qualified class name
java.lang.Math.sqrt(x);

Import package and use class name directly.
import java.lang.Math
Math.sqrt(x);

Selected or all classes in packages can be imported:

Implicit in all programs: import java.lang.*;

package statement(s) must appear first

import package.class;

import package.*;

Creating Packages
Java supports a keyword called “package” for creating user-defined packages. The package
statement must be the first statement in a Java source file (except comments and white
spaces) followed by one or more classes.

package mypack;
public class Simple{
public static void main(String args[]){

System.out.println("Welcome to package");
}

}

How to compile & Run java package
javac -d directory javafilename

javac -d . Simple.java

To Run: java mypack.Simple

Sub Packages

We can also put a package inside an another package. The packages that comes lower

in the naming hierarchy are called "subpackage" of the corresponding package higher

in the hierarchy i.e. the package that we are putting into another package is called

"sub package".

Example of Sub Package
package importpackage.subpackage;

public class HelloWorld {
public void show(){
System.out.println("This is the function of the class

HelloWorld!!");
}

}

import importpackage.subpackage.*;
class CallPackage{
public static void main(String[] args){
HelloWorld h2=new HelloWorld();
h2.show();
}

}

Excercise
package Geometry;

public class Square {

public double side;

public double calculateArea()

{

return side * side;

}

}

import Geometry;

public class Exercise {

public static void main(String[] args) {

Square sqr = new Square();

sqr.side = 32.40;

System.out.println("\nSquare
Characteristics");

System.out.printf("Side: ", sqr.side);

System.out.printf(“Area: ", sqr. calculateArea());

}

}

