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 SECTION - A 

 

Q-1) Attempt ALL parts.                                                                                                                
a) Define Big O, small o and small ω notation with example? 

Answer: 

Big O: Let f(n) and g(n) be two positive functions. We write f(n) ∊ O(g(n)), and say that f(n) has order 

of g(n), if there are positive constants C and n₀ such that f(n) ≤ C·g(n) for all n ≥ n₀. 

 

 
Example-f(n) = n2/2 - n/2. With Big O notation, this becomes f(n) ∊ O(n2), and we say that the algorithm 

has quadratic time complexity. 

Small o: Let f(n) and g(n) be functions that map positive integers to positive real numbers. We say that 

f(n) is ο(g(n)) (or f(n) Ε ο(g(n))) if for any real constant c > 0, there exists an integer constant n0 ≥ 1 

suchthat0≤f(n)<c*g(n).  

Small ω: Let f(n) and g(n) be functions that map positive integers to positive real numbers. We say that 

f(n) is ο(g(n)) (or f(n) Ε ο(g(n))) if for any real constant c > 0, there exists an integer constant n0 ≥ 1 

such that f(n)≤c*g(n). 

 

b) What is the binomial tree? You are also required to give its properties.  

Answer:  
The binomial tree Bk is an ordered tree  defined recursively.  The binomial tree B0 consists of a single 

node. The binomial tree Bk consists of two binomial trees Bk-1 that are linked together: the root of one is 

the leftmost child of the root of the other.  



             For the binomial tree Bk, 

            1. there are 2k nodes, 

             2. the height of the tree is k, 

           3. there are exactly  nodes at depth i for i = 0, 1, . . . , k, and 

            4. the root has degree k, which is greater than that of any other node; moreover if the children of the root                                                            

are  numbered from left to right by k - 1, k - 2, . . . , 0, child i is the root of a subtree Bi.         

 
c) What do you mean by stable sort? Name two stable sort algorithms. 

Answer:  

A sorting algorithm is said to be stable if two objects with equal keys appear in the same order 

in sorted output as they appear in the input array to be sorted. 

Example of stable sorting algorithm: 

(I) Counting sort 

(II) Merge Sort 

 

d) Is the sequence < 23,17,14,6,13,10,1,5,7,12> a max heap ? 

  Answer:  

No. Since PARENT (7) is 6 in the array. This violates the max-heap property. 

 

e) Write the recurrence relation for binary search algorithm? 

Answer:    

                                                  Recurrence relation- T(n)=T(n/2)+1      

                                                               Time complexity is O (log 𝑛) 

        

SECTION – B 

 

Q 2) Attempt any TWO parts from this section.                                                                           

a) Answer: 

Compare Stassen’s matrix multiplication algorithm with traditional multiplication algorithm related to time 

complexity. Multiply the two matrices using Stassen’s formula- 

                                                                              (
3 2
1 7

) *(
4 3
7 2

) 

Answer: Let us consider two matrices A and B. We want to calculate the resultant matrix C by multiplying A 

and B. 

Naïve Method (Traditional multiplication algorithm) 

Using Naïve method, two matrices can be multiplied if the orders of these matrices are p × q and q × r.  

Algorithm: Matrix-Multiplication (X, Y, Z)  

                                for i = 1 to p do  

                                   for j = 1 to r do  

                                      C[i,j] := 0  

                                         for k = 1 to q do  

                                               C[i,j] := C[i,j] + A[i,k] × B[k,j]  

The running time of traditional matrix multiplication is as follows after solving equation  

                                         𝑇(𝑛) = 8𝑇 (
𝑛

2
) + 4𝑛2 

                                            is (𝑛) = 𝑂(𝑛3) . 

Strassen’s matrix multiplication algorithm can be performed Divide and Conquer only on square matrices where n is 

a power of 2. Order of both of the matrices are n × n. u 



 

                                        P1 = (A11+ A22)(B11+B22) 

                                        P2 = (A21 + A22) * B11 

                                        P3 = A11 * (B12 - B22) 

                                         P4 = A22 * (B21 - B11) 

                                         P5 = (A11 + A12) * B22 

                                         P6 = (A21 - A11) * (B11 + B12) 

                                         P7 = (A12 - A22) * (B21 + B22) 

                                        C11 = P1 + P4 - P5 + P7 

                                        C12 = P3 + P5 

                                        C21 = P2 + P4 

                                           C22 = P1 + P3 - P2 + P6 

 

Recurrence for new algorithm is    𝑇(𝑛) = 7𝑇 (
𝑛

2
) + 14𝑛2   and its running time is𝑇(𝑛) = 𝑂(𝑛2.81). 

Multiply the two matrices using Stassen’s formula- 

                                                                              (
3 2
1 7

) *(
4 3
7 2

) 

We use the above formula and put value: 

                                         P1 = (A11+ A22)(B11+B22) 

                                        P2 = (A21 + A22) * B11 

                                        P3 = A11 * (B12 - B22) 

                                         P4 = A22 * (B21 - B11) 

                                         P5 = (A11 + A12) * B22 

                                         P6 = (A21 - A11) * (B11 + B12) 

                                         P7 = (A12 - A22) * (B21 + B22) 

                                        C11 = P1 + P4 - P5 + P7 

                                        C12 = P3 + P5 

                                        C21 = P2 + P4 

                                           C22 = P1 + P3 - P2 + P6 

 
 

                               Get         C   =    (
26 13
53 17

) 

 

    b)    Sort the following unsorted data set A using gap=5.  

                        A=(5,77,32,45,56,68,75,45,76,52,44,36,56,24) 

Answer:                    Take gap=5 

                                 5, 68, 44       -----→ 5, 44, 68 

                                 77, 75, 36      ------→ 36, 75, 77 

                                  32, 45, 56      --------.> already sorted 

                                  45, 76, 24        ------→ 24,45,76 

                                     56, 52                -----→52, 56 

                                    A= 5,36,32,24,52,44,75,45,45,56,68,77,56,76 

                                       Now gap = floor (gap/2) =floor (5/2) =2 

                                       5, 32, 52, 75,45,68,56      ----------→5,32,45,52,56,68,75 

                                            36, 24,44,45,56, 77, 76   -----------→24,36,44,45,56,76,77 

                                           A=5,24,32,26,45,44,52,45,56,56,68,76,75,77 

                                    Now gap=2/1=1 

                            So finally we get A=(5,24,2632,44,45,45,56,56,68,76,77) 



  c)    Solve any two-recurrence equation: 

                                (i)   𝑇(𝑛)=3 𝑇 (𝑛
1

3) + log 3𝑛  

                                (ii)   𝑇(𝑛) = 𝑇(∝ 𝑛) +  𝑇((1 − ∞)𝑛)                               

                             (iii)  𝑇(𝑛) = 𝑛 + 𝑇(𝑛
3⁄ ) + 𝑇(2𝑛

3⁄ ) 

Answer (I)                            
                               log 3𝑛 = 𝑛 ∗ log 3 

 
     

(ii) 

          The recurrence tree is given below: 
                              

                                   𝑇(𝑛) = 𝜃(𝑐𝑜𝑠𝑡 ∗ ℎ𝑒𝑖𝑔ℎ𝑡) 

                                    



                                   𝑇(𝑛) = 𝜃(𝑛 ∗ log1−𝛼 𝑛) 

 
 

 

(iii)T(n) = T(n/3) + T(2n/3) + O(n)  

Answer: 

Note that the leaves are between the levels log3 n and log3/2 n From the computation tree, it is clear that the 

maximum height is log3/2 n. Therefore, the cost is at most log3/2 n· cn = O(n log n).  

Cost is same so use 

 
                                   𝑇(𝑛) = 𝜃(𝑐𝑜𝑠𝑡 ∗ ℎ𝑒𝑖𝑔ℎ𝑡) 

                                    

                                   𝑇(𝑛) = 𝜃(𝑛 ∗ log3

2

𝑛) 

 

d)    Illustrate the operation of counting sort on the following array: 

                          A= {4, 0, 2, 0, 1, 2, 1, 3} 

             In addition, check that it is a stable or not? 

Answer:  

 

i 1 2 3 4 5 6 7 8 

A[i] 4 0 2 0 1 2 1 3 

 

Here the highest number k = 4 so make a temporary array C [0……4] . 



  For i= 0 to  we assign C[i] = 0. 

 

i 0 1 2 3 4 

C[i] 0 0 0 0 0 

 

 

Now count the frequency of index j = 1,2,3,4.5,6,7,8   using    C[A[j]] =C[A[j]] +1 

    So  

i 0 1 2 3 4 

C[i] 2 2 2 1 1 

  

Now we prepare for i = 1 to 4 cumulative frequency using C[i] =C[i]+C[i+1] 

 

   

i 0 1 2 3 4 

C[i] 2 4 6 7 8 

 

Now for j= 8 to 1 using B[C[A[j]]] =A[j] and decrease the frequency using C[A[j]] =C[A[j]] -1 

 

 

I 1 2 3 4 5 6 7 8 

B[i] 0 0 1 1 2 2 3 4 

 
Yes, it is a stable sort. 

 

                                                                              SECTION – C 

 

3. Attempt any ONE part of the following.                                                                                    

    a) Explain the properties of red black tree. Show the red black trees that result after successively 

         Inserting the Keys 41, 38, 31, 12, 19, 8 into an initially empty red black tree. 

Answer: 

A red-black tree is a binary search tree with one extra bit of storage per node: its color, which can be 

either RED or BLACK. By constraining the way nodes can be colored on any path from the root to a leaf, red-

black trees ensure that no such path is more than twice as long as any other, so that the tree is 

approximately balanced. 

Each node of the tree now contains the fields color, key, left, right, and p. If a child or the parent of a node does 

not exist, the corresponding pointer field of the node contains the value NIL. We shall regard these NIL'S as 

being pointers to external nodes (leaves) of the binary search tree and the normal, key-bearing nodes as being 

internal nodes of the tree. 

A binary search tree is a red-black tree if it satisfies the following red-black properties: 

1. Every node is either red or black. 

2. Every leaf (NIL) is black. 

3. If a node is red, then both its children are black. 

4. Every simple path from a node to a descendant leaf contains the same number of black nodes. Inserting the 

Keys 41, 38, 31, 12, 19, 8 into an initially empty red black tree: 

 

 

 



 

 
 

 

 

 

 

 
 

b) Why don’t we allow a minimum degree of t=1? Show the result of inserting the Keys  F, S, Q, K, C,L, H, 

T, V, W, M, R, N, P, A, B, X,Y, D,Z ,E  in order into an empty b-tree with minimum degree 2. Only draw 

the configurations of the tree just before some node must split , and also draw the final configuration. 

Answer: 

Minimum degree =t => Minimum t-1 keys , Maximum 2t-1 keys 

=> Minimum t child , Maximum 2t child 

so, 

Minimum degree =1 => Minimum 0 keys , Maximum 1 key 

=> Minimum 1 child , Maximum 2 child 



 

Minimum case doesn't exist i.e., no node exists with o keys and no node with only 1 child exists because a 

node with 1 key has 2 child ....... 

Inserting the Keys F, S, Q, K, C,L, H, T, V, W, M, R, N, P, A, B, X,Y, D,Z ,E  in order into an empty b-

tree with minimum degree 2.  

We have t = 2, therefore the most a node can hold 2t – 1 = 3 (node is full when number of key = 3) 

and the least t –1 = 1. 

 

 

 

 
 

 

 

 

 



 
 

 

 

4. Attempt any ONE part of the following.                                                                                   (1*5 = 5) 

    a)    Write the pseudo code  for PARTITION OF QUICK SORT and run the quick sort upon following                                   

data item: A = <15,31,1,9,80,12,14,7,24>. 

Answer: 

Partitioning the array 

The key to the algorithm is the PARTITION procedure, which rearranges the subarray A[p . . r] in place. 

PARTITION(A,p,r) 

X ← a[r] 

i← p-1 

for j ← p to r-1 

do if A[j] ≤ x 

then i = i + 1 

exchange A[i] ↔A[j] 

exchange A[i+1] ↔A[r 

return i +1. 

 

i 1 2 3 4 5 6 7 8 9 

A[i] 15 31 1 9 80 12 14 7 24 

  Here p = 1 and r = 9          so X=A[9] = 24 and i = 0 

J = 1 to 8      now  A[1] ≤ 24 true  so i=i+1=1 so A[1] ↔ A[1]. 

For j =2   now A [2] ≤ 24 as 31≤ 24 false so I not change  



Finally for j = 3 to 8 the complete pseudo code executes we found that all the number less than X=24 is in left 

part while more than X=24 is in right part. 

15 12 1 9 14 12 24 31 80 
 

c) (i) Given  𝑓(𝑛) = (𝑛 + 𝑎)𝑏  then show that 𝑓(𝑛) = 𝜃(𝑛𝑏). 

Answer:       𝐥𝐢𝐦
𝒏→∞

(𝒏 + 𝒂)𝒃 /𝒏𝒃 = 𝐥𝐢𝐦
𝒏→∞

 𝒏𝒃 (𝟏 +
𝒂

𝒏
)

𝒃

/𝒏𝒃 

                       

              put  𝒊𝒇   𝒏 → ∞ then 
𝟏

𝒏
= 𝟎 

   Solving this limit we find the value c=1 so we write𝑓(𝑛) = 𝜃(𝑛𝑏). 

 

OR 

 
 

         

 

 (ii)  Compare the order of growth of  𝑛 + 𝑛𝑙𝑜𝑔𝑛 𝑎𝑛𝑑 𝑛. 𝑛
1

2⁄   

Answer:                 𝑛 ∗ 𝑛
1

2⁄ = 𝑛
3

2⁄  

 
n n+nlogn 𝑛

3
2⁄  

1 1 1 

100 300 1000 

10000 50000 1000000 

 

So we say that order of growth 𝑛
3

2⁄  is greater than  𝑛 + 𝑛𝑙𝑜𝑔𝑛. 

 



 
 

 

5. Attempt any ONE part of the following.                                                                                                (1*5 = 5) 

    a)   Prove that quick sort algorithm takes 𝑂(𝑛2) time to sort an array of elements in the worst case.  

Answer: 

 

The worst-case behavior for quick sort occurs when the partitioning routine produces one region with n - 1 

elements and one with only l element. (This claim is proved in Section 8.4.1.) Let us assume that this unbalanced 

partitioning arises at every step of the algorithm. Since partitioning costs (n) time and T(1) = (1), the 

recurrence for the running time is 

                                         T(n) = T(n - 1) + (n). 

Solving by iteration method T(n) =O(n2). 
 
 

    b)   Write the pseudo code of HEAPSORT .Illustrate the operation of HEAPSORT on the array  

                                                 A = <5, 13, 2, 25, 7, 20, 8, 4>.  

Answer: 

                                HEAPSORT(A) 

                              1. BUILD‐MAX‐HEAP(A) 

                             2. for i ← length[A] downto 2 

                             3. do exchange A[1] A[i] 

                             4. heap‐size[A] ← heap‐size[A] – 1 

                             5. MAX ‐ HEAPIFY(A, 1) 

 

 



     

  

 

 



 

 
 

 

 

 

 

 

 



 
 

 

This gives a final sorted arrayA=〈2,4,5,7,8,13,17,20,25〉 

 

 

 


