
π-calculus

In theoretical computer science, the π-calculus (or pi-
calculus) is a process calculus. The π-calculus allows
channel names to be communicated along the chan-
nels themselves, and in this way it is able to describe
concurrent computations whose network configuration
may change during the computation.
The π-calculus is elegantly simple yet very expressive.
Functional programs can be encoded into the π-calculus,
and the encoding emphasises the dialogue nature of
computation, drawing connections with game semantics.
Extensions of the π-calculus, such as the spi calculus
and applied π, have been successful in reasoning about
cryptographic protocols. Beside the original use in de-
scribing concurrent systems, the π-calculus has also been
used to reason about business processes and molecular
biology.

1 Informal definition

The π-calculus belongs to the family of process calculi,
mathematical formalisms for describing and analyzing
properties of concurrent computation. In fact, the π-
calculus, like the λ-calculus, is so minimal that it does not
contain primitives such as numbers, booleans, data struc-
tures, variables, functions, or even the usual control flow
statements (such as if-then-else, while).

1.1 Process constructs

Central to the π-calculus is the notion of name. The sim-
plicity of the calculus lies in the dual role that names play
as communication channels and variables.
The process constructs available in the calculus are the
following (a precise definition is given in the following
section):

• concurrency, writtenP | Q , whereP andQ are two
processes or threads executed concurrently.

• communication, where

• input prefixing c (x) .P is a process waiting
for a message that was sent on a communica-
tion channel named c before proceeding as P
, binding the name received to the name x .
Typically, this models either a process expect-
ing a communication from the network or a
label c usable only once by a goto c operation.

• output prefixing c⟨y⟩.P describes that the
name y is emitted on channel c before pro-
ceeding as P . Typically, this models either
sending a message on the network or a goto c
operation.

• replication, written !P , which may be seen as a pro-
cess which can always create a new copy of P . Typ-
ically, this models either a network service or a label
c waiting for any number of goto c operations.

• creation of a new name, written (νx)P , which may
be seen as a process allocating a new constant x
within P . The constants of π-calculus are defined
by their names only and are always communication
channels. Creation of a new name in a process is
also called restriction.

• the nil process, written 0 , is a process whose execu-
tion is complete and has stopped.

Although the minimalism of the π-calculus prevents us
from writing programs in the normal sense, it is easy to
extend the calculus. In particular, it is easy to define both
control structures such as recursion, loops and sequential
composition and datatypes such as first-order functions,
truth values, lists and integers. Moreover, extensions of
the π-calculus have been proposed which take into ac-
count distribution or public-key cryptography. The ap-
plied π-calculus due to Abadi and Fournet put these var-
ious extensions on a formal footing by extending the π-
calculus with arbitrary datatypes.

1.2 A small example

Below is a tiny example of a process which consists of
three parallel components. The channel name x is only
known by the first two components.

(νx) ( x⟨z⟩. 0
| x(y). y⟨x⟩. x(y). 0 )

| z(v). v⟨v⟩.0

The first two components are able to communicate on the
channel x , and the name y becomes bound to z . The
next step in the process is therefore
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(νx) ( 0

| z⟨x⟩. x(y). 0 )

| z(v). v⟨v⟩. 0

Note that the remaining y is not affected because it is
defined in an inner scope. The second and third parallel
components can now communicate on the channel name
z , and the name v becomes bound to x . The next step
in the process is now

(νx)( 0

| x(y). 0
| x⟨x⟩. 0 )

Note that since the local name x has been output, the
scope of x is extended to cover the third component as
well. Finally, the channel x can be used for sending the
name x . After that all concurrently executing processes
have stopped

(νx)( 0

| 0
| 0 )

2 Formal definition

2.1 Syntax

Let Χ be a set of objects called names. The abstract syn-
tax for the π-calculus is built from the following BNF
grammar (where x and y are any names from Χ):[1]

P,Q,R ::=x(y).P channel on Receivex to result the bind ,y run then ,P
| x⟨y⟩.P value the Sendy channel over x run then ,P
| P |Q RunP and Qsimultaneously
| (νx)P channel new a Createx run and P
| !P of copies spawn RepeatedlyP
| 0 process the Terminate

In the concrete syntax below, the prefixes bind more
tightly than the parallel composition (|), and parentheses
are used to disambiguate.
Names are bound by the restriction and input prefix con-
structs. Formally, the sets of free and bound names of a
process in π–calculus are defined inductively as follows.

2.2 Structural congruence

Central to both the reduction semantics and the labelled
transition semantics is the notion of structural congru-
ence. Two processes are structurally congruent, if they

are identical up to structure. In particular, parallel com-
position is commutative and associative.
More precisely, structural congruence is defined as the
least equivalence relation preserved by the process con-
structs and satisfying:
Alpha-conversion:

• P ≡ Q if Q can be obtained from P by
renaming one or more bound names in P
.

Axioms for parallel composition:

• P |Q ≡ Q|P
• (P |Q)|R ≡ P |(Q|R)

• P |0 ≡ P

Axioms for restriction:

• (νx)(νy)P ≡ (νy)(νx)P

• (νx)0 ≡ 0

Axiom for replication:

• !P ≡ P |!P

Axiom relating restriction and parallel:

• (νx)(P |Q) ≡ (νx)P |Q if x is not a free
name of Q .

This last axiom is known as the “scope extension” ax-
iom. This axiom is central, since it describes how a bound
name xmay be extruded by an output action, causing the
scope of x to be extended. In cases where x is a free name
of Q , alpha-conversion may be used to allow extension
to proceed.

2.3 Reduction semantics

We write P → P ′ if P can perform a computation step,
following which it is nowP ′ . This reduction relation→ is
defined as the least relation closed under a set of reduction
rules.
Themain reduction rule which captures the ability of pro-
cesses to communicate through channels is the following:

• x⟨z⟩.P |x(y).Q → P |Q[z/y]

where Q[z/y] denotes the process Q in which
the free name z has been substituted for the free
occurrences of y . If a free occurrence of y
occurs in a location where z would not be free,
alpha-conversion may be required.
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There are three additional rules:

• If P → Q then also P |R → Q|R .

This rule says that parallel composition does
not inhibit computation.

• If P → Q , then also (νx)P → (νx)Q .

This rule ensures that computation can proceed
underneath a restriction.

• If P ≡ P ′ and P ′ → Q′ where Q′ ≡ Q , then also
P → Q .

The latter rule states that processes that are structurally
congruent have the same reductions.

2.4 The example revisited

Consider again the process

(νx)(x⟨z⟩.0|x(y).y⟨x⟩.x(y).0)|z(v).v⟨v⟩.0

Applying the definition of the reduction semantics, we get
the reduction

(νx)(x⟨z⟩.0|x(y).y⟨x⟩.x(y).0)|z(v).v⟨v⟩.0 → (νx)(0|z⟨x⟩.x(z).0)|z(v).v⟨v⟩.0

Note how, applying the reduction substitution axiom, oc-
currences of y are now labeled as z .
Next, we get the reduction

(νx)(0|z⟨x⟩.x(z).0)|z(v).v⟨v⟩.0 → (νx)(0|x(z).0|x⟨x⟩.0)

Note that since the local name x has been output, the
scope of x is extended to cover the third component as
well. This was captured using the scope extension axiom.

2.5 Labelled semantics

Alternatively, onemay give the pi-calculus a labelled tran-
sition semantics (as has been done with the Calculus of
Communicating Systems). Transitions in this semantics
are of the form:

P
α−→P ′

This notation signifies that P after the action α becomes
P ′ . α can be an input action a(x) , an output action a⟨x⟩
, or a tau-action τ corresponding to an internal commu-
nication.
A standard result about the labelled semantics is that it
agrees with the reduction semantics in the sense thatP →
P ′ if and only if P τ−→P ′ for some action τ .

3 Extensions and variants

The syntax given above is a minimal one. However, the
syntax may be modified in various ways.
A nondeterministic choice operator P + Q can be added
to the syntax.
A test for name equality [x = y]P can be added to the
syntax. Thismatch operator can proceed as P if and only
if x and y are the same name. Similarly, one may add a
mismatch operator for name inequality. Practical pro-
grams which can pass names (URLs or pointers) often
use such functionality: for directly modelling such func-
tionality inside the calculus, this and related extensions
are often useful.
The asynchronous π-calculus allows only outputs with no
suffix, i.e. output atoms of the form x⟨y⟩ , yielding a
smaller calculus. However, any process in the original
calculus can be represented by the smaller asynchronous
π-calculus using an extra channel to simulate explicit
acknowledgement from the receiving process. Since a
continuation-free output can model a message-in-transit,
this fragment shows that the original π-calculus, which
is intuitively based on synchronous communication, has
an expressive asynchronous communication model inside
its syntax. However, the nondeterministic choice oper-
ator defined above cannot be expressed in this way, as
an unguarded choice would be converted into a guarded
one; this fact has been used to demonstrate that the asyn-
chronous calculus is strictly less expressive than the syn-
chronous one (with the choice operator).[2]

The polyadic π-calculus allows communicatingmore than
one name in a single action: x⟨z1, ...zn⟩.P (polyadic out-
put) and x(z1, ...zn) (polyadic input). This polyadic ex-
tension, which is useful especially when studying types for
name passing processes, can be encoded in the monadic
calculus by passing the name of a private channel through
which the multiple arguments are then passed in se-
quence. The encoding is defined recursively by the
clauses
x⟨y1, · · · , yn⟩.P is encoded as
(νw)x⟨w⟩.w⟨y1⟩. · · · .w⟨yn⟩.[P ]

x(y1, · · · , yn).P is encoded as
x(w).w(y1). · · · .w(yn).[P ]

All other process constructs are left unchanged by the en-
coding.
In the above, [P ] denotes the encoding of all prefixes in
the continuation P in the same way.
The full power of replication !P is not needed. Often, one
only considers replicated input !x(y).P , whose structural
congruence axiom is !x(y).P ≡ x(y).P |!x(y).P .
Replicated input process such as !x(y).P can be under-
stood as servers, waiting on channel x to be invoked by
clients. Invocation of a server spawns a new copy of the
process P [a/y] , where a is the name passed by the client
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to the server, during the latter’s invocation.
A higher order π-calculus can be defined where not only
names but processes are sent through channels. The key
reduction rule for the higher order case is
x⟨R⟩.P |x(Y ).Q → P |Q[R/Y ]

Here, Y denotes a process variable which can be instan-
tiated by a process term. Sangiorgi established that the
ability to pass processes does not increase the expressiv-
ity of the π-calculus: passing a process P can be simulated
by just passing a name that points to P instead.

4 Properties

4.1 Turing completeness

The π-calculus is a universal model of computation. This
was first observed by Milner in his paper “Functions
as Processes”,[3] in which he presents two encodings of
the lambda-calculus in the π-calculus. One encoding
simulates the eager (call-by-value) evaluation strategy,
the other encoding simulates the normal-order (call-by-
name) strategy. In both of these, the crucial insight is the
modeling of environment bindings – for instance, " x is
bound to termM " – as replicating agents that respond to
requests for their bindings by sending back a connection
to the termM .
The features of the π-calculus that make these encod-
ings possible are name-passing and replication (or, equiv-
alently, recursively defined agents). In the absence of
replication/recursion, the π-calculus ceases to be Turing-
powerful. This can be seen by the fact that bisimulation
equivalence becomes decidable for the recursion-free cal-
culus and even for the finite-control π-calculus where the
number of parallel components in any process is bounded
by a constant.[4]

5 Bisimulations in the π-calculus

See also: Bisimulation

As for process calculi, the π-calculus allows for a def-
inition of bisimulation equivalence. In the π-calculus,
the definition of bisimulation equivalence (also known as
bisimilarity) may be based on either the reduction seman-
tics or on the labelled transition semantics.
There are (at least) three different ways of defining la-
belled bisimulation equivalence in the π-calculus: Early,
late and open bisimilarity. This stems from the fact that
the π-calculus is a value-passing process calculus.
In the remainder of this section, we let p and q denote
processes and R denote binary relations over processes.

5.1 Early and late bisimilarity

Early and late bisimilarity were both formulated by Mil-
ner, Parrow and Walker in their original paper on the π-
calculus.[5]

Abinary relationR over processes is an early bisimulation
if for every pair of processes (p, q) ∈ R ,

• whenever p
a(x)−−−→ p′ then for every name y

there exists some q′ such that q
a(x)−−−→ q′ and

(p′[y/x], q′[y/x]) ∈ R ;

• for any non-input action α , if p α−→p′ then there ex-
ists some q′ such that q α−→q′ and (p′, q′) ∈ R ;

• and symmetric requirements with p and q inter-
changed.

Processes p and q are said to be early bisimilar, written
p ∼e q if the pair (p, q) ∈ R for some early bisimulation
R .
In late bisimilarity, the transition match must be indepen-
dent of the name being transmitted. A binary relation R
over processes is a late bisimulation if for every pair of
processes (p, q) ∈ R ,

• whenever p a(x)−−−→p′ then for some q′ it holds that
q

a(x)−−−→q′ and (p′[y/x], q′[y/x]) ∈ R for every name
y;

• for any non-input action α , if p α−→p′ implies that
there exists some q′ such that q α−→q′ and (p′, q′) ∈ R
;

• and symmetric requirements with p and q inter-
changed.

Processes p and q are said to be late bisimilar, written
p ∼l q if the pair (p, q) ∈ R for some late bisimulation
R .
Both∼e and∼l suffer from the problem that they are not
congruence relations in the sense that they are not pre-
served by all process constructs. More precisely, there
exist processes p and q such that p ∼e q but a(x).p ̸∼e

a(x).q . One may remedy this problem by considering
the maximal congruence relations included in ∼e and ∼l

, known as early congruence and late congruence, respec-
tively.

5.2 Open bisimilarity

Fortunately, a third definition is possible, which avoids
this problem, namely that of open bisimilarity, due to
Sangiorgi.[6]
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A binary relation R over processes is an open bisimula-
tion if for every pair of elements (p, q) ∈ R and for ev-
ery name substitution σ and every action α , whenever
pσ

α−→p′ then there exists some q′ such that qσ α−→q′ and
(p′, q′) ∈ R .
Processes p and q are said to be open bisimilar, written
p ∼o q if the pair (p, q) ∈ R for some open bisimulation
R .

5.2.1 Early, late and open bisimilarity are distinct

Early, late and open bisimilarity are distinct. The con-
tainments are proper, so ∼o⊊∼l⊊∼e .
In certain subcalculi such as the asynchronous pi-calculus,
late, early and open bisimilarity are known to coincide.
However, in this setting a more appropriate notion is that
of asynchronous bisimilarity.
The reader should note that, in the literature, the term
open bisimulation usually refers to a more sophisticated
notion, where processes and relations are indexed by dis-
tinction relations; details are in Sangiorgi’s paper cited
above.

5.3 Barbed equivalence

Alternatively, one may define bisimulation equivalence
directly from the reduction semantics. We write p ⇓ a
if process p immediately allows an input or an output on
name a .
A binary relation R over processes is a barbed bisimula-
tion if it is a symmetric relation which satisfies that for
every pair of elements (p, q) ∈ R we have that

(1) p ⇓ a if and only if q ⇓ a for every name a

and

(2) for every reduction p → p′ there exists a
reduction q → q′

such that (p′, q′) ∈ R .
We say that p and q are barbed bisimilar if there exists a
barbed bisimulation R where (p, q) ∈ R .
Defining a context as a π term with a hole [] we say
that two processes P and Q are barbed congruent, written
P ∼b Q , if for every context C[] we have that C[P ] and
C[Q] are barbed bisimilar. It turns out that barbed con-
gruence coincides with the congruence induced by early
bisimilarity.

6 Applications

The π-calculus has been used to describe many different
kinds of concurrent systems. In fact, some of the most re-

cent applications lie outside the realm of traditional com-
puter science.
In 1997, Martin Abadi and Andrew Gordon proposed an
extension of the π-calculus, the Spi-calculus, as a for-
mal notation for describing and reasoning about cryp-
tographic protocols. The spi-calculus extends the π-
calculus with primitives for encryption and decryption.
In 2001, Martin Abadi and Cedric Fournet generalised
the handling of cryptographic protocols to produce the
applied π calculus. There is now a large body of work
devoted to variants of the applied π calculus, including a
number of experimental verification tools. One example
is the tool ProVerif due to Bruno Blanchet, based on a
translation of the applied π-calculus into Blanchet’s logic
programming framework. Another example is Cryptyc
, due to Andrew Gordon and Alan Jeffrey, which uses
Woo and Lam’s method of correspondence assertions as
the basis for type systems that can check for authentica-
tion properties of cryptographic protocols.
Around 2002, Howard Smith and Peter Fingar became
interested that π-calculus would become a description
tool for modelling business processes. By July 2006,
there is discussion in the community about how useful
this would be. Most recently, the π-calculus has formed
the theoretical basis of Business Process Modeling Lan-
guage (BPML), and of Microsoft’s XLANG.[7]

The π-calculus has also attracted interest in molecular bi-
ology. In 1999, Aviv Regev and Ehud Shapiro showed
that one can describe a cellular signaling pathway (the so-
called RTK/MAPK cascade) and in particular the molec-
ular “lego” which implements these tasks of commu-
nication in an extension of the π-calculus.[8] Following
this seminal paper, other authors described the whole
metabolic network of a minimal cell.[9]

7 History

The π-calculus was originally developed by Robin Mil-
ner, Joachim Parrow and David Walker in 1992, based
on ideas by Uffe Engberg and Mogens Nielsen. It can be
seen as a continuation of Milner’s work on the process
calculus CCS (Calculus of Communicating Systems). In
his Turing lecture, Milner describes the development of
the π-calculus as an attempt to capture the uniformity of
values and processes in actors.[10]

8 Implementations

The following programming languages are implementa-
tions either of the π-calculus or of its variants:

• Business Process Modeling Language (BPML)

• occam-π
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• Pict

• JoCaml (based on the Join-calculus)
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