uptuonline.com **Printed Pages: 4** 769 NAS-101 (Following Paper ID and Roll No. to be filled in your Answer Book) Paper ID: 181504 Roll No. B.Tech. (SEM. I) THEORY EXAM. 2015-16 **ENGINEERING PHYSICS-I** [Time: 3 hours] [Total Marks: 100] SECTION-A 1. Attempt all parts, all parts carry equal marks. Write answer of each part in short. (2x10=20)How the negative results of Michelson-Morley (a) experiment interpreted? (b) Find relativistic relation between energy and momentum. If uncertainty in the position of a particle is equal to de Broglie wavelength, what will be uncertainty in the measurment of velocity? uptuonline.com (d) Write the characteristics of wave function. Why the center of Newton's ring is dark? (e)

Define plane fo polarization and plane fo vibaration.

(1)

uptuonline.com

(g) Define optic axis of doubly refracting crystal.

SECTION-B

Define metastable state.

Note: Attempt any five questions.

variation of mass with velocity.

What is Rayleigh's criterion of resolution?

Give few importat applications of optical fibre.

What do you mean by proper length? Derive the

expression for relativistic length. Calculate the percentage contraction of a rod moving with a velocity

of 0.6c in a direction inclined at 30° to its own length.

Show that the relativistic invariance of the law of

conservation of momentum leads to the concept of

State Heisenberg's uncertainty principle. Prove that

electron cannot exist inside the nucleus and proton can

Explain the physical significance of wave function.

Derive Schrodinger's time independent wave equation.

Explain the formation of Newton's? if in a newton's rings

experiment, the air in the interspace is replaced by a liquid of refractive index 1.33 in what proportion would

uptuonling.com

 $(5 \times 10 = 50)$

6.

uptuonline.com

(h)

(i)

(i)

exists.

(f)

the diameter of the rings changed?

 Discuss the phenomenon of diffraction at a single slit and show that intensities of successive maxima are

$$1:\frac{4}{9\pi^2}:\frac{4}{25\pi^2}:\frac{4}{49\pi^2}$$

- Discuss the construction and working of a He-Ne laser.
 Compare it with Ruby Laser.
- Describe the basic principle of communication of wave in optical fibre. A step index fibre has core refractive index 1.468, cladding refractive index 1.462. Compute the maximum radius allowed for a fibre, if it supported only one mode at a wavelength 1300 nm.

SECTION-C

Note: Attempt any two questions from this section. $(2 \times 15 = 30)$

- (a) Derive the Galilean transformation equations and show that its acceleration components is invariant.
 - (b) If the kinetic energy of a body is twice its rest mass energy, find its velocity.
 - (c) Explain de-Broglie's hypothesis. Discuss the outcome of Davisson-Germer's experiment in detail.
- 11. (a) Explain the phenomenon of interference in thin film due to reflected rays.

- (b) A diffraction grating used at normal incidence gives a yellow line (λ=6000Å) in a certain spectral order superimposed on a blue line (λ=4800Å) of next higher order. If the angle of diffraction is sin⁻¹ (3/4), calculate the grating element.
- (c) Describe the construction and working of Nicol prism.
- 12. (a) Prove that $v_p x v_g = c^2$. Where v_p = phase velocity and v_g = group velocity.
 - (b) Discuss the fifferent types of optical fibre in detail.
 - (c) In a Ruby laser, total number of Cr⁺³ is 2.8x10¹⁹. If the laser emits radiation of wavelength 7000Å calculate the energy of the laser pulse.

Physical Constants:

Mass of electron $m_0 = 9.1 \times 10^{-31} \text{ kg}$

Mass of proton $m_p = 1.67 \times 10^{-27} \text{ kg}$

Speed of light $c = 3x10^8 \text{ m/s}$

Planck's Constant $h = 6.63 \times 10^{-34} \text{ J/s}$

Charge on electron $e = 1.67 \times 10^{-27} \text{ kg}$

Boltzmann's Constant $k = 1.38 \times 10^{-23} \text{ m}^2 \text{ kg s}^{-2} \text{k}^{-1}$

---- X ----

82000