SHAMBHUNATH INSTITUTE OF ENGINEERING AND TECHNOLOGY

Subject: PPL (RCS 503) B.Tech 5th - SEMESTER

FIRST SESSIONAL EXAMINATION, ODD SEMESTER (2019-2020)

Branch: (Computer Science & Engg.)
Solution
SECTION - A
Q-1) Attempt ALL parts-
 (5*1 = 5)
a) Enlist the different times at which Binding can take place.
Ans.: The most common binding times for attributes are (in chronological order):

1. Language definition

2. Language implementation

3. Program translation (compile time)

4. Link edit

5. Load

6. Program execution (run time
b) Define co-routines.
Ans: A co routine is a subprogram that has multiple entries and controls them itself

• Also called symmetric control: caller and called co routines are on a more equal basis

• A co routine call is named a resume

• The first resume of a co routine is to its beginning, but subsequent calls enter at the point just after the last executed statement in the co routine.

• Co routines repeatedly resume each other, possibly forever

• Co routines provide quasi-concurrent execution of program units (the co routines); their execution is interleaved, but not overlapped
c) Differentiate between compiler and interpreter.
	Interpreter
	Compiler

	Translates program one statement at a time.
	Scans the entire program and translates it as a whole into machine code.

	It takes less amount of time to analyze the source code but the overall execution time is slower.
	It takes large amount of time to analyze the source code but the overall execution time is comparatively faster.

	No intermediate object code is generated, hence are memory efficient.
	Generates intermediate object code which further requires linking, hence requires more memory.

	Continues translating the program until the first error is met, in which case it stops. Hence debugging is easy.
	It generates the error message only after scanning the whole program. Hence debugging is comparatively hard.

	Programming language like Python, Ruby use interpreters.
	Programming language like C, C++ use compilers.

d) Local and global variable.
Ans: Global variables are declared outside any function, and they can be accessed (used) on any function in the program. Local variables are declared inside a function, and can be used only inside that function. It is possible to have local variables with the same name in different functions.
e) Define loader & link editor.

Ans: A linker combines one or more object files and possible some library code into either some executable, some library or a list of error messages. A loader reads the executable code into memory, does some address translation and tries to run the program resulting in a running program or an error message (or both).
SECTION - B
Q-2) Attempt any two parts- (2*5 = 10)
a) Explain the various programming language paradigms.
Ans: The Procedural (Imperative) Programming Paradigm
The traditional model of computation, the procedural programming paradigm specifies a list
of operations that the program must complete to reach its final goal. It describes the steps
that change the computer’s state of memory by providing statements such as assignment
statements. This paradigm creates procedures, functions, subroutines, or methods by
splitting tasks into small pieces, thus allowing a section of code to be reused in the program
to some extent and making it easier for programmers to understand and maintain the
program structure. However, it is still difficult to solve problems, especially when they are
large and complicated, since procedural programming languages are not particularly close to
the way humans think or reason. Procedural programs are difficult to maintain and it is not
easy to reuse the code when the program is large and has many procedures or functions.
Moreover, if a modification must be made in one of its states or conditions, it is difficult and
time consuming to do so. These drawbacks make using this paradigm very expensive.
Procedural programming languages include Algol, FORTRAN, COBOL, and BASIC.
The Structured Programming Paradigm
The structured programming paradigm can be seen as a subset of the procedural
programming paradigm. Its characteristics include removing or reducing the use of global
variables, relying on the GOTO statement, and introducing variables local to blocks such as
procedures, functions, subroutines, or methods, which result in variables declared inside a
block that are invisible outside it. The structured programming paradigm is often associated
with the top-down approach. This approach first decomposes the problem into smaller
pieces. These pieces are further decomposed, finally creating a collection of individual
problems. Each problem is then solved one at a time. Though this approach is successful in
general, it causes problems later when revisions must be made. Because each change
requires modifying the program, this approach minimizes the reuse of code or modules. The
structured programming paradigm includes languages such as Pascal and C.
The Functional Programming Paradigm
The functional programming paradigm was created to model the problem rather than the
solution, thus allowing the programmer to take a high-level view of what is to be computed
rather than how. In this paradigm, the program is actually an expression that corresponds to
the mathematical function f. Thus, it emphasizes the definition of functions instead of the
execution of sequential list of instructions.
Because each function is designed to accomplish a specific task given its arguments while
not relying on an external state, the functional programming paradigm increases readability
and maintainability. However, since this paradigm corresponds less closely to current
hardware such as the Von Neumann Architecture, it can be less efficient, and its time and
space usage can be hard to justify. Also, some things are harder to fit into a model in which
functions only take inputs and produce outputs. The functional programming paradigm
includes languages such as Lisp and Scheme.
The Logic Programming Paradigm
Instead of specifying instructions on a computer, the logic programming paradigm enables
the expression of logic. It is therefore useful for dealing with problems where it is not
obvious what the functions should be. In this paradigm, programmers specify a set of facts
such as statements or relationships that are held to be true, and a set of axioms or rules
(i.e., if A is true, then B is true), and use queries to the execution environment to see
whether certain relationships hold and to determine the answer by logical inference. This
paradigm is popular for database interfaces, expert systems, and mathematical theorem
provers.

The object-Oriented Programming Paradigm
Object-oriented programming is the newest and the most prevailing paradigm. It suggests
new ways of thinking for problem-solving, since its techniques more closely model the way
humans solve problems. Traditionally, a program has been viewed as a logical procedure
that takes input processes it, and generates output. By contrast, the object-oriented
programming paradigm focuses on modeling problems in terms of entities called objects
that have attributes and behaviors and that interact with other entities using message
passing.
The key characteristics of object-oriented programming include class, abstraction,
encapsulation, inheritance, and polymorphism. A class is a template or prototype from
which objects are created that contains variables and methods, and that specifies a user-defined data type. Abstraction separates the interface from implementation. Encapsulation insulates the data by wrapping them up using various methods, and allows the internal implementation of a class to be shared by specifying what information in an object can be exchanged with others. Inheritance enables hierarchical relationships to be represented and refined. Polymorphism allows objects of different types to receive the same message and
respond in different ways.
The object-oriented programming paradigm has many benefits over traditional ones. Since it
emphasizes modular code through the abstraction and encapsulation concepts, facilitates a disciplined software development process, enables building secure programs through the data-hiding concept, and eliminates redundant code and defines new classes from existing ones with little effort through inheritance, it creates enhanced reusability, extensibility, reliability and maintainability. The object-oriented programming paradigm includes languages like Smalltalk and Eiffel.

b) Describe basic syntactic elements of a language.
Ans: Syntactic Elements of a Language
(Character set. The choice of character set is one the first to be made in designing
language syntax.
(Identifiers. The basic syntax for identifiers—a string of letters and digits beginning
with a letter—is widely accepted.
(Operator symbols. + And – are special characters that most language used to
represent the two basic arithmetic operations.
(Keywords and reserved words. A keyword is an identifier used as a fixed part of the
syntax statement. It is also a reserved word if it may also be used as a programmer –
chosen identifier.
(Noise words. These are optional words that are inserted in statements to improve
readability. COBOL provides many options.
(Comments. In relation to computers, also called remark. Text embedded in a computer program for documentation purposes. Comments usually describe what the program does, who wrote it, why it was changed, and so on. Most programming languages have syntax for creating comments so that the comments will be ignored by the compiler or assembler.
(Blank (spaces)
(Delimiters and brackets- A syntax element used to mark the beginning or end of some syntax unit such as a statement or expression. Brackets are paired delimiters Parenthesis Begin...end pairs
(Free- and fixed-field expressions- syntax is free-field if program statements may be written anywhere on an input line without regard for positioning on the line. Syntax is fix field if the positioning on an input line conveys information.

(Expressions. An expression is a piece of a statement that describes a series of computations to be performed on some of the program’s variables, such as X + Y/Z, in which the variables are X, Y, and Z and the computations are addition and division.
(Statements. A statement in a program is a basic sentence that expresses a simple idea—its purpose is to give the computer a basic instruction. Statements define the types of data allowed, how data are to be manipulated, and the ways that procedures and functions work.
c) List and describe the various mechanisms for storage representation of Structured Data types. Also describe the various specifications of Structures Data types.
Ans: Record/Structure:
A record is a data structure composed of a fixed number of components of different types.
The components may be heterogeneous, and they are named with symbolic names.
Specification of attributes of a record:
Number of components
Data type of each component
Selector used to name each component.
Implementation:
Storage: single sequential block of memory where the components are stored sequentially.
Selection: provided the type of each component is known, the location can be computed at
translation time.
Note on efficiency of storage representation:
For some data types storage must begin on specific memory boundaries (required by the
hardware organization). For example, integers must be allocated at word boundaries (e.g.
addresses that are multiples of 4). When the structure of a record is designed, this fact has
to be taken into consideration. Otherwise the actual memory needed might be more than
the sum of the length of each component in the record. Here is an example:
struct employee
{ char Division;
int IdNumber; };
The first variable occupies one byte only. The next three bytes will remain unused and then
the second variable will be allocated to a word boundary.
Careless design may result in doubling the memory requirements.

Various specifications of Structures Data types

Variable-size data structure types usually define operations that insert and delete components from structures. Arrays and records are common example of fixed-size data structure types: stacks, lists, sets, tables and files are example of variable-size types. Character strings may be of either format

d) Describe Overloaded Methods and Generic Method in detail along with the examples.
Ans: Overloaded Subprograms
An overloaded subprogram is one that has the same name as another subprogram in the
same referencing environment
–Every version of an overloaded subprogram has a unique protocol
–Unique protocol means that the number, order, or types of parameters must differ or the
return type must differ
•C++, Java, C#, and Ada include predefined overloaded subprograms and also allow users to
write multiple versions of subprograms with the same name.
Because each version of an overloaded subprogram has a unique parameter profile, the
compiler can disambiguate occurrences of calls to them by the different type parameters.
But when parameter coercions are allowed, complicate the disambiguation process
enormously. The issue is that if no method’s parameter profile matches the number and
types of the actual parameters in a method call, but two or more methods have parameter
profiles that can be matched through coercions which method should be called. A language
designer has to decide how to rank all the different coercions so that the compiler can
choose the method that best matches the call.
In Ada, the return type of an overloaded function can used to disambiguate calls. Therefore
two overloaded functions can have the same parameter profile and differ only in their
return types. Ex- If an Ada program has 2 functions named Fun, both of which take an
Integer parameter but one returns an Integer and one returns a float the following call
would be legal:-
A, B: Integer;
A: = B + Fun (7);
In this call, the call to Fun is bound to the version of Fun that returns an Integer because
choosing the version that returns a float would cause a type error.

Generic Subprograms
A generic or polymorphic subprogram takes parameters of different types on different
activations
• Overloaded subprograms provide ad hoc polymorphism
• A subprogram that takes a generic parameter that is used in a type expression that
describes the type of the parameters of the subprogram provides parametric polymorphism
Examples of parametric polymorphism: C++ template
<Class Type>
Type max (Type first, Type second) {
return first > second ? first: second;
}
• The above template can be instantiated for any type for which operator > is defined. For
example
int max (int first, int second) {
return first > second? first : second;
}
Another example of Generic Subprogram in C++
A generic subprogram (function) for swapping integer, float and character type elements-
include <iostream.h>
include <conio.h>
void swap (T &a, T &b)
{

 T temp;
temp = a;
a = b;
b = temp;
}
Void main ()
{
Int x=10, y=20;
Float a=1.2, b= 2.4;
Cout<<”Swapping integer values \n”;
Cout<<”values of x and y before swapping\n”;
Cout<<” X=”<<x<<”Y=”<<y;
Swap (x,y);
Cout<<” values of x and y after swapping\n”;
Cout<<” X=”<<x<<”Y=”<<y;
Cout<<”Swapping float values \n”;
Cout<<”values of a and b before swapping\n”;
Cout<<” A=”<<a<<”B=”<<b;
Swap (a,b);
Cout<<” values of a and b after swapping\n”;
Cout<<” A=”<<a<<”B=”<<b;
getch();
}
SECTION - C
 Q-3) Attempt any one parts- (1*5 = 5)
Using suitable examples, illustrate the difference between:

a) Static and Dynamic Type Checking
Ans: The key difference between the two is that with static type checking, the type of variable is known at compile time (it checks the type of variable before running) while with dynamic type checking, the type of variable is known at runtime (it checks the type of variable while executing)
Static Type Checking

A language is statically-typed if the type of a variable is known at compile time instead of at runtime. Common examples of statically-typed languages include Ada, C, C++, C#, JADE, Java, Fortran, Haskell, ML, Pascal, and Scala.

The big benefit of static type checking is that it allows many type errors to be caught early in the development cycle. Static typing usually results in compiled code that executes more quickly because when the compiler knows the exact data types that are in use, it can produce optimized machine code (i.e. faster and/or using less memory). Static type checkers evaluate only the type information that can be determined at compile time, but are able to verify that the checked conditions hold for all possible executions of the program, which eliminates the need to repeat type checks every time the program is executed.

A static type-checker will quickly detect type errors in rarely used code paths. Without static type checking, even code coverage tests with 100% coverage may be unable to find such type errors. However, a detriment to this is that static type-checkers make it nearly impossible to manually raise a type error in your code because even if that code block hardly gets called – the type-checker would almost always find a situation to raise that type error and thus would prevent you from executing your program (because a type error was raised).

Dynamic Type Checking

Dynamic type checking is the process of verifying the type safety of a program at runtime. Common dynamically-typed languages include Groovy, JavaScript, Lisp, Lua, Objective-C, PHP, Prolog, Python, Ruby, Smalltalk and Tcl.

Most type-safe languages include some form of dynamic type checking, even if they also have a static type checker. The reason for this is that many useful features or properties are difficult or impossible to verify statically. For example, suppose that a program defines two types, A and B, where B is a subtype of A. If the program tries to convert a value of type A to type B, which is known as downcasting, then the operation is legal only if the value being converted is actually a value of type B. Therefore, a dynamic check is needed to verify that the operation is safe. Other language features that dynamic-typing enable include dynamic dispatch, late binding, and reflection.

In contrast to static type checking, dynamic type checking may cause a program to fail at runtime due to type errors. In some programming languages, it is possible to anticipate and recover from these failures – either by error handling or poor type safety. In others, type checking errors are considered fatal. Because type errors are more difficult to determine in dynamic type checking, it is a common practice to supplement development in these languages with unit testing.

All in all, dynamic type checking typically results in less optimized code than does static type checking; it also includes the possibility of runtime type errors and forces runtime checks to occur for every execution of the program (instead of just at compile-time). However, it opens up the doors for more powerful language features and makes certain other development practices significantly easier. For example, metaprogramming – especially when using eval functions – is not impossible in statically-typed languages, but it is much, much easier to work with in dynamically-typed languages.

b) Implicit and Explicit Type Conversion
Ans: Type Conversion and Coercion
Coercion: Implicit type conversion, also known as coercion, is an automatic type conversion by the
compiler. Some languages allow, or even require compilers to provide coercion.
In a mixed type expression, a subtype s will be converted to a super type t or some subtypes
s1, s2, ... will be converted to a super type t (maybe none of the si is of type t) at runtime so
that the program will run correctly. For example:
double d;
long l;
int i;
if (d > i) d = i;
if (i > l) l = i;
if (d == l) d *= 2;
is legal in a C language program. Although d, l and i belong to different datatypes, they will
be automatically converted to the same data type each time a comparison or assignment is
executed.
Type Casting
Typecasting is making a variable of one type, such as an int, act like another type, a char, for
one single operation. To typecast something, simply put the type of variable you want the
actual variable to act as inside parentheses in front of the actual variable. (char)a will make
'a' function as a char.
Used when the programmer wants to explicitly convert one data type to another. It shows
the programmer's intention as being very clear.
i = 5.2 / f; // warning "loss of precision"
i = int(5.2 / f) // no warning but still loss
f = float(3 * i)

 Q-4) Attempt any one parts- (1*5 = 5)

a) Illustrate the different parameter passing techniques along with the example of each technique.
Ans: Parameter Passing Methods
Following are the ways in which parameters are transmitted to and/or from called
subprograms
– Pass-by-value
– Pass-by-result
– Pass-by-value-result
– Pass-by-reference
– Pass-by-name
Formal parameters are characterized by one of three distinct semantic models. They can receive data from the corresponding actual parameters.
ii. They can transmit data to the actual parameter.
iii. They can do both.

1. Pass by Value (In mode)
The value of the actual parameter is used to initialize the corresponding formal parameter
–Normally implemented by copying
–Can be implemented by transmitting an access path but not recommended (enforcing
write protection is not easy)
–Disadvantages (if by physical move): additional storage is required (stored twice) and the
actual move can be costly (for large parameters)
–Disadvantages(if by access path method): must write-protect in the called subprogram and
accesses cost more (indirect addressing)

Ex:
2. Pass by Result (out mode)
When a parameter is passed by result, no value is transmitted to the subprogram; the
corresponding formal parameter acts as a local variable; its value is transmitted to caller’s
actual parameter when control is returned to the caller, by physical move
–Require extra storage location and copy operation
Ex:
3. Pass by Value Result (In out mode)
•A combination of pass-by-value and pass-by-result
•Sometimes called pass-by-copy
•Formal parameters have local storage
•Disadvantages: –Those of pass-by-result
–Those of pass-by-value

Ex:
4. Pass by Reference (In out mode)
•Pass an access path
•Also called pass-by-sharing
•Advantage: Passing process is efficient (no copying and no duplicated storage)
•Disadvantages
–Slower accesses (compared to pass-by-value) to formal parameters
–Potentials for unwanted side effects (collisions)
–Unwanted aliases (access broadened)

Ex:
5. Pass By Name (In out mode)
(By textual substitution
(Formals are bound to an access method at the time of the call, but actual binding to
a value or address takes place at the time of a reference or assignment
(Allows flexibility in late binding

Ex:
b) Explain the term language semantics.
Ans: Syntactic Elements of a Language
(Character set. The choice of character set is one the first to be made in designing
language syntax.
(Identifiers. The basic syntax for identifiers—a string of letters and digits beginning
with a letter—is widely accepted.
(Operator symbols. + And – are special characters that most language used to
represent the two basic arithmetic operations.
(Keywords and reserved words. A keyword is an identifier used as a fixed part of the
syntax statement. It is also a reserved word if it may also be used as a programmer –
chosen identifier.
(Noise words. These are optional words that are inserted in statements to improve
readability. COBOL provides many options.
(Comments. In relation to computers, also called remark. Text embedded in a
computer program for documentation purposes. Comments usually describe what
the program does, who wrote it, why it was changed, and so on. Most programming
languages have syntax for creating comments so that the comments will be ignored
by the compiler or assembler.
(Blank (spaces)
(Delimiters and brackets- A syntax element used to mark the beginning or end of
some syntax unit such as a statement or expression.
Brackets are paired delimiters
Parenthesis
Begin...end pairs
(Free- and fixed-field expressions- syntax is free-field if program statements may be
written anywhere on an input line without regard for positioning on the line. Syntax
is fix field if the positioning on an input line conveys information.
(Expressions. An expression is a piece of a statement that describes a series of
computations to be performed on some of the program’s variables, such as X + Y/Z,
in which the variables are X, Y, and Z and the computations are addition and division.
(Statements. A statement in a program is a basic sentence that expresses a simple
idea—its purpose is to give the computer a basic instruction. Statements define the
types of data allowed, how data are to be manipulated, and the ways that
procedures and functions work. Ex:
General Syntactic Criteria(optional)
1. Readability- Program is readable if the underlying structure of the algorithm and
data represented by the programmer is apparent from an inspection of the program
test. A readable program is often said to be self documenting that is it is
understandable without any separate documentation.
2. Writ ability- The syntactic features that make a program easy to write are often in
conflict with those features that make it easy to read. The use of structured
statements, simple natural statement formats mnemonic operation symbols and
unrestricted identifiers usually make program writing easier by allowing the natural
structure of the problem, algorithms and data are to be directly represented in the
program.
3. Ease of Verifiability- Related to readability and writ ability is the concept of program
correctness or program verification. Understanding each programming language
statement is relatively easy, but the overall process of creating the correct program
is difficult.
4. Ease of Translation- The programs should be easily translated into executable form.
Ease of translation relates to the need of the translator that processes the written
program. The key to easy translation is the regularity of the structure.
5. Lack of Ambiguity- A language definition ideally provides a unique meaning for every
syntactic construct that a programmer may write. An ambiguous construction allows
two or more different interpretations.
Q-5) Attempt any one parts- (1*5 = 5)

a) Explain the structure or phases of a compiler
Ans: COMPILATION
Compilation is a process that translates a program in one language (the source language)
into an equivalent program in another language (the object or target language).

[image: image1.jpg]
Lexical Analyzer phase:
This is the first phase of a compiler. The compiler scans the source code from left to right,
character by character, and groups these characters in to tokens. The main function of this
phase is:
(Identify the lexical units in a source statement.
(Classify units into different lexical classes (e.g.: reserve words, identifiers, constants
etc) and enter them in different tables.
(Ignore comments in the source program.
The output of lexical analyzer goes as input to syntax analyzer phase.

Syntax Analysis Phase:
The main function of this phase is:
(Obtain tokens from lexical analyzer
(Check whether the expression is syntactically correct.
(Report syntax errors if any.
(Determine the statement class i.e. it is an assignment statement, condition
statement etc.
(Group tokens in to statements.
(Construct hierarchical structures called parse trees. The parse trees represent
the syntactic structures of the program.

Semantic Analysis Phase:
The main function of this phase is:
(Check phrases for semantic errors e.g. type checking. In C program, int x= 10.5;
should be detected as semantic error.
(Semantic analyzer keeps track of types of identifiers and expressions to verify
their consistent usage.
(Using the symbol table the semantic analyzer enforces a large number of rules
such as
i. Every identifier is declared before it is used.
ii. No identifier is used in an inappropriate context (e.g. adding a string to an
integer)
iii. Every function contains at least one statement that specifies a return value.

Intermediate Code Generation:
The intermediate code produces a program in a different language, at an intermediate level
between the source code and the machine code. Intermediate languages are sometimes
assembly languages. The generation of an intermediate code offers the following
advantagesThe intermediate representation should have two important properties:
• It should be easy to produce,
• And easy to translate into target program.
Code Optimization Phase:
Optimization improves programs by making them smaller or faster or both. The goal of code
optimization is to translate a program into a new version that computes the same result
more efficiently- by taking less time, memory and other resources.
Code optimisation is achieved in two ways
(Rearranging computations in a program to make them execute more efficiently.
(Eliminating redundancies in a program
Code optimization should not change the meaning of program.
Code Generation Phase:
The final phase of the compiler is the generation of target code, consisting normally of
relocatable machine code or assembly code. The code generated depends on the
architecture of the target machine.

· Memory locations are selected for each of the variables used by the program.
· Then, the each intermediate instruction is translated into a sequence of
machine instructions that perform the same task.
b) Describe sequence control in various statements with suitable examples
Ans: SEQUENCE CONTROL
Control Structure in a PL provides the basic framework within which operations and data are
combined into a program and sets of programs.
Sequence Control-> Control of the order of execution of the operations
Data Control-> Control of transmission of data among subprograms of program
Sequence Control may be categorized into four groups:
1) Expressions–
They form the building blocks for statements. An expression is a combination of variable
constants and operators according to syntax of language. Properties as precedence rules
and parentheses determine how expressions are evaluated
2) Statements–
The statements (conditional & iterative) determine how control flows from one part of
program to another.
3) Declarative Programming–
This is an execution model of program which is independent of the program statements.
Logic programming model of PROLOG.
4) Subprograms–In structured programming, program is divided into small sections and
each section is called subprogram. Subprogram calls and co-routines, can be invoked
repeatedly and transfer control from one part of program to another.
IMPLICIT AND EXPLICIT SEQUENCE CONTROL

Implicit Sequence Control
Implicit or default sequence control structures are those defined by the programming
language itself. These structures can be modified explicitly by the programmer.
eg. Most languages define physical sequence as the sequence in which statements are
executed.

Explicit Sequence Control
Explicit sequence control structures are those that programmer may optionally use to
modify the implicit sequence of operations defined by the language.
eg. Use parentheses within expressions, or goto statements and labels.

Sequence Control within Expressions

(Give Examples)
