Introduction of Algorithm
Top of Form
Bottom of Form
Algorithm:
· It is a finite step-by-step (systemic) procedure to achieve a required result.
· It is a sequence of computational steps that transform the input into the output.
· It is an abstraction of a program to be executed on a physical machine.

Analysis of Algorithms:
Analysis of algorithms is the study of computer program performance and resource usage. Following things are considered very important to design the algorithm.
· Modularity of the program
· User-friendliness
· Correctness of the program
· Programmer’s time
· Maintainability
· Security
· Functionality
· Robustness
· Simplicity
· Extensibility
· Reliability
· Scalability

Algorithm can be designed for the many problems:
· Sorting n numbers
· Searching an element
· Finding maximum and minimum element from the given list
· Sum of n numbers
· Single source shortest path
· Minimum spanning tree
· Travelling Sales Person problem
· All pairs shortest path, etc.

Strategy of Algorithms:
· Greedy Algorithms
· Divide & conquer Algorithms
· Prune & search Algorithms
· Dynamic programming
· Branch and bound Technique
· Approximation Algorithms
· Heuristics

Example-1: Maximum of the given array of elements.

Maximum (A, n)
{
Max = A [0];
for (i = 1 to n −1)
{If Max < A[i] then Max = A[i]; }
return Max;
}
Searching
Top of Form
Bottom of Form
There are two types of search algorithms.
· Linear Search (Sequential Search)
· Binary Search

Linear Search:
· Linear Search is the simplest method to solve the searching problem.
· Linear search has no assumptions about the order of the list.
· It finds an item in a collection by looking for it from the beginning of array and looks for it till the end. It returns the first position (index) of an item whenever it finds.
Pseudo code of Sequential search:
[image: image001]

Analysis of Sequential Search: The time complexity in sequential search in all three cases is given below.
· Best case:
· The best case occurs when the search term is in the first slot in the array.
· Number of comparisons in best case = 1.
· Time complexity = O (1).
· Worst case:
· The worst case occurs when the search term is in the last slot in the array, or is not in the array.
· The number of comparisons in worst case = size of the array = n.
· Time complexity = O(n)
· Average case:
· On average, the search term will be somewhere in the middle of the array.
· The average number of comparisons = n/2
· Time complexity = O(n)

Binary Search:
· Binary search assumes the list is already in order.
· In each step, binary search algorithm divides the array into three sections.
1. Finds the Middle element
2. Considers only left side elements of middle elements if the searching element is less than middle.
3. Considers only right side elements of middle elements if the searching element is greater than middle.

Pseudo Code of Binary Search:
[image: image005]
Analysis of Binary Search: The time complexity in Binary search in all three cases is given below.
· Best case:
· The best case occurs when the search term is in the middle of the array.
· Number of comparisons in best case = 1.
· Time complexity in the best case = O(1).
· Worst case:
· The worst case for binary search occurs in the following cases:
· when the search term is not in the list, or
· when the search term is one item away from the middle of the list, or
· when the search term is the first or last item in the list.
· The maximum number of comparisons in worst case = (log2 n) + 1
· Time complexity in the worst case = O(log2 n)
· Average case:
· The average case occurs when the search term is anywhere else in the list.
· Number of comparisons = O(log2 n)
· Time complexity in the average case = O(log2 n)

Analysis of Binary Search: The time complexity of binary search in all three cases is given below
· Best case: The best case complexity is O(1)
· Average case: T(n) = O(log2 n)
· Worst case: In worst case, the complexity of binary search is O(log2 n)
· The number of comparisons performed by Algorithm binary search on a sorted array of size n is at most log n + 1.
Applications of Binary Search:
· To find the first instance of an item (element).
· To find the last instance of an item (element)
· To find the number of instances of an item.
· Given an array containing only zero’s and one’s in sorted order. You can find the first occurrence of 1 in array.

Linear Search Vs Binary Search:
· Linear search is sequential, but binary search uses divide and conquer approach
· Linear search begins the search from first position of array, whereas binary search begins from middle position of array.
· Linear search can be applied to any array, but binary search can be applied to only sorted array.
· Linear search worst case time complexity is O(n), and Binary search worst case time complexity is O(log2 n).
· After k th comparison, number of remaining elements left for searching in Linear search is (n-i), and in Binary search is n/(2k) approximately.

Example-1: Recursive implementation for Binary Search
 int binarySearch(int a[], int start, int end, int key)
{
if(start <= end) {
 int mid = (start + end)/2;
 if(a[mid] == key) return mid;
 if(a[mid] < key)
 return binarySearch(a, mid+1, end, key) ;
 else
 return binarySearch(a, start, mid–1, key) ;
 }
return –1;

Sorting
Top of Form
Bottom of Form
Sorting is ordering a list of elements.

Types of sorting: There are many types of algorithms exist based on the following criteria:
· Based on Complexity
· Based on Memory usage (Internal & External Sorting)
· Based on recursive/non-recursive implementation
· Based on stability
· Based on comparison/non-comparison, etc.

Internal Sorting: If the number of elements is small enough to fits into the main memory, sorting is called internal sorting. Bucket sort, Bubble sort, Insertion sort, Selection sort, Heap sort, and Merge sort are internal sorting algorithms.
External Sorting: If the number of elements is so large that some of them reside on external storage during the sort, it is called external sorting. External merge sort, and shell sort (Bucket sort) are external sorting algorithms.
In-place Sorting: The in-place sorting algorithm does not use extra storage to sort the elements of a list. Insertion sort, quick sort and Selection sort are in-place sorting algorithms.
 Stable Sorting: Stable sorting algorithm maintain the relative order of records with equal values during sorting. Merge sort, Insertion sort, and Bubble sort are stable sorting algorithms.

Comparison based sorting: It determines which of two elements being compared should occur first in the final sorted list.
· Exchanging: used by Bubble Sort
· Selection: used by Selection Sort and Heapsort
· Insertion: used by Insertion Sort and Shell Sort
· Merging: used by Merge Sort
· Partitioning: used by Quick Sort

Non-Comparison based sorting: Bucket sort, Radix sort, and Counting sort are non-comparison based algorithms.ss
 Some of the sorting algorithms are explained below.

Bubble Sort
Working Principle of Bubble Sort:
It works by repeatedly stepping through the list to be sorted, comparing each pair of adjacent items and swapping them if they are in the wrong order. The pass through the list is repeated until no swaps are needed, which indicates that the list is sorted.
It is comparison based sorting algorithm (It uses only comparisons to sort the elements).

Pseudo Code for Bubble Sorting:
[image: image006]
Analysis of Bubble Sort: The time complexity of bubble sort in all three cases is given below
· Best case Complexity: O(n2)
· Average case Complexity: O(n2)
· Worst case Complexity: O(n2)

Insertion Sorting

Working Principle of Insertion Sort:
Every iteration of insertion sort removes an element from the input data, inserting it into the correct position in the already-sorted list, until no input elements remain. The resulting array after i iterations has the property where the first i+1 entries are sorted.
The insertion sort only passes through the array once. Therefore, it is very fast and efficient sorting algorithm with small arrays. Insertion sort is useful only for small files or very nearly sorted files.

It is comparison based, in-place and stable algorithm.

Pseudo Code of Insertion Sort:
[image: image007]
Analysis of Insertion Sort:
· Best case complexity: Array is already sorted.
· T(n) = O(n)
· Average case complexity: All permutations are equally likely.
· T(n) = O(n2)
· Worst case complexity: Input is in reverse sorted order.
· T(n) = O(n2)

Selection Sorting

Working Principle of Selection Sort:
· Find the minimum element of an array of n elements. Swap it with the value in the first position of array. Next, we find the minimum of the remaining n − 1 elements and swap with second position of array. We continue this way until the second largest element is stored in A[n−1].
· Selection sort is an in-place comparison sorting algorithms.

Pseudo Code of Selection Sort:
Input: An array A[1…n] of n elements.

Output: A[1…n] sorted in non-decreasing order.
1. For (i=1; i<n; i++)
2. {
3. k=i;
4. for(j=i+1; j<n; j++)
5. {
6. if(A[j] < A[k] then k=j;
7. }
8. if(k ≠ i) then swap(A[i], A[k]);
9. }
10. }
Analysis of Selection Sort:
· Worst case time complexity: O(n2).
· Best case time complexity: O(n2).
· Average case time complexity: O(n2).

Heap Sort
Heap sort is simple to implement and is a comparison based sorting. It is in-place sorting but not a stable sort.
Max heap: A heap in which the parent has a larger key than the child’s is called a max heap.
Min heap: A heap in which the parent has a smaller key than the child’s is called a min heap.
BUILD_HEAP (A)
heap-size (A) ← length [A]
For i ← floor(length[A]/2) down to 1 do
Heapify (A, i)

Pseudo Code of Heap Sort:
Heapify (A, i)
1. l ← left [i]
2. r ← right [i]
3. if l ≤ heap-size [A] and A[l] > A[i]
4. then largest ← l
5. else largest ← i
6. if r ≤ heap-size [A] and A[i] > A[largest]
7. then largest ← r
8. if largest ≠ i
9. then exchange A[i] ↔ A[largest]
10. Heapify (A, largest)

Heapsort(A)
1. BUILD_HEAP (A)
2. for i ← length (A) down to 2 do
1. exchange A[1] ↔ A[i]
2. heap-size [A] ← heap-size [A] – 1
3. Heapify (A, 1)

Analysis of Heap Sort: The total time for heap sort is O (n log n) in all three cases (best, worst and average).
· Heapify: which runs in O(logn) time.
· Build-Heap: which runs in linear time O(n).
· Heap Sort: which runs in O(n logn) time.
· Extract-Max: which runs in O(logn) time.

Merge Sort

Working principle of Merge Sort:
· Divide the unsorted list into two sublists of about half the size.
· Sort each sublist recursively by re-applying merge sort.
· Merge the two sublists back into one sorted list.
 Pseudo Code for Merge Sort:
1. void merge(int a[], int low, int mid, int high)
2. {
3. int b[100];
4. int i = low, j = mid + 1, k = 0;
5. while (i <= mid && j <= high) {
6. if (a[i] <= a[j])
7. b[k++] = a[i++];
8. else
9. b[k++] = a[j++];
10. }
11. while (i <= mid)
12. b[k++] = a[i++];
13. while (j <= high)
14. b[k++] = a[j++];
15. k--;
16. while (k >= 0) {
17. a[low + k] = b[k];
18. k--;
19. }
20. }
21. -------------------------------
22. void mergesort(int a[], int low, int high)
23. {
24. if (low < high) {
25. int m = (high + low)/2;
26. mergesort(a, low, m);
27. mergesort(a, m + 1, high);
28. merge(a, low, m, high);
29. }
30. }
31. --------------------------------
Analysis of Merge Sort:
· Best case time complexity: O(n log n).
· Average case time complexity: O(n log n).
· Worst case time complexity: O(n log n).
Quick Sort

Working principle of Quick Sort:
· Select pivot element from the given list of elements.
· Reorder the list so that all elements which are less than the pivot come before the pivot and so that all elements greater than the pivot come after it (equal values can go either way).
· After this partitioning, the pivot is in its final position. This is called the partition operation.
· Recursively sort the sub-list of lesser elements and the sub-list of greater elements. The base case of the recursion are lists of size zero or one, which are always sorted.
· Quick sort is comparison based, and in-place based sorting algorithm.

Pseudo Code for Quick Sort:
1. void quicksort(int *array, int start, int stop)
2. {
3. int left = start,
4. right = stop,
5. center = array[(start + stop) / 2];
6. while(left<right)
7. {
8. while(array[left]<center) left++;
9. while(array[right]>center) right--;
10. if(left<=right)
11. {
12. swap(&array[left], &array[right]);
13. left++;
14. right--;
15. }
16. }
17. if(right>start) quicksort(array, start, right);
18. if(left<stop) quicksort(array, left, stop);
19. }
20. --------------------------------------
21. void quicksort_start(int *array, int num)
22. {
23. quicksort(array, 0, num-1);
24. }
Recursive Implementation of Quick sort:
1. Partition(A, p, q) {
2. x = A[p];
3. i = p;
4. for (j = p+1 to q)
5. {
6. if (A[j] <= x) i = i+1;
7. swap(A[i], A[j]);
8. }
9. swap(A[p], A[i]);
10. return i;
11. }
12. Quicksort(A, p, r) // sorts list A[p..r]
13. {
14. if (p < r)
15. {q = Partition(A, p, r);
16. Quicksort(A, p, q-1);
17. Quicksort(A, q+1, r);
18. }
19. }
Analysis of Quick Sort:
· Best case time complexity: O(n log n).
· Average case time complexity: O(n log n).
· Worst case time complexity: O(n2).
 	
Note:
· Merge sort is a fast sorting algorithm whose best, worst, and average case complexity are all in O(n log n), but unfortunately it uses O(n) extra space to do its work.
· Quicksort has best and average case complexity in O(n log n), but unfortunately its worst case complexity is in O(n2).

14

image4.png

image1.png

image2.png

image3.png

