SHAMBHUNATH INSTITUTE OF ENGINEERING & TECHNOLOGY

B. TECH. – Third Semester First Sessional Examination, 2019-20 (Only for ME And EC) MATHEMATICS IV

Time: 1 hour 30mins

Max. Marks: 30

Section-A

- Attempt ALL parts. Each questions carry equal marks. Write answers of each question in short: (5x1=5)
 - a) Write the normal equation for $y = a + \frac{b}{x}$.

Solution Normal equations are

$$\sum y = an + b \sum \frac{1}{x}, \sum \frac{y}{x} = a \sum \frac{1}{x} + b \sum \frac{1}{x^2}$$

b) A bag contains 8 red and 7 black balls. Find the probability of drawing a red ball.

Solution Find the probability of drawing a red ball = $\frac{c_1^8}{c_1^{15}} = \frac{8}{15}$

c) Explain mean, median and mode.

Solution

Mean: The mean, also called the arithmetic mean or average or average value, is the quantity obtained by summing two or more numbers or variables and then dividing by the number of numbers or variables.

Median: Measure of the central item when they are arranged in ascending or descending order of magnitude.

Mode: Mode is defined to be the size of the variable which occurs most frequently.

d) Write about Stratified Random Sampling.

Solution: Stratified Random Sampling involves categorizing the members of the population into mutually exclusive and collectively exhaustive groups.

e) If mean and variance for Binomial distribution is 9 and 3 respectively. Find the distribution.

Solution
$$m = np = 9$$
, variance $= npq = 3$
 $q = \frac{1}{3}$, $p = \frac{2}{3}$
Binomial Distribution $= \left(\frac{1}{3} + \frac{2}{3}\right)^n$

Section-B

2. Attempt any **TWO** parts from this section

a) Calculate the first four moments of the following distribution about the mean and hence find β_1 and β_2 .

X	0	1	2	3	4	5	6	7
f	1	8	28	56	70	56	28	8

Section B_									
20									
x	xt 1	(x-A)	f(x-7)	f(x-A)2	f(x-7)3	f(x-Z)Y			
.01	D	-4	-4	16	-64	+256			
1 8	8	-3	-24	72	-216	+ 648			
2 2	8 56	-2	-56	112	-224	+448			
3 50	168	-1	-56	56	-5.6	56			
4 70	280	0	0	0	0	0			
5 51	\$ 280	1	56	56	56	56			
6 28	168	2	56	112	224	448			
7 8	5.6	3	24	72	216	648			
			-4	496	-64	2560			
$\frac{ 256 10 6 }{\overline{x}} = \frac{ 256 }{ 256 } = \frac{ 10 6 }{ 256 } = \frac{ -4 }{ 256$									

b)

X	5.60	5.65	5.70	5.81	5.85		
у	5.80	5.70	5.80	5.79	6.01		
olution:							
L	ine y	pu x					
		Y= a+	ba				
			2 K				
	Norm	al equs					
		ZY - W	$a + b \Sigma x$				
				~ 2			
		524=	25x452	R.			
0.	1 1	1	1 22	'l y	12		
x	1 4	xy		00 4	1.		
5-6		32.48	31-36				
5-65	5.7	32-205	31.9225	33:4	19		
5-7	5.8	33.06	32.49	33 1	1,		
5.81							
		33.6399	33.7561				
5.85	6.0)	35-15851	34, 2225	36.1:	2011		
8.11		166-5434		168.	611		
0 61	- 1. 1	10001	_ , _ ,	- 50	414 +		
		·					
	QI	1.568					
		,	(y =	1568-	+ 0-7432		
	5200	743					
1 0	, A x	Allen 4 1					
Ferre		orther y !					
	2 - 1	thy	Normal	egn			
	X=a		EX 2119 + bEy				
			2109-	azyt	52y2		
	az	5-93					
			1x	- (-98	- 0.04y		
	67	- 0.04			0.049		

c. A die is tossed twice. Getting a number greater than 4 is considered a success. Find the variance of the probability distribution of the number of successes.

Solution:

$$P(success) = \frac{2}{6} = \frac{1}{3}, P(failure) = 1 - \frac{1}{3} = \frac{2}{3}$$

Probability Distribution

Х	0	1	2
P(X)	4/9	4/9	1/9
	∇ a/a	•	

Variance = $\sum px^2 - \sum px = 2/9$

d. Fit a Binomial distribution to the following frequency data:

Х	0	1	3	4
f	28	62	10	4

Solution:

Mean =
$$\frac{\sum fx}{\sum f} = \frac{108}{104} = 1.01$$

 $np = 1.04$
 $p = 0.26$ and $q = 1 - p = 1 - 0.26 = 0.74$

Hence Binomial distribution = $N(q + p)^n = 104(0.74 + 0.26)^4$

Section-C

Attempt ALL from this section.

3. Attempt any ONE part from the following:(1x5=5)a. Find the moment generating function of the discrete Poisson distribution given

by
$$P(x) = \frac{e^{-\lambda_{\lambda}x}}{x!}$$
. Also find the first and second moments about the mean.

Solution. Here, we have

$$f(x) = \frac{e^{-m} m^{x}}{x!}$$
Moment generating function about the origin

$$M_{0}(t) = \sum \frac{e^{-m} m^{x}}{x!}$$

$$= e^{-m} \sum \frac{(me^{t})^{x}}{x!}$$

$$= e^{-m} \sum \frac{(me^{t})^{x}}{2!} + \frac{(me^{t})^{3}}{3!} + \dots$$

$$= e^{-m} e^{me^{t}} e^{m(e^{t}-1)}$$

$$= e^{-m} e^{me^{t}} e^{m(e^{t}-1)}$$

$$= e^{m(e^{t}-1)} me^{t} \Big]_{t=0} = \left[\frac{d}{dt} e^{m(e^{t}-1)} \int_{t=0}^{t=0} e^{m(t-1)} me^{t} \right]_{t=0}$$

$$= \left[e^{m(e^{t}-1)} me^{t} \right]_{t=0} = e^{m(t-1)} me^{t} \Big]_{t=0}$$

$$= \left[e^{m(e^{t}-1)} (me^{t})^{2} + e^{m(e^{t}-1)} me^{t} \right]_{t=0}$$

$$= \left[e^{m(e^{t}-1)} m^{2} + e^{m(t-1)} m \right] = m^{2} + m$$

$$\mu_{2} = \nu_{2} - \overline{x^{2}} = \nu_{2} - \nu_{1}^{2} = (m^{2} + m) - m^{2} = m$$

b. The pressure of the gas corresponding to various volume V is measured, given by the following data:

$V (cm^3)$	50	60	70	90	100
$P (kg cm^{-3})$	64.7	51.3	40.5	25.9	78

Fit the data to the equation $PV^r = c$ Solution:

For the data to the equation
Sol.

$$PV^{\gamma} = C$$

 \Rightarrow $P = CV^{-\gamma}$
Taking log on both sides, we get
 $\log P = \log C - \gamma \log V$
 \Rightarrow $Y = A + BX$
where, $Y = \log P$, $A = \log C$, $B = -\gamma$, $X = \log V$
Normal equations are
 $\Sigma Y = mA + B\Sigma X$
and $\Sigma XY = A\Sigma X + B\Sigma X^2$
Here $m = 5$

The table is as below:

V	Р	X = log V	Y = log P	XY	X2
50	64.7	1.69897	1.81090	3.07666	
60	51.3	1.77815	1.71012	3.04085	2.88650 3.16182
70	40.5	1.84510	1.60746	2.96592	3.40439
90	25.9	1.95424	1.41330	2.76193	3.81905
.00	78.0	2	1.89209	3.78418	4
		ΣX = 9.27646	$\Sigma Y = 8.43387$	$\Sigma XY = 15.62954$	$\Sigma X^2 = 17.27176$

From Normal equations, we have

8.43387 = 5A + 9.27646 B

15.62954 = 9.27646 A + 17.27176 B

Solving these, we get A = 2.22476, B = -0.28997

 $\gamma = -B = 0.28997$

C = antilog (A) = antilog (2.22476) = 167.78765

Hence, the required equation of curve is

 $PV^{0.28997} = 167.78765.$

4. Attempt any **ONE** part from the following:

(1x5=5)

- **a.** The number of accidents in a year involving taxi drivers in a city follows a Poisson distribution with mean equal to 3. Out of 1000 taxi drivers, find approximately the number of drivers with
 - I. No accident in a year.
 - II. More than 3 accidents in a year.

Solution:

Here mean m = 3

I.
$$P(0) = \frac{e^{-3}3^{0}}{0!} = 0.0498$$

No of Accidents = $0.0498 * 1000 = 49.8 \approx 50$
II. $P(More than 3) = P(4) + P(5) + \cdots$
 $= 1 - P(0) - P(1) - P(2) - P(3)$
 $= 1 - \frac{e^{-3}3^{0}}{0!} - \frac{e^{-3}3^{1}}{1!} - \frac{e^{-3}3^{2}}{2!} - \frac{e^{-3}3^{3}}{3!} = 0.3528$

No of accidents=
$$1000 * 0.3528 = 352.8 \approx 353$$

b. Urn A contains 2 white, 1 black and 3 red balls, urn B contains 3 white, 2 black and 4 red balls and urn C contains 4 white, 3 black and 2 red balls. One urn is chosen at random and 2 balls are drawn from the urn. If the chosen balls happen to be red and black, what is the probability that both balls come from urn B?

Solution:

Let E_1, E_2, E_3 and A denote the events $E_1 = \text{urn A is chosen}, E_2 = \text{urn B is chosen}, E_3 = \text{ur}$ n C is chosen A = two balls drawn at random are red and black

 $P(E_1) = \frac{1}{3} = P(E_2) = P(E_3)$ Probability of drawing a red and a black ball = $\frac{C_1^3 \times C_1^1}{C_2^6}$ So $P(A/E_1) = \frac{1}{5}$, $P(A/E_2) = \frac{2}{9}$, $P(A/E_3) = \frac{1}{6}$ Now, $P(E_2/A) = \frac{P(E_2)P(A/E_2)}{P(E_1)P(A/E_1) + P(E_2)P(A/E_2) + P(E_3)P(A/E_3)} = \frac{20}{53}$

5. Attempt any ONE part from the following.

(1x5=5)

a. Sample of two types of electric bulbs were tested for lengths of life and the following data were obtained:

	Type 1	Type 2
Number in the sample	8	7
Mean of the sample (in	1134	1024
hours)		
Standard deviation of	35	40
the sample (in hours)		

Is there a significant difference in the two means? Given that $t_{(0.05,14)} = 2.15$

Solution:

 H_0 = there is no significant in the average life

$$s_{1} = 35, s_{2} = 40$$

$$\sum_{1}^{1} (x_{1} - \overline{x_{1}})^{2} = 9800$$

$$\sum_{2}^{1} (x_{2} - \overline{x_{2}})^{2} = 11200$$

$$s^{2} = \frac{1}{n_{1} + n_{2} - 2} \left[\sum_{1}^{1} (x_{1} - \overline{x_{1}})^{2} + \sum_{1}^{2} (x_{2} - \overline{x_{2}})^{2}\right] = 1615.38$$

$$s = 40.19$$

$$t = \frac{\overline{x_1} - \overline{x_2}}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = 5.288$$

As the calculated value of $|t| = 5.288 > t_{(0.05,13)}$

H₀ is rejected and hence, there is significant difference in the average.

b. Ten individuals are chosen at random from a normal population of students and their marks are found to be 63, 63, 66, 67, 68, 69, 70, 70, 71, 71. In the light of these data, discuss the suggestion that mean marks of the population of students is 66. Given that $t_{(0.01,9)} = 3.36$.

Solution:

Null Hypothesis H₀ there is no significant difference in the sample mean and population mean i.e. $\mu = 66$

Alternate Hypothesis $H_1 : \mu \neq 66$ $\sum x$

$\bar{x} = \frac{2\pi}{n} = 67.8$										
x 63 63 66 67 68 69 70 70 71 71										
(x 23.04 23.04 3.24 0.64 0.04 1.44 4.84 4.84 10.24 10								10.24		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
$s = \sqrt{\frac{\sum(x - \bar{x})^2}{n - 1}} = 3.01$ $t = \frac{\bar{x} - \mu}{s / \sqrt{n}} = 1.89$										
	Since calculated value of $ t = 1.89 < t_{(0.01,9)}$									
	So, H ₀	is accept	ted and	hence t	here is 1	no diffe	rence ir	n the me	ean.	