SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 2

Chapter 9

Labelled Transition Systems

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.4 6

Systems and Processes

RememberAbstractly, what is a Process?

* Processesre subsets of the events occurring in a system.

 In asequential processthe events are fully ordered in
time.

Therefore:

» A system specification idecomposednto process
specifications.

« A system implementation isomposedrom process
implementations.

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.9 11

System Composition

A system specification idecomposednto process
specifications.

A system implementation momposedrom process
implementations.

Sequential composition:every event irP, occurs before
every event irF,

Concurrent composition: No such clear ordering imposed
a priori.

Sequential processes are basic building blocks.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.20 22

Processes, Actions, Events

A processis a subset of the events occurring in a system.
The simplest possible process: empty set of events, called
STOP.

More interesting processes have events, which can also be
interpreted aactions

We assume that all actions can be decomposedioimic
actions

In a system, each event belongsitdeast oneprocess.

Events can bsharedbetween processes — several
processes caiogetherengage in a single action.

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.28 30

Processes and State

» Processes perforstate transitions— in different states, a
processs will be able to engage in different sets of actions.

— After some action, the set of possible continuing actions
may be different from before.

» Atomic actions inducéndivisible state changes

» A system composed of several processes has a state that i

composed from the states of the individual processes.

SFWR ENG 38B4 — Software Design 3— Concurrent System Design 9.33 35

Labelled Transition Systems (LTSSs)

Definition: A labelled transition system(S, s,, L, 8) consists
of

— asefSof states

— aninitial states; : S

— asetl of action labels

— atransitionrelation & :P (SxL xS).

Example:

LightSwitch, = ({dark, light}, dark, {on, off},
{(dark, on, light), (light, off, dark)})
L off
kT gy g

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.38 40

Another LTS ...

LightSwitch, = ({dark, light}, dark, {on, off},
{(dark, on, light), (light, off, dark)})
L off
‘da_rk‘ on light
LightSwitch, = ({0, 1}, 0, {on, off}, {(0, on, 1), (1,0ff, 0)})
off

Different, butisomorphic, where the isomorphism preserves
action labels and the transition relation.

— Theidentity of the states does not matter.

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.48 50

Traces

Definition: A trace of an LTS is a sequence (finite or infinite)
of action labels that results from a maximal path (with respect
to the prefix ordering) starting at the initial state.

Example:
» Sequences of action labels that result from finite paths
starting at the initial state:
on
on, off
on, off, on
on, off, on, off
» LightSwitch, has onlyone infinite trace:
on, off, on, off, on, off, ...

» LightSwitch, has the same set of traced aghtSwitch, —
they arebehaviourally equivalent

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.51 53

Concurrent Composition

» A system composed of several processes has a state that i

composed from the states of the individual processes.

Converse = (0 think 1 talk 2
<27\ scratch
Itch = tadr—— b
Converse|| Itch =
Concurrent Composition

» A system composed of several processes has a state that i

composed from the states of the individual processes.
™ think talk
—_—

Converse = [0) 1 tak o,
— scratch
Itch = { ?"’ b
(’Oa\/\; think 1a talk 2a
Converse|| Itch = scratch lscratch lscratch
ob think 1b talk b

While Converse andltch have only one trace each, their
composition has three, representanbitrary interleaving.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.58 60

Shared Actions
. S pla
Bill = (o} .~ q_meet
Ben = (a»Wok _ _meet g

In the compositiorBill || Ben,

 play andwork areconcurrent actions— the order in which
they are observed does not matter.

» Thesharedactionmeet synchronizesthe execution of the
two constituent processes.

» Traces of the compositionplay, work, meet
work, play, meet

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.60 62

Concurrent Composition of LTSs

R =(5s,L,9,) the
), isthe LTS

Definition: For F, = (S;s, L, ,) and

concurrent composmon PIIF

(§, xS, (s,8), L, 0L, d)
where

(X, %), 8, (¥, ¥,)) [D

’(xl,a,yl)Eél O X, =Y, O a0dL,-L,
[

o X, =Y, O (xz,a,yz)[iti2 O aEILZ—Ll
[

i(xl,a,yl)['cTS1 O (x,ay)o, O aldlk nl,

Composition with Shared Actions

) TN |
Bill = 70} pa)/:l meet=2
Ben = (;1 work b meet C
RIS la
 Oa &u—> la 2a
Bill ” Ben = Iwork lwork lwork
la
ob P . 2b
%\
la
Oc L 1c 2C

Unreachable states do not influence the behaviour!

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.66 68

Maker — User

ready
- use
,f—\!/ready\
User = L a./.L > b

~

Maker || User =

How many traces do these processes have?

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.68 70

Maker — User 2

ready

Maker, = (/0\) make — 2
_»\M
7~ ready use

User2 = (\\a./)— — b » C
T uwsed —

Maker, || User, =

How many traces do these processes have?

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.70 72

Factory

Factory = MakerA || MakerB || Assemble

AN read
MakerA = (0} makeA _ 4 y 5
_,/W
N read
MakerB = {0} makeB 1 y)
_,/W
Assemble = (:/a}*ready - b assemble¥ c

T used

Factory =

How manystatesdoesFactory have?

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.72 74

Maker — User 3
Maker, = (o) make _ g ready ,

T~ uwsed —

use

User. = td ——» p

T N_used

Maker, || User, =

How many traces do these processes have?

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.81 83

Deadlock

» Deadlockoccurs in asystemwhenall its constituent
processeare blocked.

» A system igdeadlockedif there are no actions it can
perform.

» A deadlock statein an LTS is a reachable state with no
outgoing transitions.

 An LTS has a deadlock state iff it hadinite trace.

* A terminating constituent process introduces “atypical
deadlock.

» “Typical” deadlocks occur inoncurrent compositionsof
processes that individually are deadlock-free.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.82 84

Liveness and Safety Properties

A safety property asserts:

“somethingbad will neverhappen”

A liveness propertyasserts:

“somethinggoodwill eventually happen

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.92 94

Safety

A safetyproperty asserts:
“somethingbad will never happen”

Important safety conditions:

e Partial correctness
—Sate predicate: If in a proper termination state, then
postcondition is satisfied.
e Invariants
—If in a certain kind of state, or before or after a certain kind
of action, then the invariant holds for the current state.
 Safe access sequences to resources
—Certain actions happen only conforming to a fixed pattern.

Such properties are often formulated usiagporal logic.

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.99 101

Safe Access Sequences

» Given a system modelled as an LIPS (S,s,L, d), accesses
to some resource (set) involve actions of a suBs@gtL.

» Forevery trace¢of P, only itsprojection onAis considered,
I.e., the sequence of those elementstbiat are inA.

» These projections need to satisfy sopnedicate.

» Conveniently: These projections have to be traces of some
(simpler) LTS

Example: SAFE = command - response - SAFE
coffee
/_\m m
User = Qart Waiting
command

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.104 106

Checking Safe Access Sequences usitlg

SAFE = command - response - SAFE
Add catch-all error state:

70 response
_ [/ ./ \comman
wremic (1)T e

response command

—_—command V(vicoﬁee

User =(S

it response O command

User || SAFEcheck =

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.111 113

Safety

|deally, a software system will be safe if it satisfies its
specification.

— However, the specification may not guarantee safety.

Safety is a greater concern in a concurrent software system
because the order of events is harder to control

Fundamental Safety Failure An action by a process or
thread that isntended to be atomicis breached by another
process or thread.

— The code that implements the atomic action is called a
critical section

— The breach of the atomic action may be unpredictable due
torace conditions

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.116 118

Liveness

A livenessproperty asserts:

“no matter when we start to ook,
somethinggoodwill eventually happen”

Example: “Philosophen cannot starve at the table.”

— No matter when we start to look, if philosopher i isat the
table, he will eventually be eating

— This can be expressed in terms of traces:
Philosophephili “cannot starve at the tablé&f for every

tracet and every positiomsuch that_ = phil.i.sitdown
there is a positiom with n > msuch that_ = phil.i.eat.

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.120 122

Liveness

Ideally, a software system will be live if it satisfies its
specification.

— However, the specification may not guarantee liveness.

Fundamental Liveness Failure

Examples:

» Deadlock
* Missed signals

Nested monitor lockouts
Livelock

Starvation

Resource exhaustion
Distributed failure

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.123 125

Branching Transitions

A state of a process from which several transitions exist
usually models one of the following:

— In this state, the process is preparecdkiact to different
environmental stimuli

— Inthis state, the proceastsby making a
(non-deterministic) choice

* non-determinism could be intended
e non-determinism could be the result of abstraction

LTSs do not differentiate betweagtion andreaction!

A process (thread) waits for an event that will never happen.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.126 128

Reactive Choice

signal signal signal
S ST A 7 A A
3= .0 wait 1 wait 2 wait 3
/v V/ ‘_/
search found
N e
Lookup = 04 notfund 1 2
W
service1) request2
Server = T
1o requestt 10N semicer — 2
Active Non-Deterministic Choice
Clientl = requestl — servicel — sleep — Clientl
Client2 = request2 - service2 — work — Client2
Clients = Clientl|| Client2
System = Clients || Server
servicel request2
— — T T
Server = 1 / 2

~_requestt 10N servicer

Concurrency is a good source of non-determinism!

Distribution is one of the best sources of
non-determinism!

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.137 139

Modelling Real Non-Deterministic Choice
How should we model a process that repeatedly tosses
acoin?

How should we model a process that bets on alternating
outcomes?

heads
Ve \\/\
Bet = |
'\]j/)‘\\\\s_léﬂé_——/’/’ T tails
Coinl = e @69 tails Coin2 = { o , foss g
TR N _heads

heads tails

. /\,"\

Coin3= 1 < Y00 =9

toss toss

Consider the compositions witBet!

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.138 140

Betting Must Not Influence the Coin ...

heads
Pia \/\L
Bet = ¢
& '\]j/)‘\\\\s_l§ﬂ§_——/’/’ T tails
Coinl :h] CE)D tails Coin2 = .‘@ 1
e N eags
Coinl || Bet =
Coin2 || Bet =

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.141 143

Betting Introduces Deadlock

heads

/"—‘\/_\
Bet = ¢
A s

heads) tails
Coin3d= 2 A T
1 toss N toss

T

2

Coin3 || Bet =

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.148 150

Non-Deterministic Choice, Traces, and Composition

Coin2 andCoin3 have the same trace set!
But, Coin2 || Bet andCoin3 || Bet havedifferent trace sets!

0 Two LTSsP, andF, areequivalentiff for every LTSQ, the
compositiond’, || QandPF, || Q have the same trace set.

This is ablack-box view: “No context enables distinction.”

tails
_ heads)
Bet= (R . T Con2= (gL loss g

/
¢

T _heads

heads) tails
Con3= 12 o
1 toss (_) toss 2

) .

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.149 151

How Not to Model Signal Handling

{"a\\M-vaUifi block _ M.use unblock

M.release

T~ 7 deliver

b) . ¢ _Hrelease

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.150 152

How Not to Model Signal Handling

{"a\\M-vaUifi block _ M.use unblock

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.151 153

How Not to Model Signal Handling

unblock

/>~ M.acquire M.use

‘0 block .

M.release

2b M.use 3b

unblock

~ M.release
// S
\Oa M.acquire la 4a

deliver deliver deliverl

M.release

finish| 0¢ ~acqure - 1€ [finish 4¢ Ifinish
H.release H.release \H.r ease
M.acquire
od 4d
M.release
SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.152 154

Modelling Signal Handling

M.release

RN 1 block M.use unbloTke

) ._.{ M.acquire 2 3 4

M.release
~ Mrelease = —— deliver fini ﬂe“ver finish deliver finish
0b = 1b op —_Muse % — Inis Inis Inis
M.acquire block
block unbloc 0
S 1s 4s
- M.release
M.use
\Oa M.acquire la ’Z‘a 3‘a‘ 4a
Jdeliver deliver . | deliver delwver“ \\\ deliver
| M.ielease
| M. |
finish| 0C “iacqure ~ 1 |finishiinish| 2C e 3¢ |finish 4c |finish
\ |
H.release H.release \ |H.release H.release\ &H.r ease
\ | | /
. \ A\ \J /
M.
od acquire 1d od M.use 3d 4d

M.release

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.156 158 SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.162 164

Labelling: Switches Labelling and Sharing
/Oﬁ\ Definition: For an action label seétand a label seA, we let
Snitch = (o on 1 A::L denote the following set dabelled actions
/@ﬁ\ FaL={f :F;q:Lefq}
Qs _ PN X.on N
x:Switeh = L0 1 Foran LTSsP = (S, s, L, 8), we define:
*The LTSP labelledwith a labelf isf:P = (S, s, {f}:iL, &),
where
a:Switch || b:Switch = xay)d, - :Lea=fa 0(xa,y) .

* The LTSP sharedamong a label sdt is
F:P=(S S FiL, &), where
Xay)d, -« O:Fa:Lea=fag 0(xa,y)d.

Labelling: Switches Sharing: Resources
off)
/\ acquire
i '/-\\ = /'_\\\/—\
Switch =) on o1 Resource oy L
X.off
x:Switch = {0} X.0n -1
a.off
(00—~ 10
a:Switch || b:Switch = {b_on b.on\ {a, b}::Resource =
b.off b.off
01 2 — 11

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.164

Sharing: Resources

acquire
Resource = SN— T
l‘x(_)/l‘\reﬁﬂy 1
a.acquire
m
{a, b}::Resource = (/O\)/—\ 1

b.releas

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.165

Sharing Resources

ResSharing = a: User || b: User || {a, b}::Resource

-7~ acquire
User = a2 - b use | ¢

T release

ResSharing =

166

167

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.167 169

Blocking Resources
ResBlocking = a:Abuser || b:User || {a, b}::Resource

<7~ acquire
Abuser = ta

: c
use release
ResBlocking =
How many traces do these processes have?
Sharing a Labelled Resource
acquire
Resource = S T
O reease — 1
printer.acquire
printer:Resource = N T
\O~— prinerrelease — 1

a.printer.acquire

i 0] 1

RN a.printer.release
b.printer.releas

{a, b} ::printer:Resource

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.172 174

An Alternative Way of Defining Primitive Processes

acq
Resource = > — —
l\?,/}W 1
. scanner.acq
printer.acq 1 - 2
A = :”o\‘,< 1P
scanner.rel 4 < printer el 3

Process Calculus Notation:

Resource = acq — rel — Resource

A = printeracq — scanneracq — copy — printer.rel —
scanner.rel — A

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.173 175

Sharing Two Resources

Resource = acq — rel — Resource

A =pracq - sc.acq — copy — prrel — screl - A

B =sc.acq — pracq — copy — sc.rel — prrel - B

Sys = a:A|| {a, b}::pr:Resource || {a, b} ::sc:Resource || b:B

left @ right
rig @ left
€3 3

left right

@ @ arise — Phil
right left

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.183 185

The Dining Philosophers

Five philosophers live together in a house.

The live of a philosopher essentially consists of alternating
phases of thinking and eating.

For eating, there is a round table with five seats and a large
bowl of spaghetti on it; between adjacent seats there is
always one fork.

Each philosopher needs two forks in order to be able to eat.

When hungry, each philosopher will sit down on a free chair,
take up the fork to his left, take up the fork to his right, eat,
put down the forks, and leave for more thinking.

Isit possiblethat the philosophersall starveto death?

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.188 190

The Dining Philosophers

Fork = get - put — Fork

Phil = sitdown - right.get —
left.get — eat —
left.put — right.put —

LetN =5
Letsucc (i) = (i + %N

Diners =

I~ (ohi:i:Phil || {phil i.right, phil succ, (i). left} ::Fork)

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.189 191

Model-Checking the Dining Philosophers Using LTSA

PHIL = (sitdown->right. get Trace to DEADLOCK
->| eft. get->eat->left. put phil.0.sitdown
->right.put->arise->PHL). phil.0.right. get

phil. 1. sitdown

FORK = (get -> put -> FORK). | phil.Lright.get

phil.2.sitdown

| | DI NERS(N=5) = phil.2.right. get
forall [i:0..N1] phi|. 3. sitdown
(phil[i]:PHL phil.3.right. get

| | {phil[i].right, phil. 4. sitdown
phil [(1+1)9%\].left}:: FORK). phil.4.right. get

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.197 199

Solutions to the Dining Philosophers Problem

Original solution: Introduce autler who restricts the
maximum number of sitting philosophers to 4.

sitdown sitdown sitdown sitdown
IR m m m
Butler = {4 R

A arse 3 aise 2\ atise 1 aise O

The butler is a counting semaphore!

Some other solutions:
« Have some philosophers pick up the left fork first.

» Make picking up both forks atomic.

« Have all philosophers decide randomly which fork to pick
up, and give priority to “hungrier” neighbours.

