 Department of Computer science and Information Technology

 NETWORK PROGRAMING LAB (TCS-602)

 B.Tech – VI Semester

 (2015-2016)

[image: image1.png]
NAME :
YEAR:

BRANCH:

ROLL NUMBER:

SHAMBUNATH INSTITUTE OF ENGINEERING AND TECHNOLOGY ALLAHABAD

 Dr. A.P.J. Abdul Kalam University Lucknow (Lucknow)

INDEX
	SR.No.
	Practical Name
	Date
	Signature
	Remark

	1
	Write a program for error detecting code using CRC- CCITT (16-bits).
	
	
	

	2
	Implement the data link layer farming methods such as character, character stuffing and bit stuffing
	
	
	

	3
	Write a program for frame sorting technique used in buffers
	
	
	

	4
	Write a program for distance vector algorithm to find suitable path for transmission
	
	
	

	5
	Write a program for spanning tree algorithm (Kruskal’s/Prim’s) to find loop less path.
	
	
	

	6
	Using TCP/IP sockets, write a client-server program to make client sending the file name and the server to send

back the contents of the requested file if present.

	
	
	

	7
	Write a program for simple RSA algorithm to encrypt and decrypt the data.
	
	
	

	8
	Write a program for Hamming Code generation for error detection and correction.
	
	
	

	9
	Write a program for congestion control using Leaky bucket algorithm
	
	
	

PRACTICAL 1

Problem Statement : Write a program for error detecting code using CRC-CCITT (16-bits).

Theory :It does error checking via polynomial division. In general, a bit string

bn-1 bn-2 bn-3…b2 b1 b0
As

bn-1Xn-1+ bn-2Xn-2+ bn-3Xn-3+…b2X2+ b1X1+ b0
Ex: -

10010101110

As

X10+ X7+ X5+ X3+ X2+ X1
All computations are done in modulo 2

Algorithm:-

1.Given a bit string, append 0Sto the end of it (the number of 0sis the same as the degree of the

generator polynomial) let B(x) be the polynomial corresponding toB.

2.Divide B(x) by some agreed on polynomial G(x) (generator polynomial) and determine the
remainder R(x). This division is to be done using Modulo 2Division.

3.Define T(x) = B(x) –R(x)(T(x)/G(x) => remainder 0)

4.Transmit T, the bit string corresponding to T(x).

5.Let T’ represent the bit stream the receiver gets and T’(x) the associated polynomial. The receiver
divides T1(x) by G(x). If there is a 0 remainder, the receiver concludes T = T’ and no error occurred
otherwise, the receiver concludes an error occurred and requires a retransmission.

Program(1)

#include<stdio.h>

#include<string.h>

#include<conio.h>

#define N strlen(g)

char t[128], cs[128], g[]="10001000000100001";

int a, e, c;

void xor()

{

for(c=1;c<N;c++) cs[c]=((cs[c]==g[c])?'0':'1');

}

void crc()

{

for(e=0;e<N;e++) cs[e]=t[e];

do

{

if(cs[0]=='1') xor();

for(c=0;c<N-1;c++) cs[c]=cs[c+1];cs[c]=t[e++];}

while(e<=a+N-1);}

void main()

{

printf("\nEnter poly : "); scanf("%s",t);

printf("\nGenerating Polynomial is : %s",g);

a=strlen(t);

for(e=a;e<a+N-1;e++) t[e]='0';

printf("\nModified t[u] is : %s",t);crc();

printf("\nChecksum is : %s",cs);

for(e=a;e<a+N-1;e++) t[e]=cs[e-a];

printf("\nFinal Codeword is : %s",t);

printf("\nTest Error detection 0(yes) 1(no) ? : ");

scanf("%d",&e);

if(e==0) {

printf("Enter position where error is to inserted : ");

scanf("%d",&e);t[e]=(t[e]=='0')?'1':'0';

printf("Errorneous data : %s\n",t);}

crc();

for(e=0;(e<N-1)&&(cs[e]!='1');e++);

if(e<N-1) printf("Error detected.");

else

printf("No Error Detected.");

}

Output

Enter poly : 1011101

Generating Polynomial is : 10001000000100001

Modified t[u] is : 10111010000000000000000

Checksum is : 1000101101011000

Final Codeword is : 10111011000101101011000

Test Error detection 0(yes) 1(no) ? : 0

Enter position where you want to insert error : 3

Errorneous data : 10101011000101101011000

Error detected.Enter poly : 1011101

Generating Polynomial is : 10001000000100001

Modified t[u] is : 10111010000000000000000

Checksum is : 1000101101011000

Final Codeword is : 10111011000101101011000

Test Error detection 0(yes) 1(no) ? : 1

No Error Detected.

OR

#include<stdio.h>

#include<string.h>

#include<conio.h>

#defineN strlen(g)

chart[128], cs[128], g[]="10001000000100001";

int a, e, c;

void xor()

{

for(c=1;c<N;c++) cs[c]=((cs[c]==g[c])?'0':'1');

}

Void crc()

{

for(e=0;e<N;e++) cs[e]=t[e];

do

{

if(cs[0]=='1') xor();

for(c=0;c<N-1;c++) cs[c]=cs[c+1];cs[c]=t[e++];}

while(e<=a+N-1);}

voidmain()

{clrscr();

printf("\nEnter poly : "); scanf("%s",t);

printf("\nGenerating Polynomial is : %s",g);

a=strlen(t);

for(e=a;e<a+N-1;e++) t[e]='0';

printf("\nModified t[u] is : %s",t);crc();

printf("\nChecksum is : %s",cs);

for(e=a;e<a+N-1;e++) t[e]=cs[e-a];

printf("\nFinal Codeword is : %s",t);

printf("\nTest Error detection 0(yes) 1(no) ? : ");

scanf("%d",&e);

if(e==0) {

printf("Enter position where error is to inserted : ");

scanf("%d",&e);t[e]=(t[e]=='0')?'1':'0';

printf("Errorneous data : %s\n",t);}

crc();

for(e=0;(e<N-1)&&(cs[e]!='1');e++);

if(e<N-1) printf("Error detected.");

elseprintf("No Error Detected.");

getch();

}

PRACTICAL 2

Problem Statement : Implement the data link layer farming methods such as character, character stuffing

and bit stuffing

Theory : 1 Data Framing:
The term “frame” refers to a small block of data used in a specific network. The data link layer groups

raw data bits to/from the physical layer into discrete frames with error detection/correction code bits

added.

Framing methods:

Character count.

Starting and ending characters, with character stuffing.

Starting and ending flags with bit stuffing.

Physical layer coding violations.

2 Error Detection/Correction:
Error Detection:

Include enough redundant information in each frame to allow the receiver to deduce that an error has occurred, but not which error and to request a retransmission.

Uses error-detecting codes.

Error Correction:

Include redundant information in the transmitted frame to enable the receiver not only to deduce that an error has occurred but also correct the error.

Uses error-correcting codes.

Data Link Layer: Framing
1. The character count method:
The frame header includes the count of characters in the frame

A transmission error can cause an incorrect count causing the source and destination to get out of synchronization

Rarely used in actual data link protocols

[image: image2]
Using Starting and ending characters, with character stuffing:
Each frame starts with the ASCII character sequence DLE (Data Link Escape) and STX (Start of TeXt) and ends with DLE ETX (End of TeXt)

When binary data is transmitted where (DLE STX or DLE ETX) can occur in data, character stuffing is used (additional DLE is inserted in the data).

Limited to 8-bit characters and ASCII.

2. Bit-Oriented Using Start/End Flags:
a. Each frame begins and ends with 01111110

b. Bit stuffing: After each five consecutive ones in a data a zero is stuffed

c. Stuffed zero bits are removed by the data link layer at receiving end.

PROCEDURES
Step-1: Print the menu as follows

Character count -1

Character stuffing – 2

Bit stuffing – 3

Exit -4

Step-2: Read the Choice

Step-3: If the choice is 1, do the following

Read the Character sequence

Use random() function for frame length

If random() function returns 5 then

Take the first 4 characters from the character stream and print the frame (for

example: if first 4 characters are a,b,c,d then the frame is 5 a b c d)

Repeat the above 2 steps until the character sequence ends

Step-4: If the choice is 2, do the following

Read the data units with delimiters DLE STX and DLE ETX

Scan the data for any occurrences of delimiters like DLE

If DLE found in the sequence, then stuff the another DLE

Repeat the above 2 step until data stream ends.

Step-5: If the choice is 3, do the following

Read the bit stream

Scan the bit stream for continuous 6 1’s

If it is found then insert 0 after 5th 1

Finally print the bit stream with delimiter 0 1 1 1 1 1 1 0

(i.e. 0 1 1 1 1 1 1 1 0 bit stream 0 1 1 1 1 1 1 0)

Step-6: If the choice is 4 , then call exit() function.

 PROGRAM 2

a) PROGRAM FOR CHARACTER STUFFING
#include<stdio.h>

#include<conio.h>

#include<string.h>

#include<process.h>

void main()

{

int i=0,j=0,n,pos;

char a[20],b[50],ch;

clrscr();

printf("enter string\n");

scanf("%s",&a);

n=strlen(a);

printf("enter position\n");

scanf("%d",&pos);

if(pos>n)

{

printf("invalid position, Enter again :");

scanf("%d",&pos);

}

printf("enter the character\n");

ch=getche();

b[0]='d';

b[1]='l';

b[2]='e';

b[3]='s';

b[4]='t';

b[5]='x';

j=6;

while(i<n)

{

if(i==pos-1)

{

b[j]='d';

b[j+1]='l';

b[j+2]='e';

b[j+3]=ch;

b[j+4]='d';

b[j+5]='l';

b[j+6]='e';

j=j+7;

}

if(a[i]=='d' && a[i+1]=='l' && a[i+2]=='e')

{

b[j]='d';

b[j+1]='l';

b[j+2]='e';

j=j+3;

}

b[j]=a[i];

i++;

j++;

}

b[j]='d';

b[j+1]='l';

b[j+2]='e';

b[j+3]='e';

b[j+4]='t';

b[j+5]='x';

b[j+6]='\0';

printf("\nframe after stuffing:\n");

printf("%s",b);

getch();

}

INPUT:
enter string:

asdlefgh

enter position: 8

invalid position,enter again: 3

enter the character: k

OUTPUT:
frame after stuffing:

dlestx as dle k dle dle dlefgh dleetx

b) PROGRAM FOR BIT STUFFING
#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

{

int a[20],b[30],i,j,k,count,n;

clrscr();

printf("Enter frame length:");

scanf("%d",&n);

printf("Enter input frame (0's & 1's only):");

for(i=0;i<n;i++)

scanf("%d",&a[i]);

i=0; count=1; j=0;

while(i<n)

{

if(a[i]==1)

{

b[j]=a[i];

for(k=i+1;a[k]==1 && k<n && count<5;k++)

{

j++;

b[j]=a[k];

count++;

if(count==5)

{

j++;

b[j]=0;

}

i=k;

}}

else

{

b[j]=a[i];

}

i++;

j++;

}

printf("After stuffing the frame is:");

for(i=0;i<j;i++)

printf("%d",b[i]);

getch();

}

INPUT:
Enter frame length: 10

Enter input frame (0's & 1's only):

1 0 1 0 1 1 1 1 1 1

OUTPUT:
After stuffing the frame is:

1 0 1 0 1 1 1 1 1 0 1

PRACTICAL 3

Frame Sorting

Problem Statement

Write a program for frame sorting technique used in buffers.

Theory

The data link layer divides the stream of bits received from the network layer into manageable data units called frames.

If frames are to be distributed to different systems on the network, the Data link layer adds a header to the frame to define the sender and/or receiver of the frame .

Each Data link layer has its own frame format. One of the fields defined in the format is the maximum size of the data field. In other words, when datagram is encapsulated in a frame, the total size of the datagram must be less than this maximum size, which is defined by restriction imposed by the hardware and software used in the network.

The value of MTU differs from one physical network to another

In order to make IP protocol portable/independent of the physical network, the packagers decided to make the maximum length of the IP datagram equal to the largest Maximum Transfer Unit (MTU) defined so far. However for other physical networks we must divide the datagram’s to make it possible to pass through these networks. This is called fragmentation. When a datagram is fragmented, each fragmented has its own header. A fragmented datagram may itself be fragmented if it encounters a network with an even smaller MTU. In another words, a datagram may be fragmented several times before it reached the final destination and also, the datagram’s referred to as (frames in Data link layer) may arrives out of order at destination. Hence sorting of frames need to be done at the destination to recover the original data. Program

PROGRAM 3

#include <stdlib.h>

#include <time.h>

#include <stdio.h>

#include <conio.h>

#include <string.h>

#define FSize 3

typedef struct packet {int SeqNum; char Data[FSize+1];}packet;

struct packet *readdata, *transdata;

int divide (char*msg) {

int msglen, NoOfPacket, i, j;

msglen = strlen(msg);

NoOfPacket = msglen/FSize;

if((msglen%FSize)!=0) NoOfPacket++;

readdata = (struct packet *)malloc(sizeof(packet) * NoOfPacket);

for(i = 0; i < NoOfPacket; i++)

{readdata[i].SeqNum = i + 1;

for(j = 0; (j < FSize) && (*msg !='\0'); j++, msg++)

readdata[i].Data[j] = *msg;

readdata[i].Data[j] ='\0';}

printf("\nThe Message has been divided as follows\n");

printf("\nPacket No. Data\n\n");

for(i = 0; i < NoOfPacket; i++)

printf(" %2d %s\n", readdata[i].SeqNum,readdata[i].Data);

return NoOfPacket;}

void shuffle(int NoOfPacket) {

int*Status;

int i, j, trans;

randomize();

Status=(int*)calloc(NoOfPacket,sizeof(int));

transdata = (struct packet *)malloc(sizeof(packet) * NoOfPacket);

for(i = 0; i < NoOfPacket;)

{trans = rand()%NoOfPacket;

if(Status[trans]!=1) {

transdata[i].SeqNum = readdata[trans].SeqNum;

strcpy(transdata[i].Data, readdata[trans].Data);

i++;Status[trans] = 1;}

}

free(Status);}

void sortframes(int NoOfPacket)

{ packet temp;

int i, j;

for(i = 0; i < NoOfPacket; i++)

for(j = 0; j < NoOfPacket-i-1; j++)

if(transdata[j].SeqNum > transdata[j + 1].SeqNum)

{ temp.SeqNum = transdata[j].SeqNum;

strcpy(temp.Data, transdata[j].Data);

transdata[j].SeqNum = transdata[j + 1].SeqNum;

strcpy(transdata[j].Data, transdata[j + 1].Data);

transdata[j + 1].SeqNum = temp.SeqNum;

strcpy(transdata[j + 1].Data, temp.Data);

}

}

void receive(int NoOfPacket) {

int i;

printf("\nPackets received in the following order\n");

for(i = 0; i < NoOfPacket; i++)

printf("%4d", transdata[i].SeqNum);

sortframes(NoOfPacket);

printf("\n\nPackets in order after sorting..\n");

for(i = 0; i < NoOfPacket; i++)

printf("%4d", transdata[i].SeqNum);

printf("\n\nMessage received is :\n");

for(i = 0; i < NoOfPacket; i++)

printf("%s", transdata[i].Data);}

void main() {

char*msg;

int NoOfPacket;

clrscr();

printf("\nEnter The message to be Transmitted :\n");

scanf("%[^\n]", msg);

NoOfPacket = divide(msg);

shuffle(NoOfPacket);

receive(NoOfPacket);

free(readdata);

free(transdata);

getch();}

Output

Enter The message to be Transmitted :hi, it was nice meeting u on sunday
The Message has been divided as follows

Packet No.

Data

1

hi,

2

 it

3

was

4

s n

5

ice

6

 me

7

 eti

8

ng

9

u o

10

n s

11

 und

12

ay

Packets received in the following order

4 2 6 3 5 1 8 9 11 7 12 10

Packets in order after sorting..

1 2 3 4 5 6 7 8 9 10 11 12

Message received is :hi, it was nice meeting u on Sunday

EXPERIMENT 4

Problem Statement Write a program for distance vector algorithm to find suitable path for transmission.

Theory Routing algorithm is a part of network layer software which is responsible for deciding which output line an incoming packet should be transmitted on. If the subnet uses datagram internally, this decision must be made a new for every arriving data packet since the best route may have changed since last time. If the subnet uses virtual circuits internally, routing decisions are made only when a new established route is being set up. The latter case is sometimes called session routing, because a rout remains in force for an entire user session (e.g., login session at a terminal or a file).
Routing algorithms can be grouped into two major classes: adaptive and non adaptive. Non adaptive algorithms do not base their routing decisions on measurement or estimates of current traffic and topology. Instead, the choice of route to use to get from I to J (for all I and J) is compute in advance, offline, and downloaded to the routers when the network ids booted. This procedure is sometime called static routing.
Adaptive algorithms, in contrast, change their routing decisions to reflect changes in the topology, and usually the traffic as well. Adaptive algorithms differ in where they get information (e.g., locally, from adjacent routers, or from all routers), when they change the routes (e.g., every ∆T sec, when the load changes, or when the topology changes), and what metric is used for optimization (e.g., distance, number of hops, or estimated transit time).
Two algorithms in particular, distance vector routing and link state routing are the most popular. Distance vector routing algorithms operate by having each router maintain a table (i.e., vector) giving the best known distance to each destination and which line to get there. These tables are updated by exchanging information with the neighbors.
The router is assumed to know the “distance” to each of its neighbor. If the metric is hops, the distance is just one hop. If the metric is queue length, the router simply examines each queue. If the metric is delay, the router can measure it directly with special ECHO packets hat the receiver just time stamps and sends back as fast as possible.
The Count to Infinity Problem.
Distance vector routing algorithm reacts rapidly to good news, but leisurely to bad news. Consider a router whose best route to destination X is large. If on the next exchange neighbor A suddenly reports a short delay to

X , the router just switches over to using the line to A to send traffic to X . In one vector exchange, the good news is processed.
To see how fast good news propagates, consider the five node (linear) subnet of following figure, where the delay metric is the number of hops. Suppose A is downinitially and all the other routers know this. In other words, they have all recorded the delay to A as infinity .
Program 4

#include<conio.h>

#include<iostream.h>

#define MAX 10

int n;

class router {

char adj_new[MAX], adj_old[MAX];

int table_new[MAX], table_old[MAX];

public:router()

{ for(inti=0;i<MAX;i++) table_old[i]=table_new[i]=99; }

void copy(){

for(inti=0;i<n;i++) { adj_old[i] =adj_new[i];table_old[i]=table_new[i];}}

int equal() {

for(inti=0;i<n;i++) if(table_old[i]!=table_new[i]||adj_new[i]!=adj_old[i])

return 0;

return 1;}

void input(int j) {

cout<<"Enter 1 if the corresponding router isadjacent to router" <<(char)('A'+j)<<" else enter 99: "<<endl<<" ";

for(inti=0;i<n;i++) if(i!=j) cout<<(char)('A'+i)<<" ";

cout<<"\nEnter matrix:";

for(i=0;i<n;i++) { if(i==j)table_new[i]=0;

else cin>>table_new[i];adj_new[i]= (char)('A'+i); }cout<<endl;}

voiddisplay(){cout<<"\nDestination Router: ";

for(inti=0;i<n;i++) cout<<(char)('A'+i)<<" "; cout<<"\nOutgoing Line: ";

for(i=0;i<n;i++) cout<<adj_new[i]<<" "; cout<<"\nHop Count: "; for(i=0;i<n;i++) cout<<table_new[i]<<" "; } voidbuild(int j) { for(inti=0;i<n;i++) for(intk=0;(i!=j)&&(k<n);k++) if(table_old[i]!=99) if((table_new[i]+r[i].table_new[k])<table_new[k]) {table_new[k]=table_new[i]+r[i].table_new[k];adj_new[k]=(char)('A'+i); }}} r[10];voidbuild_table() { inti=0, j=0; while(i!=n) { for(i=j;i<n;i++) {r[i].copy();r[i].build(i);} for(i=0;i<n;i++)if(!r[i].equal()) {j=i; break;}}}

voidmain() {

clrscr()

;cout<<"Enter the number the routers(<"<<MAX<<"): ";

cin>>n;

for(inti=0;i<n;i++) r[i].input(i);

build_table();

for(i=0;i<n;i++) {

cout<<"Router Table entries for router "<<(char) ('A'+i)<<":-";

r[i].display();

cout<<endl<<endl;}

getch();}

OUTPUT
Enter the number the routers: 5

Enter 1 if the corresponding is adjacent to router A else enter 99:

B C D E

Enter matrix:1 1 99 99

Enter 1 if the corresponding is adjacent to router B else enter 99:

A C D E

Enter matrix:1 99 99 99

Enter 1 if the corresponding is adjacent to router C else enter 99:

A B D E

Enter matrix:1 99 1 1

Enter 1 if the corresponding is adjacent to router D els eenter 99:

A B C E

Enter matrix:99 99 1 99

Enter 1 if the corresponding is adjacent to router E else enter 99:

A B C D

Enter matrix:99 99 1 99

Router Table entries for router A

Destination Router: A B C D E

Outgoing Line: A B C C C

Hop Count: 0 1 1 2 2

Router Table entries for router B

Destination Router: A B C D E

Outgoing Line: A B A A A

Hop Count: 1 0 2 3 3

Router Table entries for router C

Destination Router: A B C D E

Outgoing Line: A A C D E

Hop Count: 1 2 0 1 1

Router Table entries for router D

Destination Router: A B C D E

Outgoing Line: C C C D C

Hop Count: 2 3 1 0 2

Router Table entries for router E

Destination Router: A B C D E

Outgoing Line: C C C C E

Hop Count: 2 3 1 2 0
Command for dos: tracert 68.180.206.184

Practical 5

Problem Statement :Write a program for spanning tree algorithm (Kruskal’s/Prim’s) to find loop less path

Theory :A spanning tree of a connected graph is its connected acyclic sub graph (i.e., a tree) that contains all the vertices of the graph such that there is exactly one path between each pair of nodes. There may be several spanning tree for a directed graph. The minimum one can found using the Prim’s algorithm.
 Prim’s algorithm constructs a minimum spanning tree through a sequence of expanding sub trees. The initial sub tree in such a sequence consists of a single vertex selected arbitrarily from set V of graph vertices. On each iteration, we expand the current tree in the greedy manner by simply attaching to it the nearest vertex not in that tree. (By nearest vertex, we mean a vertex not in the tree connected to a vertex in the tree by an edge of the smallest weight. Ties can be broken arbitrarily.) the algorithm stops when all the graphs vertices have been included in the tree being constructed. Since the algorithm expands a tree by exactly one vertex on each iteration s, the total number of such iterations is n-1, where n is number of vertices in graph. The tree generated by the algorithm is obtained as the set of edges used for tree expansions.

Algorithm:
1.Start
2.Initialize the V T= {v0} sub graph with any vertex. This vertex is called as root.
3.Initialize the set of edges as null set.
4.for i = 1 to n-1

Find a minimum weighted edgee*= (v*,u*) among all edges (v,u) such that v is in VT and u is in

V-VT
VT←VTU {u*}

ET←ETU {e*}
5.Stop

Program 5

#include <stdio.h>

#include <conio.h>

#define MAX 10

prims(int cost[MAX][MAX],int n,int source)

{ int d[MAX], visited[MAX], nele[MAX], i, sum=0, j, u, min;

for(i=0;i<n;i++) {

d[i]=cost[source][i];visited[i]=0;nele[i]=source;
}

visited[source]=1;

for(i=0;i<n;i++) {min=99;

for(j=0;j<n;j++)

if((d[j]<min)&&(!visited[j])) {min=d[j];u=j;}

visited[u]=1;

for(j=0;j<n;j++)

 if((cost[u][j]<d[j])&&(!visited[j])) {d[j]=cost[u][j];

nele[j]=u;}}

printf("The following edges have been selected.\n");

for(i=0;i<n;i++)

{printf("%d - %d = %d\n", i, nele[i], cost[i][nele[i]]);

sum+=cost[i][nele[i]];

}

printf("Total cost is %d\n",sum);

return sum;}

void main()

{ int cost[MAX][MAX];

int n,i,j;clrscr();

printf("Enter the no. of vertices : ");

scanf("%d",&n); printf("Enter the cost adjacency matrix (Enter 99 whenedge is missing) :\n");

for(i=0;i<n;i++)

for(j=0;j<n;j++)scanf("%d",&cost[i][j]);

printf("Enter the source vertex : ");

scanf("%d",&source);

prims(cost,n,1);

getch();}

Output

Enter the no. of vertices : 4

Enter the cost adjacency matrix (Enter 99 when edge ismissing) :
0 2 3 992 0 99 13 99 0 499 1 4 0

Enter the source vertex : 1

The following edges have been selected.

0 - 1 = 2

1 - 1 = 0

2 - 0 = 3

3 - 1 = 1
Total cost is 6

EXPERIMENT 6

Problem Statement :Using TCP/IP sockets, write a client-server program to make client sending the file name and the server to send back the contents of the requested file if present.
Algorithm (Client Side)
1.Start
.2.Create a socket using socket() system call.
3.Connect the socket to the address of the server using connect() system call.

.4.Send the filename of required file using send() system call.
5.Read the contents of the file sent by server by recv() system call.
6.Stop.
Algorithm (Server Side)
1.Start.
2.Create a socket using socket() system call.
3.Bind the socket to an address using bind() system call.
4.Listen to the connection using listen() system call.
5.accept connection using accept()
6.Receive filename and transfer contents of file with client.
7.Stop
Program 6

/*Server*/

#include<sys/types.h>

#include<sys/socket.h>

#include<netinet/in.h>

#include<sys/stat.h>

#include<unistd.h>

#include<stdlib.h>

#include<stdio.h>

#include<fcntl.h>

int main(){

 int cont,create_socket,new_socket,addrlen,fd;

intbufsize = 1024;

char*buffer = malloc(bufsize);

charfname[256];

structsockaddr_in address;

if((create_socket = socket(AF_INET,SOCK_STREAM,0)) > 0)

printf("The socket was created\n");
address.sin_family = AF_INET;
address.sin_addr.s_addr = INADDR_ANY;
address.sin_port = htons(15000);
if(bind(create_socket,(struct sockaddr *)&address, sizeof(address)) == 0)
printf("Binding Socket\n");listen(create_socket,3);
addrlen =sizeof(struct sockaddr_in); new_socket = accept(create_socket,(struct sockaddr*)&address,&addrlen);
if(new_socket > 0)
printf("The Client %s is Connected...\n",inet_ntoa(address.sin_addr));
recv(new_socket,fname, 255,0);
printf("A request for filename %s Received..\n", fname);
if((fd=open(fname, O_RDONLY))<0){perror("File Open Failed"); exit(0);}
 while((cont=read(fd, buffer, bufsize))>0) {send(new_socket,buffer,cont,0);}
printf("Request Completed\n");close(new_socket);
returnclose(create_socket);}
/*Client*/
#include<sys/socket.h>
#include<sys/types.h>
#include<netinet/in.h>
#include<unistd.h>
#include<stdlib.h>
#include<stdio.h>
int main(int argc,char *argv[]) {
int create_socket; int bufsize = 1024;
char*buffer = malloc(bufsize);
charfname[256];
 structsockaddr_in address;

if((create_socket = socket(AF_INET,SOCK_STREAM,0)) > 0)

printf("The Socket was created\n");

address.sin_family = AF_INET;

address.sin_port = htons(15000);

inet_pton(AF_INET,argv[1],&address.sin_addr);

if(connect(create_socket,(structsockaddr *) &address, sizeof(address)) == 0)

printf("The connection was accepted with the server%s...\n",argv[1]);

printf("Enter The Filename to Request : ");

scanf("%s",fname);send(create_socket, fname, sizeof(fname), 0);

printf("Request Accepted... Receiving File...\n\n");

printf("The contents of file are...\n\n");

while((cont=recv(create_socket, buffer, bufsize, 0))>0) {write(1, buffer, cont);}

printf("\nEOF\n");

return close(create_socket);

}

Output (Server)

[root@localhost CN Lab] ./s.o

Socket Created..

Binding Socket..

Now Listening for Request..

The Client 127.0.0.1 is trying to connect…

A request for filename alpha received..

Requested completed..

[root@localhost CN Lab]
Output (Client)

[root@localhost CN Lab] ./c.o 127.0.0.1

Socket Created..

Connetion is accepted by 127.0.0.1 ..

Enter File Name to Request : alpha

Requestion for file alpha.. Request accepted. Receiving

file…

The contents of file are :-

This a demo of client server using Sockets
EXPREMENT NO-7

Problem Statement :

Write a program for simple RSA algorithm to encrypt and decrypt the data. Theory Cryptography has a long and colorful history. The message to be encrypted, known as the plaintext, are transformed by a function that is parameterized by a key. The output of the encryption process, known as the cipher text, is then transmitted, often by messenger or radio. The enemy, or intruder, hears and accurately copies down the complete cipher text. However, unlike the intended recipient, he does not know the decryption key and so cannot decrypt the cipher text easily. The art of breaking ciphers is called

cryptanalysis

The RSA algorithm can be used for both public key encryption and digital signatures. Its security is based on the difficulty of factoring large integers.

Algorithm
1.Generate two large random primes, P and Q, of approximately equal size.

2.Compute N= PxQ

3.Compute Z= (P -1) x (Q-1).

4.Choose an integer E , 1 < E < Z , such that GCD (E, Z) =

15.Compute the secret exponent D, 1 < D< Z , such that E xD≡ 1 (mod Z)

6.The public key is (N , E) and the private key is (N , D).

 Note: The values of P ,Q, and Z should also be kept secret.

The message is encrypted using public key and decrypted using private key.

PROGRAM -7

#include <stdio.h>

#include <string.h>

#include <conio.h>

#include <math.h>

int mult(unsigned int x,unsigned int y,unsigned int n) { unsigned long int k=1; int j;

for(j=1; j<=y; j++) k = (k * x) % n; return(unsigned int) k; }

void main () {

char msg[100]; unsigned int pt[100], ct[100], n, d, e, p, q, i;

printf("Enter message : ");

gets(msg);

//strcpy(pt, msg);

for(i=0;i<strlen(msg);i++)pt[i]=msg[i];n = 253; d = 17; e = 13;

printf("\nCT = ");

 for(i=0; i<strlen(msg); i++) ct[i] = mult(pt[i], e,n);

for(i=0; i<strlen(msg); i++)

printf("%d ", ct[i]); printf("\nPT = ");

for(i=0; i<strlen(msg); i++)

 printf("%c", pt[i]);

 for(i=0; i<strlen(msg); i++) pt[i] = mult(ct[i], d,n) ;}

Output

Enter message : alpha

CT = 113 3 129 213 113

PT = alpha
PARCTICAL 8

Problem Statement : Write a program for Hamming Code generation for error detection and correction
Theory : Hamming codes are used for detecting and correcting single bit errors in transmitted data. This requires that 3 parity bits (check bits) be transmitted with every 4 data bits. The algorithm is called A(7, 4) code, because it requires seven bits to encode 4 bits of data.

Eg:Bit String Parity Bit Verification
000 0 0 + 0 + 0 + 0 = 0
001 1 0 + 0 + 1 + 1 = 0
010 1 0 + 1 + 0 + 1 = 0
011 0 0 + 1 + 1 + 0 = 0
100 1 1 + 0 + 0 + 1 = 0
101 0 1 + 0 + 1 + 0 = 0
110 0 1 + 0 + 1 + 0 = 0
111 1 1 + 1 + 1 + 1 = 0

Program 8
#include<iostream.h>

#include<conio.h>

#include<stdlib.h>

#include<stdio.h>

char data[5];

int encoded[8], edata[7], syndrome[3];

int hmatrix[3][7]= { 1,0,0,0,1,1,1,

0,1,0,1,0,1,1,

0,0,1,1,1,0,1};

char gmatrix[4][8]={"0111000", "1010100", "1100010","1110001"};

void main() {

int i,j;

clrscr();

cout<<"Hamming Code --- Encoding\n";

cout<<"Enter 4 bit data : ";

cin>>data;

cout<<"Generator Matrix\n";

for(i=0;i<4;i++)

cout<<"\t"<<gmatrix[i]<<"\n";

 cout<<"Encoded Data : ";

 for(i=0;i<7;i++)

 { for(j=0;j<4;j++)

encoded[i]+=((data[j]-'0')*(gmatrix[j][i]-'0'));

 encoded[i]=encoded[i]%2;

cout<<encoded[i]<<" ";}

cout<<"\nHamming code --- Decoding\n";

cout<<"Enter Encoded bits as received : ";

for(i=0;i<7;i++) cin>>edata[i];

 for(i=0;i<3;i++) { for(j=0;j<7;j++)

syndrome[i]=syndrome[i]+(edata[j]*hmatrix[i][j]);syndrome[i]=syndrome[i]%2;}

for(j=0;j<7;j++)

if((syndrome[0]==hmatrix[0][j])&&(syndrome[1]==hmatrix[1][j])&&(syndrome[2]==hmatrix[2][j]))

break;

if(j==7)

cout<<"Data is error free!!\n";

else{

cout<<"Error received at bit number "<<j+1<<" of the data\n";edata[j]=!edata[j];

cout<<"The Correct data Should be : ";

 for(i=0;i<7;i++)

cout<<edata[i]<<" ";

}}}

Practical 9

Problem Statement: Write a program for congestion control using Leaky bucket algorithm.
Theory :The congesting control algorithms are basically divided into two groups: open loop and closed loop. Open loop solutions attempt to solve the problem by good design, in essence, to make sure it does not occur in the first place. Once the system is up and running, midcourse corrections are not made. Open loop algorithms are further divided into ones that act at source versus ones that act at the destination .In contrast, closed loop solutions are based on the concept of a feedback loop if the reis any congestion. Closed loop algorithms are also divided into two sub categories: explicit feedback and implicit feedback. In explicit feedback algorithms, packets are sent back from the point of congestion to warn the source. In implicit algorithm, the source deduces the existence of congestion by making local observation, such as the time needed for acknowledgment to come back. The presence of congestion means that the load is (temporarily) greater than the resources (in part of the system) can handle. For subnets that use virtual circuit internally, these methods can be used at the network layer. Another open loop method to help manage congestion is forcing the packet to be transmitted at a more predictable rate. This approach to congestion management is widely used in ATM networks and is called

traffic shaping

.The other method is the leaky bucket algorithm. Each host is connected to the network by an interface containing a leaky bucket, that is, a finite internal queue. If a packet arrives at the queue when it is full, the packet is discarded. In other words, if one or more process are already queued, the new packet is unceremoniously discarded. This arrangement can be built into the hardware interface or simulate d by the host operating system. In fact it is nothing other than a single server queuing system with constant service time.

[image: image3.png]
PROGRAM 9

#include<iostream.h>

#include<dos.h>

#include<stdlib.h>

#define bucketSize 512

#include<conio.h>

void bktInput (int a,int b)

{ if(a>bucketSize)

cout<<"\n\t\tBucket overflow";

else{

delay(500);

while(a>b)

{cout<<"\n\t\t"<<b<<" bytes outputted.";

a-=b;

delay(500);}

if(a>0)

cout<<"\n\t\tLast "<<a<<" bytes sent\t";

cout<<"\n\t\tBucket output successful";}}

void main()

{ int op, pktSize;

randomize();

cout<<"Enter output rate : ";

cin>>op;

for(int i=1;i<=5;i++)

{ delay(random(1000));

pktSize=random(1000);

cout<<"\nPacket no "<<i<<"\tPacket size = "<<pktSize;

bktInput(pktSize,op);

getch();

}}

MTU

Trailer

IP Datagram

Header

