
Discrete Math Labs
Kate McGivney and Doug Ensley

kgmcgi@ship.edu and deensl@ship.edu
Shippensburg University

Lab 1. Introduction to Maple for Discrete Math

Lab 2. Sequences

Lab 3. Recursion and Induction

Lab 4. Introduction to Sets

Lab 5. Using Maple for Counting

Lab 6. Combinatorial Equivalence

Lab 7. Permutations and Combinations

Lab 8. More on sets and permutations

Lab 9. Recursive counting

Lab 10. Probability Simulations: The Birthday Problem

Lab 11. Probability Simulations: Poker Hands

Lab 12. Baseball Best-of-5 Series – Experimental Probabilities

Lab 13. Baseball – Binomial Probability

Lab 14. Introduction to Expected Value

Lab 15. Expected Value Problems

Lab 16. One and One

Lab 17. Binary Relations: Influence

Lab 18. Properties of Relations

Discrete Math Labs

2

Lab 1. Introduction to Maple for Discrete Math

Part 1. Maple syntax: basics, plotting and help files
Maple is a computer algebra system used in industry, science,
engineering, and, of course, many of your math courses at
Shippensburg. Like any good computer application, there are a few little
idiosyncrasies to get used to (like "Maple requires each command to end
with ; or :" and "Maple is case-sensitive"). Once you get used to it, I
hope you will find Maple to be an invaluable tool in all of your
mathematical pursuits.

Put your cursor anywhere within the Maple input, and hit the Enter key.
> 1 + 2 + 3^2;

(Note that with the newest version of Maple ending a line with a
semicolon is now optional.)

One fun thing you can do in Maple is compute LARGE numbers. Ever
wonder how many digits 21,000,000 has? Me too! You might regret it, but
if you feel adventurous, put your cursor on the next line and hit Enter.
> 2^1000000;

Ok, it was a mistake to execute that last command. Since we only
wanted to know the length of this large number, we could have instead
given a name to 21,000,000, and then asked Maple how long the resulting
number was. The trick is to not let Maple show the answer to 21,000,000 as
an interim step. We can do this (i.e., ask Maple to keep an answer to
itself) by ending the line with a colon instead of a semicolon. For
example, execute the next two lines:
> n := 2^1000000:
> length(n);

We used a colon after the first line because we did not want to see the
result of that command.

Notice that the command "n := 2^1000000" (that's a colon followed by
an equal sign with no space in between) assigned the value 21,000,000 to
the variable n. Assignments like this come in handy any time you want
to refer back to an expression later or when you want to keep
expressions as simple as possible. For example, the following assigns
the expression 2x to the name f, and the number 2 to the name a.
> f := 2^x;
> a := sqrt(2);

Discrete Math Labs

3

Maple allows you to find a floating point evaluation by right clicking on

the output 2:=a , and choosing the Approximate command followed
by the number of decimal points you would like to approximate to. Try
this.

Another pretty natural thing to want to do is to substitute the number a
into the expression f. Most people think that this should be written f(a),
but if you try that below you will see that you get a weird answer, not
what you wanted.
> f(a);

There is a Maple command which does the correct thing though. To
remember it, you must remember that what you really want to do here
is to take the expression whose name is f and substitute for the letter x
in it the value of a. Here are two examples of the substitution
command.
> subs(x = a, f);
> subs(x = sqrt(2), x^2);

TRY THIS. Did you notice that Maple did not give you a number for
the answer in the first case above? Go back and approximate that
number using the pop-up menu from the right mouse click.

Plotting
One of the most useful features of Maple is its graphics capabilities. The
syntax for plotting is pretty simple. For example, try the following:
> plot(x^2 - 4x - 50,x=0..10);

So the plot command requires only two arguments: The first is the
expression to be plotted, the second gives the independent variable (x)
and the range of its values (0 to 10) over which the expression's graph
will be plotted. Before continuing, answer the following questions
about this graph.

TRY THIS. What is the exact value (to two correct decimal places) of
x shown where the graph crosses the x-axis? What will be the other
value of x where the graph crosses the x axis? (Think about it, and then
change the command accordingly to see if you are right.)

In Discrete Math, we often work with sequences, where for each entry
there is a next entry (and not necessarily any in between). In Maple, this

Discrete Math Labs

4

is called a "point plot," and it has a syntax very similar to the command
above.
> plot([[1,2], [3, 4], [2, 5]], x=0..4, y=0..5,
style = point, color=blue);

The square brackets above are what Maple uses to denote a "list". We
will visit this structure many times in this course.

Help files
The single most important thing to be able to do in Maple is USE THE
HELP FILES. This is because Maple has more capabilities than can
ever be addressed in a single course, so you are best off learning how to
figure out how to make Maple do any new thing you want through
judicious use of its built-in help files. You can get into the help files
through the Help Browser in the menus, but it is often hard to find
what you want there. A better thing to do is to type ? followed by a
command name This brings up the specific help file for the command
name which includes syntax, examples and related commands. For
example, suppose we want to compute the average value of the first 100
positive perfect square numbers (1, 4, 9, 16, etc.). To do this we need to
add up the first 100 perfect squares and divide by 100. Start with asking
for help with "add" with the command line below, and then try to figure
out how to get the answer to this question.
> ?add

TRY THIS. The average of the first 100 positive perfect squares is
3383.5, which is not a whole number. Find three values of n so that the
average value of the first n positive perfect squares is a whole number.
What do your values have in common?

Part 2. Functions
One thing that computers force you to do is to be consistent with your
choice of defined structures. We saw above that we got gibberish when
we defined an expression f and tried to compute f(a). Let's see it again
here:
> f := 2^x;
> f(3);

We solved the problem before by pointing out that we are really trying
to "substitute 3 for x in f" and so we used the appropriate subs
command to do what we meant to do. The math notation f(3) is
reserved for use when f is a function, not an expression. There is a
difference as we shall see. To define g to be the function that takes a

Discrete Math Labs

5

number x as input and returns the number 2x as output, we make the
following assignment:
> g := x -> 2^x;

Note that we can now use functional notation to refer to putting a
number or expression as input into a function definition.
> g(3);
> g(p-1);

This type of definition is appropriate only when we have an algebraic
expression (i.e., a closed formula) for the numbers we are trying to
generate. We have seen in Section 1.2 however, that it is often easier to
find a recursive formula instead. We finish this introduction by
showing how to implement such a description in Maple.

Part 3. Procedures
Maple is actually a fully-supported programming language which
happens to have extensive built-in mathematics functions and symbolic
algebra capabilities. Instead of being a compiled language, Maple is
interpreted, which means that errors are checked as the commands are
being executed. Consequently, Maple's error messages are not as
helpful as you might be used to.

Here is an example of a procedure that simply performs the same task
as the function g above.
> g := proc(x)
 RETURN(2^x)
end;
> g(3);
> g(p-1);
The procedure below is intended to compute entries in the sequence 3,
7, 11, 15, ... in which each term is 4 more than the previous term. Write
a recursive description of this sequence first, and then try to see how
each component of your definition is realized in the procedure below.
(Note: To get the input spread over several lines, I simply held the shift
key down while hitting Enter at the end of the first three lines, and then
hit Enter alone after the fourth line to execute the entire block.)
> a := proc(n)
option remember:
if (n < 2) then RETURN(3) else RETURN(a(n-1) +
4) fi
end;
> a(1);
> a(2);

Discrete Math Labs

6

> a(3);
> a(4);
> a(5);

We conclude this introduction by presenting one more command that
allows us to see many values of a sequence, whether defined by
procedure or function, so that we can investigate its patterns. The
command seq creates a list of numbers according to a rule over a
specified range of input numbers. For example, the following command
lists the first five values of the sequence a that we computed above one
at a time.
> seq(a(i), i=1..5);

And the next command lists the first ten positive perfect squares:
> seq(i^2, i=1..10);

TRY THIS. Alter the above definition of a so that you get each of the
following sequences. Use the seq command to check.
• 1, 3, 7, 15, 31, ...
• 2, 6, 10, 14, 18, ...
• 2, 5, 9, 14, 20, ...

Discrete Math Labs

7

TI-83 Investigation: Large Integers
Discrete Math includes the analysis of finite objects. One of the goals of
this analysis is the ability to predict the size of finite structures. This
goal is often encountered in computer science where an entire
enterprise might be restricted by some limit on time, storage or display
space. A very simple example of this can be seen by considering the
largest integer built from a specific finite process that can be displayed
on a calculator.

Example. Use the fact that log102 ≈ 0.30103 to determine the number
of digits in 21000?

Solution. Since log102 ≈ 0.30103 means that 100.30103 ≈ 2, it follows
that 21000 ≈ (100.30103)1000 = 10301.03. We can conclude that 21000 is a 302-
digit number.

Problem 1. What is the largest power of 2 that can be displayed on a 10
digit TI-83 calculator? Use logarithms to predict the answer and then
use your calculator to check.

Example. 100! cannot be calculated on a 10-digit TI-83 calculator.
How many digits does 100! have?

Solution. Since log10(a·b) = log10(a) + log10(b), it follows that
log10(100·99·98·97·…) = log10(100)+ log10(99)+ log10(98)+… Enter
the following into your calculator, using the CATALOG button for the
sum and seq commands: sum(seq(log(i),i,1,100))

Problem 2. How many digits does C(1000, 500) have?

Discrete Math Labs

8

Lab 2. Sequences

In this lab activity we’ll use Maple to discover a closed formula given a
recursive sequence and vice-versa.

Consider the sequence an = an – 1 + (2n + 1) (for n >1) with a1 = 1.
Using the following Maple script, we can quickly see the first 20 terms
of this sequence.

a:=array(1...20):
a[1]:=1:
print(1,a[1]);
for i from 2 to 20 do
 a[i]:=a[i-1]+(2*i+1):
 print(i,a[i]);
od:

What do you think is the closed form for this sequence?

Check your conjecture by modifying the above script so that the closed
form replaces the recursive form.

For each of the following recursive sequences modify the above script
so that it produces the first 20 terms of each sequence. Next, make a
conjecture about the recursive sequence’s closed form. Check your
conjecture by modifying the script.

an = 4 an – 1 – 1 (for n >1) with a1 = 2.

Closed Form: ____________________________

an = 2 an – 1 + b (for n >1) with a1 = 1.

Closed Form: ____________________________

For each of the following sequences given in closed form, modify the
above script to produce the first 10 terms. Then make a conjecture as
to the sequence’s recursive form. Finally verify that your conjecture is
valid by modifying the script so that it contains the recursive form.

an = 3n + 1

Recursive form: ____________________________

Discrete Math Labs

9

an = 3n2 + n

Recursive form: ____________________________

an = 22n – 1 – 1

Recursive form: ____________________________

Discrete Math Labs

10

Lab 3. Recursion and Induction

We have seen a couple of examples already of recursive thinking. The
tool we will use to prove things about recursively defined structures is
called "the Principle of Mathematical Induction." This lab will illustrate
the connection while allowing you to practice the proof technique. You
will need Maple for the computer part and pencil and paper for the
writing part. It is also helpful to have a partner with whom you can talk
things through.

Enter the following new sequence definitions and then answer (among
yourselves) the questions that follow. (NOTE: To get a new line
without beginning Maple execution, hit "Shift Enter" at the end of the
line.)

> F := array(1..100):
 F[1] := 1;
 F[2] := 1;
 for n from 3 to 100 do
 F[n] := F[n-1]+F[n-2]
 end do;

> S := array(0..100):
 S[0] := 0;
 for n from 1 to 100 do
 S[n] := S[n-1] + n
 end do;

To see values of these new sequences, you simply ask Maple in much
the same way you would refer to the sequence entries with subscripts.
For example, execute the next few lines, and then once you've seen the
general syntax you can explore some more on your own. The problem
you should be investigating is simple:

Problem 1. Describe in words what F and S compute.
> F[3];
> F[4];
> F[5];
> S[2];
> S[3];
> S[4];

Discrete Math Labs

11

Problem 2. Copy the definition of S and edit it to create a new
recursively defined sequence called oddSum that given an input
(subscript) of n returns the sum of the first n odd numbers.

Problem 3. What problem that we worked on already is addressed by the
following recursively defined sequence?

> B := array(1..100):
 B[1] := 1:
 for n from 2 to 100 do
 B[n] := (B[n-1] + 2) mod n:
 if (B[n] = 0) then B[n] := n fi
 end do:

> print(B);

Discrete Math Labs

12

Lab 4. Introduction to Sets

In this activity we will explore various set operations. Given the
universal set U:={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15} use the
following Maple commands to generate random subsets A, B, and C of
size 3, 5, and 7, respectively.

> with(combinat, randcomb);
> randomize();
> U:={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
> A:=randcomb(U,3);
> B:=randcomb(U,5);
> C:=randcomb(U,7);

Use these randomly generated sets to determine the following.

• A ∪ B

• A ∩ B

• (A ∪ C) ∩ B

• A’

• A ∩ (B ∩ C)

• A – B

• A’ ∩ B

• P(A)

• A × B.

Next we’ll see how we can use Maple to check our answers.

To find the union of sets A and B, simply type
> A union B;

The intersection command is A intersect B;

To find the set A-B, type
> A minus B;

Maple does not have a built in “complement” command. How can you
use one of the above commands to find the complement?

Discrete Math Labs

13

The power set of a set A can be found by typing the following
commands:
> with(combinat, powerset);
> powerset(A);

Lastly, to find the Cartesian product of two sets, A and B, use the
following Maple commands.

> `union`(op(map(y -> map(x->[x,y],A),B)));

Randomly generate sets A, B, and C again. Answer the following
questions without Maple and then use Maple to check your answers.

• A ∪ B

• A ∩ B

• (A ∪ C) ∩ B

• A’

• A ∩ (B ∩ C)

• A – B

• A’ ∩ B

• P(A)

• A × B.

Are each of the following properties true or false? We’ll use Maple to
generate some conjectures. For those that are not true, provide a
specific counterexample.
1. A ∩ (B ∪ C) = (A ∩ B) ∪ C
2. A − (B ∪ C) = (A − B) ∪ (A − C)
3. P(A) ∪ P(B)= P(A ∪ B)

Discrete Math Labs

14

Lab 5. Using Maple for Counting
Maple has a combinatorics package that has many nice tools to help us
learn about counting. Execute the following command to load the
combinatorics package:
> with(combinat);

Don't forget that you can ask for help on any of these commands to
find out more about them. For example, we will use the permute
command, look at the help file by executing the following line. Once
you have looked it over, select "Close Help Topic" under the File menu,
and you will be returned to where you left.
> ?permute

So for example, if want to list all permutations of length 2 with entries
taken from {a, b, c, d}, we would use the following command:
> permute([a,b,c,d],2);

The command nops will count the number of items in any list for you.
So the command nops(permute([a, b, c, d], 2));
should return the number of permutations in the above list. Try it
below.

Problem 1. Draw a "game tree" with two branchings that generates the
above list. Can you see how the number of branches is related to the
number of permutations generated? Test your hypothesis by thinking
about the structure of the game tree for permute([a,b,c,d,e,f,g,h,i,j],2),
predicting the number of permutations that will be generated, and
testing your prediction using the nops command.

Unfortunately Maple does not have a similar command that generates
all ordered lists, so we have to write one. Execute the block of code
below to define the new command, orderedLists, which we will use next.
> orderedLists := proc(S,k)
local i, L:
L := NULL:
for i from 1 to nops(S) do
 L := L, seq(S[i],j=1..k)
od:
RETURN(permute([L],k))
end;
> orderedLists([a,b,c,d],2);

Discrete Math Labs

15

Problem 2. Draw a "game tree" with two branchings that generates the
above list. Can you see how the number of branches is related to the
number of ordered lists generated? Test your hypothesis by thinking
about the structure of the game tree for orderedLists([a,b,c,d,e,f,g,h,i,j],2),
predicting the number of ordered lists that will be generated, and testing
your prediction using the nops command.

Discrete Math Labs

16

Lab 6. Combinatorial Equivalence

Claim: The following two questions have the same answer.

o How many 2-element subsets of the set {1,2,3,4,5} are there?
o How many 3-element subsets of the set {1,2,3,4,5} are there?

Why is this? Use Maple to generate all possible 2-element and 3-
element subsets of {1,2,3,4,5}. Here is the appropriate command:

> choose([1,2,3,4,5],n);
where n is the size of the subset.

Based on the output, can you explain the answer to a beginning discrete
math student?

How many 2-element subsets of the set {1,2,3,4,5,6} are there?
How many 4-element subsets of the set {1,2,3,4,5,6} are there?

In general, explain why the number of k-element subsets of the set
{1, 2, 3, …, n} is always equivalent to the number of n – k element
subsets of the set {1, 2, 3, …, n}.

Claim: The following two questions have the same answer.

o How many ways are there to flip 3 heads in 5 tosses of a
coin?

o How many 3-element subsets of {1,2,3,4,5} are there?

We’ll use Maple to investigate why this is true.

In the first case, we want to determine the number of ways to flip 3
heads in 5 tosses. In other words, we want to determine the number of
ways to order 3 heads and 2 tails. Therefore the appropriate Maple
command is
> permute([H,H,H,T,T],5);
Generalize the previous result: The number of ways to flip k heads in n
tosses is the same as _____________________________.

Discrete Math Labs

17

Lab 7. Permutations and Combinations

In this lab we’ll develop a formula that relates the number of subsets
and the number of permutations that can be formed from n distinct
objects. Recall that the difference between subsets and permutations is
that in the first case we don’t care about the order of the entries and in
the second case we do.

Helpful counting discrete math Maple commands are bundled together.
To access these commands, type:
> with(combinat);

The Maple command permute(n,r) generates the permutations of
size r from a set of n distinct elements. Recall that our text used the
notation P(n, r) to represent the number of permutations of size r from
the set of n objects.

Execute permute(n,r); for the following choices of n and r.

n 3 3 3 3
r 0 1 2 3

What is P(n, r) in each case?

Next, we’ll compute the number of subsets of size r from a set of n
distinct elements. Since now we do not care about the order of the
entries, [1,2] and [2,1] are considered “equivalent”. Count the number
of subsets that arise in each of the above cases.

n 3

3 3 3

r 0
 1 2 3

Number of
Subsets

The Maple command choose(n,r) constructs the subsets of size r
that can be formed from n objects. Our text represents the number of
subsets of size r that can be formed from n objects by the notation
C(n, r).

n 3

3 3

Discrete Math Labs

18

r 0

2 3

P(n, r)

C(n, r)

Now let’s look at a slightly greater set, one that contains 4 distinct
entries. Use the permute(n,r) and the choose(n,r)
commands to find all permutations (subsets) of size r. Fill in the
number of permutations (subsets) for each choice of r in the following
table:

n 4

4 4 4 4

r 0

1 2 3 4

P(n, r)

C(n, r)

Can you use the previous tables to come up with a formula that relates
P(n, r) and C(n, r) ? Explain why this formula makes sense.

Discrete Math Labs

19

Lab 8. More on sets and permutations

In this lab we will explore the difference between the structures
permutations and sets. We will look at formulas for counting each
type of object, and then we will try some more sophisticated
investigations using the computers.

First execute the following command in order to load some helpful
Discrete Math-ish Maple commands.
> with(combinat);

Now compare the output of the following commands. How much
longer is the first output list than the second? Think of how you would
explain this precise difference to a classmate.
> permute(5,3);
> choose(5,3);

Technically, one of the above commands lists permutations and the
other lists sets. Since Maple uses the square brackets [and] for the
output in both, it is not obvious which is which. Can you tell based on
whether order matters or not?

In the text, we use the notation P(5,3) for the number of permutations
of length 3 with entries taken from {1,2,3,4,5}, and the notation C(5,3)
for the number of sets of size 3 with entries taken from {1,2,3,4,5}. (In
other words, C(5,3) counts 3-element subsets of {1,2,3,4,5}.) Using the
nops command (remember how it tells you how many things are in a
long list), compare P(7, 3) and C(7, 3). Is this what you expected?

We can now write (as we do in the text) formulas for P and C. We have
already talked about the theoretical basis for these in the last class, but
now we want to be sure we understand what P and C are counting and
how they are related. The following functions are not built into Maple
so you will have to define them before you ever use them.
> P := proc(n, k)
 RETURN(product(n-j, j=0..(k-1)))
end;
> C := proc(n, k)
 RETURN(P(n,k)/k!)
end;
> P(5, 3);
> C(5, 3);

Discrete Math Labs

20

Try this! Use the C and P functions we just defined to explore which of
the following statements are true.

(1) C(n, k) = C(n – 1, k) + C(n – 1, k – 1)
(2) P(n, k) = P(n – 1, k) + P(n - 1, k – 1)
(3) P(n, k) = n * P(n – 1, k – 1)
(4) C(n, 0) + C(n, 1) + C(n, 2) + ... + C(n, n) = 2n

The Binomial Theorem
One of the important ideas throughout the course is the fact that there
is great benefit in understanding many different answers to problems
because from that understanding comes the ability to tell how different
questions are related to one another.

The distributive law of multiplication over addition tells us that when
we expand (a0 + a1)*(b0 + b1) we form terms by choosing each
possibility from the first factor and each possibility from the second
factor and multiplying them together. The terms so formed are then
added together. Look at the expansion below to see if this makes sense:
> expand((a0 + a1)*(b0 + b1));
Now expand the following to see how the distributive law generalizes
when you multiply three things together.
> expand((a0 + a1)*(b0 + b1)*(c0+c1));

How many terms in the above expression have two "1"s in them? How
many terms with two "1"s will be in the expansion of
(a0 + a1)*(b0 + b1)*(c0 + c1)*(d0 + d1)? Check below.

The following question is related to the previous one by using powers
of 0 and 1 on a single variable x. (Look for the analogy to the previous
discussion.)

If we expand (x0 + x1) (x0 + x1) (x0 + x1), what will be the coefficient of
x2 ?
> expand((x^0 + x^1)^3);

How about in the expansion of (x0 + x1) (x0 + x1) (x0 + x1) (x0 + x1) ?

If we formally make an analogy to binary sequences in the comparable
expansions we will have explained ...
The Binomial Theorem. The coefficient of xk in the expansion of
(1 + x)n is C(n, k).

Discrete Math Labs

21

Pascal's Triangle
We can make a nice table of values by placing C(n, k) in Row n, Entry k
of our table. Since we have to allow for values like C(5, 0), we will think
of rows starting with "Entry 0" instead of "Entry 1," and in the same
spirit, we will call the top row, Row 0 rather than Row 1. In this
fashion, the values in the first three rows of our table will come from
the following:

> C(0,0);
> C(1,0);
> C(1,1);
> C(2,0);
> C(2,1);
> C(2,2);

These can be filled in our table in a triangular shape as shown below.
This is the first part of what is known as Pascal's Triangle.

(1) Fill in the next two rows of Pascal's Triangle.

(2) Express the visual pattern between rows of Pascal's Triangle in
words.

(3) Express the same pattern using the C notation.

(4) Make a conjecture about the sum of the values in Row n of Pascal's
Triangle.

(5) State your conjecture using the C notation.

Discrete Math Labs

22

Lab 9. Recursive counting
In this lab we will look at some recursive counting techniques and
implement them with recursive Maple programs. You will not have to
write code from scratch, but you will need to be able to read and modify
existing code.

Example 1. Why is P(n, k) = n * P(n – 1, k – 1)?
Consider the question, "How many permutations of length k use entries
from {1, 2, ..., n}?" We know the answer is P(n, k), but let's see another
way to get this value.

To answer this, we can use a TWO-step decision process:
(1) Choose a first entry from {1, 2, ..., n}
(2) Fill in the remaining k - 1 entries with a permutation of length k - 1
using entries from the other n – 1 elements of the set

We can analyze this algorithm using the product rule: There are clearly
n choices for the first step, and by definition of P, there are
P(n – 1, k – 1) ways to do the second step. Hence by the product rule,
there are n * P(n – 1, k – 1) permutations generated by the algorithm.
Therefore this is the same thing as P(n, k).

Notice that this relationship does not help if k = 0, so it is also
necessary to specify that P(n, 0)= 1 for this recursive formula to make
sense.

The following Maple program implements this idea:
> P := proc(n, k)
option remember:
if (k = 0) then
 RETURN(1)
fi;
RETURN(n * P(n - 1, k - 1));
end;

(A) Compare P(6, 2) or P(10, 3) with the result we would get using our

regular formula from the text.

(B) We saw before that numbers like P(2, 5) make sense to ask about -

- they simply have a value of 0. (That is, there are 0 permutations
of length 5 with entries taken from {1, 2}.) Does the above
procedure deal with these unusual cases correctly? If not, how do
you fix it?

Discrete Math Labs

23

Example 2. Why is C(n, k)=C(n – 1,k)+C(n – 1,k – 1)?
Consider the question, "How many binary sequences of length n use
exactly k 1's?" We know the answer is C(n, k), but let's see another way
to get this value.

To answer this, we can use a TWO-step decision process:
(1) Choose a first entry from {0,1}
(2) Fill in the remaining n - 1 entries with a binary sequence of length n -
1.

The trouble is that the number of ways to do step 2 DEPENDS on
whether we took a 0 or a 1 in step 1, so to remedy this, we use cases:

CASE I. Suppose the first entry is a 0. In this case, there is one way to
do step 1, and then in step 2, we must be sure that our n - 1 digit binary
sequence has exactly k "1"s -- there are C(n – 1, k) ways to do step 2. By
the product rule, there are C(n – 1, k) binary sequences like this. (i.e.
with n digits, k of which are 1s, and starting with a 0).

CASE II. Suppose the first entry is a 1. In this case, there is one way to
do step 1, and then in step 2, we must be sure that our n – 1 digit binary
sequence has exactly k – 1 "1"s -- there are C(n – 1, k – 1) ways to do
step 2. By the product rule, there are C(n – 1, k – 1) binary sequences
like this. (i.e. with n digits, k of which are 1s, and starting with a 1).

Hence by the sum rule, there are C(n – 1, k) + C(n – 1, k – 1) binary
sequences generated by this algorithm. Therefore this is the same thing
as C(n, k).

Notice that this relationship does not help if k = 0 or if k > n, so it is
also necessary to specify that C(n, 0) = 1 and that C(n, k) = 0 if k > n
for this recursive formula to make sense.

The following Maple program implements this idea:
> C := proc(n, k)
option remember:
if (k = 0) then
 RETURN(1)
fi;
if (k > n) then
 RETURN(0)
fi;
RETURN(C(n - 1, k) + C(n - 1, k - 1));
end;

Discrete Math Labs

24

Compare the value of C(6, 3) and C(10, 2) with this procedure to what
you get from the formulas in our text.

Example 3. How many n digit binary sequences do
not have adjacent 1's?
Let b(n) represent this number. Obviously b(1) = 2 because both
possible binary sequences of length 1 fail to have adjacent 1's. On the
other hand, b(2) = 2 since only the sequences 00, 10 and 01 qualify.
What is b(3)? What is b(4)? Do you see a pattern?

Claim: The number of binary sequences of length n having no adjacent
1's is b(n – 1) + b(n – 2).

To see this, imagine the two step algorithm for forming binary
sequences of length n having no adjacent 1's: (1) Choose a first digit, (2)
choose the remaining digits as a binary sequence of length n – 1 without
adjacent 1's. The problem is that step (2) might not work when a 1 is
chosen in step (1), so once again, we break the problem into cases.

Case 1. If the first digit of the sequence is a 0, then there's 1 way to do
step (1) and b(n – 1) ways to do step 2. Hence there are b(n – 1) binary
sequences of length n having no adjacent 1's and beginning with a 0.

Case 2. If the first digit of the sequence is a 1, then the only allowable
sequences to use in step 2 are those that start with a 0. By the argument
in Case 1, there are b(n – 2) binary sequences of length n – 1 having no
adjacent 1's and beginning with a 0, so this is the number of ways to
complete step 2 in this case. This means there are b(n – 2) binary
sequences of length n having no adjacent 1's and beginning with a 1.

Adding the numbers for the two cases together gives us the number of
binary sequences of length n without adjacent 1's.
That is, b(n) = b(n – 1) + b(n – 1).

We can implement this in Maple as follows:

> b := proc(n)
if n=1 then RETURN(2) fi;
if n=2 then RETURN(3) fi;
RETURN(b(n-1)+b(n-2));
end;

Exercises.

Discrete Math Labs

25

(1) Modify the above argument to count the number of binary
sequences of length n which do not have THREE consecutive 1's.

(2) How many ordered lists of length 5 with entries from {1,2,3,4,5,6}
have entries summing to 20? (Hint: Let d(n, k) = the number of
ways to have a list of length n with entries summing to k, and show
that

d(n, k) = d(n-1, k-1) + d(n-1, k-2) + d(n-1, k-3)
+ d(n-1, k-4) + d(n-1, k-5) + d(n-1, k-6)

Implement this in Maple and compute d(5, 20).)

Discrete Math Labs

26

Lab 10. Probability Simulations: The Birthday
Problem

What is the probability that at least two of the 32 students in the class share the
same birthday?

The following script produces a random set of k values from a set of n
objects. We’ll use it to simulate the birthday for each of the 32 students.
What are n and k in this situation?
> randomize();
> randlist := proc(n,k)
 local i;
 RETURN(map(rand(1..n),[seq(i,i=1..k)]))
 end proc;

Simulate the birthday problem one time. Was there at least one match?

To get an estimate of the likelihood that there will be at least one match
we need to perform many simulations. Each group will now simulate
this experiment 20 times, keeping track of whether there was at least
one match each time. After everyone is done, we’ll pool our data to
determine the empirical probability that there’s at least one match.

To more easily determine whether or not there is a match, we’ll sort the
data each time. To perform the 20 simulations, type:

>sort(randlist(n,k));

Trial 1 2 3 4 5 6 7 8 9 10 11 12 13
Match?
Trial 14 15 16 17 18 19 20
Match?

Based on the pooled data, what is the empirical probability that there’ll
be at least one match?

Discrete Math Labs

27

TI – 83 Implementation of Lab 10

Problem 1: I’ll bet you $1 that at least 2 people from a randomly
chosen group of 5 were born in the same month. Do you want to take
the bet?

To simulate this experiment on the TI-83 use the randInt command:
MATH > PRB > randInt(1,12,5)

Problem 2: I’ll bet you $1 that at least 2 people from a randomly
chosen group of 32 have the same birthday. Do you want to bet?

To simulate this experiment on the TI-83 use the following commands:

MATH > PRB > randInt(1,365,35)
To quickly determine if there is a match, sort the data stored in L1

2nd Stat > OPS > 1: SortA(L1).

Discrete Math Labs

28

Lab 11. Probability Simulations: Poker Hands

In one version of Poker, each player gets a five-card hand of cards from a standard
deck. Here are a few types of poker hands:

Full House – A hand consisting of 3 cards of the same denomination and 2 cards of
the same denomination (i.e. 3 of a kind and a pair).
Pair– A hand consisting of exactly one pair of cards with the same denomination.

What is the probability of obtaining each of the above poker hands?

Again, we’ll use Maple to simulate. The appropriate command this time
is
with(combinat,randcomb);
cardDeck := {Ac,Ah,As,Ad, Kc,Kh,Ks,Kd,

Qc,Qh,Qs,Qd, Jc,Jh,Js,Jd, seq(i.c, i=2..10),

seq(i.h, i=2..10), seq(i.s, i=2..10), seq(i.d,

i=2..10)};

randcomb(cardDeck,5);

This returns the following:

{ }, , , ,Ah Qd 4 d 3 s 9 c
where Ah stands for ace of hearts, Qd stands for Queen of diamonds,

and so forth.

Simulate each game 20 times and keep track of your results in the

following tables.
Full House

Trial 1 2 3 4 5 6 7 8 9 10

Full House?

Trial 11 12 13 14 15 16 17 18 19 20

Full House?

Total number of full houses ________________

Discrete Math Labs

29

Pair

Trial 1 2 3 4 5 6 7 8 9 10
Straight?
Trial 11 12 13 14 15 16 17 18 19 20
Straight?

Total number of pairs ____________

We will now pool the data. Based on the pooled data, the empirical
probability of obtaining a full house is ___________ and the empirical
probability of obtaining a pair is ______________.

Discrete Math Labs

30

Lab 12. Baseball Best-of-5 Series – Experimental
Probabilities
The Baltimore Orioles and the Boston Red Sox are playing a best of 5
series. This means that whichever team is the first to win 3 games is the
winner of the series. Let’s first suppose that both teams are evenly
matched. Before doing any calculations, use your intuition to answer
the following questions:

What is the probability that the Orioles will sweep the Red Sox?

Is the series most likely to end in 3, 4, or 5 games?

On average, how long do you expect the series to last?

We’ll use Maple to help us simulate this best-of-5 series. The script is as
follows, where n = 2 and k = 5.

> randomize();
> randseries:=proc(n,k)
local i;
RETURN(map(rand(1..n),[seq(i,i=1..k)]))
end proc;

Let Orioles := 1 and Red Sox :=2. Note that the series doesn’t
necessarily go to 5 games; if Boston sweeps the Orioles (i.e. any
sequence that begins with 222) then the series is over in 3 games.
Execute the procedure 20 times and record your results in the following
table.

of games needed 3 4 5
Orioles win the
series

Boston wins the
series

Pool your data with the rest of the class.

What is the experimental probability that the Orioles will sweep the
series?

Discrete Math Labs

31

What is the experimental probability that Boston will sweep the series?
Is it most likely that the series will end in 3, 4, or 5 games?
What is the average number of games played?

TI – 83 Implementation of Lab 12

Problem 1: The Baltimore Orioles and the Boston Red Sox are playing
a best of 5 series. This means that whichever team is the first to win
three games is the winner of the series. Suppose that both teams are
evenly matched. What is the probability that the Red Sox win the
series in 3 games?

To simulate this experiment on the TI-83 use the randInt command:
MATH > PRB > randInt(1,2,5) Let 1:=Red Sox and 2:= Orioles.

Problem 2: Suppose that the Red Sox have a 70% chance of beating
the Orioles each time that they play. How could you modify the above
command for this situation?

Discrete Math Labs

32

Lab 13. Baseball – Binomial Probability

Assume that Ken Griffey, Jr. gets a hit with probability 1/3. What is
the probability that in 100 plate appearances, Junior gets exactly 33 hits?
Without doing any calculations, provide an educated guess.

The following procedure calculates the probability that Junior gets on
base exactly k times in n attempts if he always gets a hit with probability
p.
> with(combinat,numbcomb);
> prob:=proc(n,k,p)
 numbcomb(n,k)*p^k*(1-p)^(n-k)
 end proc;

Use the “prob” procedure to determine the probability that Junior gets
on base exactly 33 times in 100 plate appearances. How close is the
answer to your guess above? Reconcile any differences.

What is the probability that in 100 plate appearances Junior gets on base
between 31 and 35 times? Use the following to calculate this
probability.

> sumprob:=proc(n,p)
 sum(‘numbcomb(n,k)*p^k*(1-p)^(n-k)’,
’k’=31..35);
 end proc;

Modify the above script to answer the following questions.

What is the probability that in 100 plate appearances Junior gets on base
between 27 and 37 times?

What is the probability that in 100 plate appearances Junior gets on base
between 23 and 43 times?

What is the probability that in 100 plate appearances Junior gets on base
between 13 and 53 times?

Discrete Math Labs

33

Lab 14. Introduction to Expected Value

In this lab we’ll investigate the topic of expected value. Expected value
is a “long-term” relative average.

Problem 1: Suppose that you were to roll a fair die from now until the
end of time, what do you think the average of all of these rolls would
be? We’ll use Maple to simulate this event to see if our conjecture is
correct.

We could begin to get an estimate of this average by having 10 students
each independently flip a coin 5 times and record their individual
average. The following Maple code simulates this experiment. Each
individual’s average follows the listing of their 5 rolls.

>dice:=proc(k)
local i, l, L, avg;
avg:=L->sum(L[i],i=1..nops(L))/nops(L);

for l from 1 to 10 do:
L:=map(rand(1..6),[seq(i,i=1..k)]);
print(L,evalf(avg(L),4));
end do;
end proc;

Try the experiment again with 100 rolls per individual. Note that k
represents the number of times that each individual rolls the die. Based
on these results, what is your best guess as to the expected value of a
fair die? Since 5 rolls does not constitute rolling the die “for a long
time”, let’s repeat the experiment with each student rolling the die 20
times. What’s your best guess estimate of the expected value now?
(You may want to change the print command to
print(evalf(avg(L),4);)
Continue increasing the number of individual rolls until you are fairly
certain that you know the expected value of the fair die.

Problem 2: Suppose now that we are interested in find the expected
value of the sum of a pair of fair dice. The following code may be used
to simulate this scenario.

twoDice:=proc(n)
local f,a,b,j,l,S;

Discrete Math Labs

34

f:=rand(1..6);
for j from 1 to 10 do:
 Sm:=0;
 for l from 1 to n do:
 a:=f();
 b:=f();
 S:=S + (a+b);
 end do;
 print(evalf(S/n));
 end do;
end proc:

Note that n represents the number of pairs of rolls that each individual
rolls. Start with each individual rolling a pair of fair dice 5 times. Based
on these results, what is your best guess as to the expected value of the
sum of a pair of fair dice? Since 5 rolls does not constitute rolling the
die “for a long time”, let’s repeat the experiment with each student
rolling the pair of dice 20 times. What’s your best guess estimate of the
expected value now? Continue increasing the number of times that the
pair of dice is rolled until you are fairly certain as to the expected value
of the sum of two fair six-sided dice.

Extension Problems:

1) Modify the above code to simulate rolling three fair-four sided dice.
2) Modify the above code to simulate finding the expected value of the
product of two fair six-sided dice.

Discrete Math Labs

35

Lab 15. Expected Value Problems

Suppose five cards including an Ace are drawn from a standard deck.
(If the five cards do not include an Ace, they are replaced and the deck
is reshuffled.) What is the expected number of aces among the five
cards?

We’ll approach this problem using simulated data first. Begin by using
Maple to randomly select 5 cards from a fair deck of 52.

The following script generates 50 5-card hands from a fair deck of 52.

>with(combinat, randcomb);
>carddeck:={Ac, Ac, As, Ad, Kc, Kh, Ks, Kd,
Qc, Qh, Qs, Qd, Jc,Jh,Js,Jd,seq(i.c,i=2..10),
seq(i.h,i=2..10),seq(i.s,i=2..10),
seq(i.d,i=2..10)};
>for i from 1 to 50 do
sort(randcomb(carddeck,5),lexorder);
end do;

Remember to eliminate hands that do not to contain at least one ace.
What is the average number of aces based on your simulations?

Pool your data with four friends. What is the average number of aces
based on your groups’ data?

Suppose we were to simulate this experiment infinitely many times.
What is your guess as to the average number of aces in a 5-card hand?

Now solve this problem using theoretical probabilities.

How close did your experimental guess come to the theoretical
probability?

Discrete Math Labs

36

Lab 16. One and One

When a player is fouled in the game of basketball he or she sometimes
gets what’s called a “1-and-1 free-throw”. This means if the player
makes the shot, he/she scores a point and gets to shoot again. If the
second basket is made, the player scores an additional point. On the
other hand, if the player misses the first shot, he/she gets 0 points and
does not get to try again.

1) Suppose that Carlos is a pretty good free-throw shooter –

he’s known to make 60% of the shots that he attempts.
When Carlos goes to the line for a 1-and-1, is he most likely
to score 0, 1, or 2 points? Explain.

2) We’ll use Maple to simulate this problem. The following

code simulates this situation 30 times. What is an appropriate
choice for n ? ?k

>oneandone:=proc(n,k)
 local i, l;
 randomize();
 for l from 1 to 30 do:
 print((map(rand(1..n),[seq(i,i=1..k)])));
 end do;
 end proc;

Fill in the following table:

Number of Points

0 1 2

Tally

Total

Discrete Math Labs

37

Is Carlos most likely to score 0, 1, or 2 points?

3) Use the simulation data in question 2 to find the average
number of points that Carlos scored. In a sentence, give the
practical significance of this number.

4) Based on your simulation data, what is the likelihood that

Carlos will score 2 points? 1 point? 0 points? (These are the
experimental probabilities.)

Outcome 0 1 2

Experimental
Probability

5) Use a tree diagram to compute the theoretical probability that

Carlos scores 0 points, 1 point, or 2 points in a 1-and-1 and
then complete the chart below.

Outcome Theoretical Probability
0

1

2

Discrete Math Labs

38

Lab 17. Binary Relations: Influence
As part of its campaign to step up a recycling project, a group wants to
entertain the most influential members of the city council. After some
investigation, the firm’s perception of pairwise influence among council
members is as shown below. (An arc goes from member x to member y
if x appears to influence y.)

Open the Maple file relations.mw, and select Execute Worksheet from
the Edit menu. Save your worksheet using a different file name so that
you do not write over this original file.
Define the above relation using the following command:
> R := [[
[1,2],[1,3],[1,4],[2,1],[2,5],[3,2],[3,4],[4,1
], [4,5],[5,3]], 5];

Compare the way that Maple draws the arrow diagram with the picture
above.
> drawGraph(R);
Write the adjacency matrix M corresponding to this graph.

Check your answer above using the following Maple command:
> M := listToMatrix(R);

Suppose we want the matrix that shows indirect influence. Person x has
indirect influence over person z if person x has direct influence over
person y and person y has direct influence over person z. Use Maple to

Discrete Math Labs

39

evaluate the matrix M2, and explain what this matrix has to do with
indirect influence.

> evalm(M^2);

Compare this matrix to the adjacencly matrix for the composite relation
R o R.

> drawgraph(compose(R,R));
> evalm(compose(R,R));

What does the matrix M3 mean in terms of the influence relation in this
problem? How is this matrix related to the composite relation R o R o
R?

Discrete Math Labs

40

Lab 18. Properties of Relations

The transitive, symmetric and reflexive properties are important when
studying relations. Given a relation R, we are interested in finding the
smallest relation S that includes all of R and also has one of these
properties. This process is typically referred to as finding the transitive,
symmetric or reflexive closure of a relation. This lab investigates
methods for finding these relations.

Open the Maple file relations.mw, and select Execute Worksheet from
the Edit menu. Save your worksheet using a different file name so that
you do not write over this beginning file.

Start with a random relation on the set A = {1, 2, 3, 4, 5, 6} and look at
its arrow diagram.

> R := randomRelation(6, 0.3);
> drawgraph(R);

Is R a symmetric relation?

> S := joinRelations(R, invert(R));
> drawgraph(S);

Is S a symmetric relation?

Repeat the above several times to verify that S is symmetric regardless
of whether R is.

