
SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -3] [ECS-801]

ECS-801: Artificial Intelligence (AI)

 [UNIT -3]

Knowledge Representation & Reasoning: Propositional logic, Theory of

first order logic, Inference in First order logic, Forward & Backward

chaining, Resolution, Probabilistic reasoning, Utility theory, Hidden

Markov Models (HMM), Bayesian Networks.

INFERENCE AND CONTROL

Inference engine performs 2 major tasks:

 1) examines existing facts and rules and adds new facts when possible

 2) decides the order in which inferences are made.

 We shall look at Inference and Control

INFERENCE:

 Infer means " to derive as a conclusion from facts or premises".

 There are 2 common rules for deriving new facts from rules and known facts.These are

 Modus Ponens and Modus Tollens

MODUS PONENS

 *most common inference strategy

 *simple ,reaoning based on it is easily understood.

 The rule states that when A is known to be true and if a rule states " If A then B "

 it is valid to conclude that B is true.

MODUS TOLLENS

 When B is false rule If A, then B

 then A is false.

 E.g:

 Rule : IF Ahmet's CAR IS DIRTY

 THEN Ahmet HAS BEEN DRIVING OUTSIDE ANKARA

 Given fact : Ahmet has not been outside Ankara.

 New rule : Ahmet car is not dirty.

 This conclusion seems quite obvious but cannot be reached by most expert systems.

 Because they use modus ponens for deriving new facts from rules.

REASONING ABOUT UNCERTAINTY

 An inference engine should be able to handle incomplete information. The degree of certainity is

represented as a number of attached to a fact (certainty factor).

 There are three inferencing methods. These are Forward,Backward and Mixed Chaining.

FORWARD CHAINING:

 Forward Chaining(Example 1)

Problem: Does situation Z exists or not ?

 The first rule that fires is A->D because A is already in the database. Next we infer D. Existence of C and

D causes second rule to fire and as a consequence F is inferred and placed in the database. This in turn, causes

the third rule F?B->Z to fire, placing Z in the database.

 This technique is called forward chaining.

 A very simple Forward chaining Algorithm
 Given m facts F1,F2,....,Fm? N RULES

 R1,R2,......Rn

 repeat

 for i ?- 1 to n do

 if one or more current facts match the antecedent of Ri then

 1) add the new fact(s) define by the consequent

 2) flag the rule that has been fired

 3) increase m

 until no new facts have been produced.

 Forward Chaining (Example 2)

 Rule 1

 IF the car overheats , THEN the car will stall.

 Rule 2

 IF the car stalls

THEN it will cost me money

 AND I will be late getting home

 Now, the question is

 How do you arrive at conclusion that this situation will cost money and cause you to be late ?

 The condition that triggers the chain of events is the car overheating

BACKWARD CHAINING:

 Backward Chaining (Example 1)

Rule 1

 IF the car is not tuned AND the battery is weak

 THEN not enough current will reach the starter.

Rule 2

 IF not enough current reaches the starter

THEN the car will not start.

Given facts:

 The car is not tuned

 The battery is weak.

 Now, the question is

 How would you arrive at the conditions that have resulted in the car failing to start?

 Backward Chaining(Example 2)

 In such a situation backward chaining might be more cost-effective.With this inference method the system

starts with what it wants to prove, e.g.,that situation Z exists, and only executes rules that are relavent to

establishing it.Figure following shows how bacward chaining would work using the rules from the forward

chaining example.

 In step 1 the system is told to establish (if it can) that situation Z exists,It first checks the data base for

Z,and when that fails, searches for rules that conclude Z,i.e., have Z on the right side of the arrow.It finds the

rule F?B->Z, and decides that it must establish F and B in order to conclude Z.

 In step 2 the system tries to establish F, first checking the data base and then finding a rule that concludes

F. From this rule, C?D->F, the system decides it must establish C and D to conclude F.

 In steps 3 through 5 the system finds C in the data base but decides it must establish A before it can

conclude D. It then finds A in the data base.

 In steps 6 through 8 the system executes the third rule to establish D, then executes the second rule to

establish the original goal, Z.The infenece chain created here is identical to the one created by forward

chaining. The difference in two approaches hinges on the method in which data and rules are searched.

 7.5 MIXED CHAINING

 Mixed Chaining (Example)

 R1. IF F and H then K } Suppose R1-R3 are

 R2. IF E and A then K } backward chaining

 R3. IF E and B then H }

 R4. IF A and G then B } R4-R8

 R5. IF B and D then H } are forward chaining

 R6. IF G and D then E }

 R7. IF A and B then D }

 R8. IF A and C then G }

 1) Mixed Chaining with priority to backward chaining

 only resort to forward chaining when unable to backward chaining

 Assume working memory has {A,C} ?goal to determine K.

 B B B

 R1,R3,R8,R4,R7,R5,R6,R2

 2) Mixed Chaining with priority to forward chaining

 some rule -set and goal and facts

 R8,R4,R7,R5,R6,R2(B)

 Result: 9 steps v.s +steps

 CONTROL

 There are two problems addressed by the inference engine:

 1) It must have a way to decide where to start.Rules and facts reside in a static knowledge base. There must

be a way for the reasining process to begin.

 2) The inference engine must resolve conflicts that occur when alternative links of reasining emerge,The

system may reach a point where there are more than a few rules ready to fire. The inference engine must

choose which rule to examine next.

 CONFLICT RESOLUTION STRATEGIES (A PARTIAL LIST)

 Refractoriness- Once a given rule fires then that same rule will be disallowed for subsequent firing.(

Avoid applying a rule more than once for the same situation)

 Recency - Rules that apply to the most recently working elements are chosen in preference to

thosewhich apply to older working elements.

 - most complicated than others

 - because it requires that each fact in the fact set is supplemented with a time tag , (or

 stamp)

 - a unique number indicating the "time" the fact was derived.

 Ex :

 Consider the following fact set

 t1 : x=a,

 t2 : x=b,

 t3 : y=c,

 t4 : z=d

 x occurs twice at time t1 has taken value a and at time t2 obtained the value b.

 Specificity - Rules which have more conditions on the left hand side are chosen in preference to

those with fewer conditions.

 A rulebase can easily be enlarged by adding new, more specific rules to it without worrying too

much about older ones, because more specific Production Rules will prevail over more general ones.

 For example, a person encountering a friend in the street will not be inclined to think this person is a

mammal , but instead think of the person by name , just applying the most specific knowledge.

 Give priority to rules with more specific antecedents.

A general rule : If B And D Then P And Q And L.

A specific rule : If A and B And C And D Then J And K And L.

Knowledge Representation

What is Knowledge?

The Chambers 20
th

 Century Dictionary provides as good a definition as any:

knowledge, assured belief; that which is known; information; …

In order to solve the complex problems encountered in AI, one generally needs a large

amount of knowledge, and suitable mechanisms for representing and manipulating all

that knowledge.

Knowledge can take many forms. Some simple examples are:

John has an umbrella

It is raining

An umbrella stops you getting wet when it’s raining

An umbrella will only stop you getting wet if it is used properly

Umbrellas are not so useful when it is very windy

So, how should an AI agent store and manipulate knowledge like this?

What is a Knowledge Representation?

The object of a knowledge representation is to express knowledge in a computer

tractable form, so that it can be used to enable our AI agents to perform well.

A knowledge representation language is defined by two aspects:

1. Syntax The syntax of a language defines which configurations of the components

of the language constitute valid sentences.

2. Semantics The semantics defines which facts in the world the sentences refer to,

and hence the statement about the world that each sentence makes.

This is a very general idea, and not restricted to natural language.

Suppose the language is arithmetic, then

„ x‟, „ ‟ and „ y‟ are components (or symbols or words) of the language

the syntax says that „ x  y‟ is a valid sentence in the language, but „  x y‟ is

not the semantics say that „ x  y‟ is false if y is bigger than x, and true otherwise

Requirements of a Knowledge Representation

A good knowledge representation system for any particular domain should possess the

following properties:

1. Representational Adequacy – the ability to represent all the different kinds of

knowledge that might be needed in that domain.

2. Inferential Adequacy –the ability to manipulate the representational structures to

derive new structures (corresponding to new knowledge) from existing structures.

3. Inferential Efficiency – the ability to incorporate additional information into the

knowledge structure which can be used to focus the attention of the inference

mechanisms in the most promising directions.

4. Acquisitional Efficiency – the ability to acquire new information easily. Ideally the

agent should be able to control its own knowledge acquisition, but direct insertion of

information by a „knowledge engineer‟ would be acceptable.

Finding a system that optimises these for all possible domains is not going to be feasible.

Practical Aspects of Good Representations

In practice, the theoretical requirements for good knowledge representations can usually

be achieved by dealing appropriately with a number of practical requirements:

1. The representations need to be complete – so that everything that could possibly

need to be represented, can easily be represented.

2. They must be computable – implementable with standard computing procedures.

3. They should make the important objects and relations explicit and accessible – so

that it is easy to see what is going on, and how the various components interact.

4. They should suppress irrelevant detail – so that rarely used details don‟t introduce

unnecessary complications, but are still available when needed.

5. They should expose any natural constraints – so that it is easy to express how one

object or relation influences another.

6. They should be transparent – so you can easily understand what is being said.

7. The implementation needs to be concise and fast – so that information can be

stored, retrieved and manipulated rapidly.

Components of a Good Representation

For analysis purposes it is useful to be able to break any knowledge representation

down into their four fundamental components:

1. The lexical part – that determines which symbols or words are used in the

representation‟s vocabulary.

2. The structural or syntactic part – that describes theconstraints on how the

symbols can be arranged, i.e. a grammar.

3. The semantic part – that establishes a way of associatingreal world meanings

with the representations.

4. The procedural part – that specifies the access procedures that enables ways of

creating and modifying representations and answering questions using them, i.e.

how we generate and compute things with the representation.

In the following we shall look at these in more detail for some specific examples.

Knowledge Representation in Natural Language

Humans usually use natural language (English, Spanish, Chinese, etc.) to represent

knowledge, so why not use that to represent knowledge in our AI systems?

Advantages of Natural Language

1. It is extremely expressive – we can express virtually everything in natural language

(real world situations, pictures, symbols, ideas, emotions, reasoning, …).

2. Most humans use it most of the time as their knowledge representation of choice

(how many text books are not written in natural language?).

Disadvantages

1. Both the syntax and semantics are very complex and not fully understood.

2. There is little uniformity in the structure of sentences.

3. It is often ambiguous – in fact, it isusually ambiguous.

Database Systems

Simple databases are commonly used to good effect in Computer Science. They can be

use to store and manipulate virtually any kind of information.

For example, the database may consist of a number of simple records stored in ASCII

format:

Person record = { name : max 32 characters

age : 3 digits in range 000-

127 sex : male or female

marital status : single, engaged, married, divorced,

widowed employer : company code of 3 characters

children’s names : up to 8 names each with max 16 characters

}

Generally, the records can have any number of fields, containing whatever information

we need, in any format, together with any appropriate links between them

Instances in a Database System

Information in a database can be displayed in a variety of ways, for example:

A Record Structure

John Adams

025

male

single

NIL

George

Richard

Susan

A Directed Graph

025

male

 John Adams

 age

sex

 name

marital
P

status children’s names

Single
George

employer Richard

Susan

NIL

But storage and display are not enough – we also need to manipulate the knowledge.

Manipulations of a Database System

We can construct sentences in an appropriate language, for example:

“marital_status(John Adams) is single”

“marital_status(John Adams) is divorced”

“marital_status(025) is male”

We can also generate relations, for example:

R1: Employment

 
NIL John Adams

NIL Fred Smith

NIL Sam Patel

NTL Jo McNeal

 

CORRECT

INCORRECT SEMANTICS

INCORRECT SYNTAX

R2: Parent/Child

 
John Adams George

John Adams Richard

John Adams Susan

Karen Adams Richard

 

Databases as a Knowledge Representation

Traditional database systems are clearly very powerful, but for AI systems they are

rather limited. The important issues are:

Advantages

1. Databases are well suited to efficiently representing and processing large amounts

of data (and derivation from a database is virtually independent of its size).

2. We can build on traditional database systems to process more complex and more

powerful representational devices (e.g. frames).

Disadvantages

1. Only simple aspects of the problem domain can be accommodated.

2. We can represent entities, and relationships between entities, but not much more.

3. Reasoning is very simple – basically the only reasoning possible is simple lookup,

and we usually need more sophisticated processing than that.

Frame Based Systems

We can extend database records to Frames consisting of slots which can be filled by

values, or procedures for calculating values, or pointers to other frames. For example:

hotel chair

hotel room

superclass: chair

superclass: room

location: hotel room

location: hotel

height: 20-40cm

contains: (hotel chair,

hotel bed, legs: 4

hotel phone, comfortable: yes

…) use: for sitting on





Generally a whole hierarchy of frames is used to represent the required domain. It is

often helpful to represent the structure of that hierarchy as a Semantic Network.

Semantic Networks

This example from

Rich & Knight shows

the key features of a

Semantic Network

handed
Person Right

isa

Adult height
178

Male

isa
height 195

equal to bats

handed

Baseball-
Player

batting-average

 .252
isa

batting-average

.106 Pitcher

isa

batting-average
Fielder .262

 instance instance

Chicago- team Three-Finger Pee-Wee- team Brooklyn

Cubs

Brown

Reese

Dodgers

First Order Logic

The syntax and semantics of first order logic will be covered in detail elsewhere.

Some typical sentences in first order logic are:

1. man(William)  woman(Susan)

2. married(William, Susan)

3. xy[person(x)  has_mother(x,y)]

4. xy[[parents(x,y)  man(x)] man(y)

The language consists of constants {William, Susan, etc.}, variables {x, y, etc.},

functions/predicates {Married(x,y), person(x), etc.}, and the logic symbols:

Logic      

Nat. Lang. or and implies not for all there exists

We can also manipulate the logic representations to generate new knowledge.

First Order Logic as a Knowledge Representation

We can combine sentences by the „rules of logic‟ to produce new sentences, e.g.

man(Chris)

man(x)  woman(x)

woman(Chris)

As a knowledge representation, first order logic has pros and cons:

Advantages

1. It is very expressive.

2. It has unambiguous syntax and semantics.

Disadvantage

1. There is no generally efficient procedure for processing knowledge

Rule Based Systems

A rule based system consists of:

1. A database management system for handling the domain specific facts.

2. A rule set for representing the knowledge structure/relations.

3. A rule interpreter to carry out the problem solving.

A typical rule set might be:

R1. IF Raining  Outside(x)  HasUmbrella(x) THEN UseUmbrella(x)

R2. IF Raining  Outside(x) HasUmbrella(x) THEN GetWet(x)

R3. IF GetsWet(x) THEN CatchCold(x)

R4. IF Sunny  Outside(x) THEN GetSunBurnt(x)

It should be easy enough to set up an appropriate database management system.

Rule based Inference

If we have a knowledge base consisting of facts and rules, and a rule interpreter to

match the rule conditions against the facts, and a means for extracting the rules, then we

can derive new knowledge. For example, using the above rule set:

Suppose we have three initial facts: Raining, Outside(John), HasUmbrella(John).

Then only the rule R2 with „x = John‟ matches the facts, so we are able to infer
GetsWet(John). This means we now have four facts in our knowledge base: Raining,

Outside(John), HasUmbrella(John), GetsWet(John).

Then R3 with „x = John‟ matches the facts, so we can also infer CatchesCold(John),
and end up with five facts: the initial three, GetsWet(John), CatchesCold(John).

Note that there is no way we can end up with GetsSunTan(John).

The process of deriving new facts from given facts is called inference.

Rule Based Systems as a Knowledge Representation

We can see that rule based systems have many of the properties required of a knowledge

representation. However, as always, there are pros and cons:

Advantages

1. These systems are very expressive.

2. The rules lead to a degree of modularity.

3. We can easily introduce procedures for handling certainty factors, and this leads

to the possibility of probabilistic reasoning.

Disadvantage

1. There is a lack of precise semantics for the rules.

2. The systems are not always efficient.

We shall study rule based systems in detail in a series of lectures later in this module.

Which Knowledge Representation is Best?

We have now seen what is required of a knowledge representation and taken a brief tour

through a number of the most obviously plausible styles of knowledge representation.

There are clearly many more representational formalisms that might be useful. For a

start, we have only really considered symbolic representations. There also exist non-

symbolic (e.g. pictorial) representations. So-called sub-symbolic representations are also

possible (e.g. as one finds in the activation patterns of neural network systems).

Probabilistic Reasoning and Bayesian Belief Networks:-

 Probability of an Event

Consider an experiment that may have different outcomes. We are interested to know what is
the probability of a particular set of outcomes.

Let sample space S be the set of all possible outcomes
Let Event A be any subset of S

Definition 1: probability(A) = (number of outcomes in A)/ (total number of

outcomes) P(A) = |A| / |S|
i.e. the probability of A is equal to the number of outcomes of interest divided by the number of
all possible outcomes.

P(A) is called prior (unconditional) probability of A
P(~A) is the probability event A not to take place.

Example 1: the probability to pick a spade card out of a deck of 52 cards is 13/52 =
¼ The probability to pick an Ace out of a deck of 52 cards is 4/52 = 1/13

Probability Axioms:

(1) 0  P(A) 1

(2) P(A) = 1 – P(~A)

(3) P(A v B) = P(A) + P(B) – P(A & B)

P(A v B) means the probability of either A or B or both to be true
P(A&B) means the probability of both A and B to be true.

Example 2: P(~A) – The probability to pick a card that is not a spade out of a deck of 52 cards is

1 – 1/4 = 3/4
Example 3: P(A v B) – The probability to pick a card that is either a spade or an Ace is

1/4 + 1/13 - 1/4 *1/13 = 16/52 = 4/13
Another way to obtain the same result: There are 13 spade cards and 3 additional Ace cards in the set
of desired outcomes. The total number of cards is 52, thus the probability is 16/52.

Example 4: P(A&B) – The probability to pick the spade Ace is 1/52

2. Random Variables and Probability Distributions

To handle more conveniently the outcomes, we can treat them as values of so called random variables.
For example “spade” is one possible value of the variable Suit, “clubs” is another possible value. In
the card example, all values of the variable Suit are equally probable. This is not always so however.
We may be interested in the probabilities of each separate value.

The set of the probabilities of each value is called probability distribution of the
random variable.

Let X be a random variable with a domain <x1, x2, …, xn>
The probability distribution of X is denoted by P(X) = <P(X = x1), P(X=x2),
…,P(X=xn)> Note that P(X = x1) + P(X = x2) + …+ P(X = x n) = 1

Example 5: Let Weather be a random variable with values <sunny, cloudy, rainy, snowy>
Assume that records for some town show that in a year 100 days are rainy, 50 days are snowy, 120
days are cloudy (but without snow or rain) and 95 days are sunny.
i.e. P(Weather = sunny) = 95/365 = 0.26
 P(Weather = cloudy) = 120/365 = 0.33
 P(Weather = rainy) = 100/365 = 0.27
 P(Weather = snowy) = 50/365 = 0.14

Thus P(Weather) = <0.26, 0.33, 0.27, 0.14> is the probability distribution of the random
variable Weather.

3. Joint Distributions

The following example is used to illustrate conditional probabilities and joint distributions

Example 6: Consider a sample S of of 1000 individuals age 25 – 30. Assume that 600
individuals come from high-income families, 570 of those with high income have college
education and 100 individuals with low income have college education.

The following table illustrates the example:

 C ~C
 College ed. Not college ed.

H High income 570 30 600
~H Low income 100 300 400

 670 330 1000

Let H be the subset of S of individuals coming from high-income families, |H| = 600
Let C be the subset of S of individuals that have college education, |C| = 670

The prior probabilities of H, ~H, C and ~C are:

P(H) = 600 / 1000 = 0.6 (60%) P(~H) = 400 / 1000 = 0.4 (40%)

P(C) = 670 / 1000 = 0.67 (67%) P(~C) = 330 / 1000 = 0.33 (33%)

We can compute also P(H&C), P(H & ~C), P(~H & C), P(~H & ~C)

P(H&S) = |H &C| / |S| = 570/1000 = 0.57 (57%) - the probability of a randomly

selected individual in S to be of high-income family and to have college education.

P(H & ~C) = |H& ~C| / |S| = 30/1000 = 0.03 (3%) - the probability of a randomly

selected individual in S to be of high-income family and not to have college education.

P(~H & C) = |~H& C| / |S| = 100/1000 = 0.1 (10%) - the probability of a randomly

selected individual in S to be of low-income family and to have college education.

P(~H & ~C) = |~H& ~C| / |S| = 300/1000 = 0.3(30%) - the probability of a randomly

selected individual in S to be of low-income family and not to have college education.

Thus we come to the following table:

 C ~C
 College ed. Not college ed.

H High income 0.57 0.03 0.6
~H Low income 0.10 0.30 0.4

 0.67 0.33 1

Here we will treat C and H as random variables with values “yes” and “no”. The values in the
table represent the joint distribution of C and H, forexample
P(C = yes, H = yes) = 0.57

Formally, joint distribution is defined as follows:

Definition 2: Let X1, X2, .., Xn be a set of random variables each with a range of specific values.

P(X1,X2,…,Xn) is called joint distribution of the variables X1, X2, …, Xn and it is defined by a n-

dimensional table, where each cell corresponds to one particular assignment of values to the variables

X1, X2, …, Xn

Each cell in the table corresponds to an atomic event – described by a particular assignment
of values to the variables.

Since the atomic events are mutually exclusive, their conjunction is necessarily false.

Since they are collectively exhaustive, the disjunction is necessarily true.

So by axioms (2) and (3) the sum of all entries in the table is 1

Given a joint distribution table we can compute prior probabilities:

P(H) = P(H & C) + P(H& ~C) = 0.57 + 0.03 = 0.6

Given a joint distribution table we can compute conditional probabilities, discussed in the next section.

4. Conditional Probabilities

We may ask: what is the probability of an individual in S to have a college education given that
he/she comes from a high income family?

In this case we consider only those individuals that come from high income families. Their number is
600. The number of individuals with college edication within the group of high-family income is 570.
Thus the probability to have college education given high-income family is 570/600 = 0.95.

This type of probability is called conditional probability

The probability of event B given event A is denoted as P(B|A), read “P of B given A”

|C & H| In

our example, P(C|H) = ----------------
|H|

We will represent P(C|H) by P(C&H) and P(H)

C & H

|C & H| |S| P(C&H)
P(C|H) = ------------- = ------------------ = --------------

|H| |H| P(H)

|S|

Therefore

P(C|H) = P(C&H) / P(H)

Definition 3: The conditional probability of an event B to occur given that event A has occurred is

P(B|A) = P(B&A) / P(A)
P(B|A) is known also as posterior probability of B

P(B & A) is an element of the joint distribution of the random variables A and B.

In our example, P(C&H) = P(C = yes, H = yes). Thus given the joint distribution P (H, C), we can

compute the prior probability P(H), P(~H), P(C), P(~C) and then the conditional probability P(C|H),

P(C|~H), P(H|C), P(H|~C) .

Independent events

Some events are not related, for example each outcome in a sequence of coin flips is independent
on the previous outcome.

Definition 4: Two events A and B are independent if P(A|B) = P(A), and P(B|A) = P(B).

Theorem: A and B are independent if and only if P(A & B) = P(A)*P(B)

The proof follows directly from Definition 3 and Definition 4.

Another definition: X and Y are conditionally independent iff P(X|Y & Z) = P(X|Z)

Bayes' Theorem:-

From Definition 3 we have

P(A&B) = P(A|B)*P(B)
P(B&A) = P(B|A)*P(A)

However, P(A&B) = P(B&A)
Therefore

P(B|A)*P(A) = P(A|B)*P(B)

P(A|B) * P(B)
P(B|A) = ------------------------

P(A)

This is the Bayes' formula for conditional probabilities, known also as Bayes' theorem

 More than 2 variables

Bayes' theorem can represent conditional probability for more than two variables:

P(X|Y1&Y2 & …& Yn) = P(Y1 & Y2 & … & Yn | X) * P(X) / P(Y1 & Y2 & … & Yn)

Think of X as being a hypothesis, and Y1, Y2, …, Yn as being n pieces of evidence for the
hypothesis. When Y1, Y2, …, Yn are independent on each other, the formula takes the form:

P(Y1|X)*P(Y2|X)*...*P(Yn | X) * P(X)
P(X|Y1&Y2 & …& Yn) = --

P(Y1)*P(Y2)*...*P(Yn)

In case of several related events, the Bayes' formula is used in the following form:

P(X1 & X2 & … & Xn) = P(X1) * P(X2|X1) * P(X3 | X2 & X1) … P(Xn | Xn-1 & … X1)

Normalization

Consider the probability of malaria given headache

P(M|H) = P(H | M)*P(M) / P(H)

It may be more difficult to compute P(H) than P(H|M) and P(H | ~M).
We can represent P(H) trough P(H|M) and P(H | ~M).

We have:

P(M|H) = P(H | M)*P(M) / P(H)
P(~M|H) = P(H | ~M)*P(~M) / P(H)

Adding these equations we obtain

P(M|H) + P(~M|H) = (P(H | M)*P(M) + P(H | ~M)*P(~M)) / P(H)

For the left side we know that P(M|H) + P(~M|H) = 1

So we have

1 = (P(H | M)*P(M) + P(H | ~M)*P(~M)) / P(H)

Multiply both sides by P(H):

P(H) = P(H | M)*P(M) + P(H | ~M)*P(~M)

Replacing in the Byes’ Theorem P(H) with the right side above, we get:

P(H | M)*P(M)
P(M|H) = --

P(H | M)*P(M) + P(H | ~M)*P(~M)

This process is called normalization because it resembles the normalization process for functions
– multiplying a function by a chosen constan so that its values stay withun a specified range.

 Relative Likelihood of two events

Given that you have a headache, is it more likely that you have flu rather than plague?

P(plague|headache) = P(headache | plague) * P(plague) / P(headache)
P(flu | headache) = P(headache | flu) * P(flu) / P(headache)

The ratio

P(plague|headache) P(headache | plague) * P(plague)
----------------------- = --
P(flu | headache) P(headache | flu) * P(flu)

is called relative likelihood of having plague vs having flu given headache. It can be computed without
knowing P(headache).

In general, the relative likelihood of two events B and C given A is computed as follows

P(B | A) P(A | B) * P(B)
----------- = ------------------------
P(C | A) P(A | C) * P(C)

 Example: The Monty Hall game

You are about to choose your winning in a game show. There are three doors behind one of which is
a red Porsche and other two, goats. You will get whatever is behind the door you choose. You pick a
door, say A. At this point the game show host opens one of the other two doors, which he knows to
contain a goat, for example B and asks if you would now like to revise your choice to C. The
question is: Should you? (Assuming you want the car and not the goat.)

Let P(PA). P(PB), and P(PC) be the probabilities of the Porsche being behind door A, door B and door
C respectively. We assume that the car is randomly placed, so

P(PA) = P(PB) = P(PC) = 1/3

Let O be the event that Monty Hall opens door B.
The Monty Hall Problem can be restated as follows: is P(PA | O) = P(PC| O)

By the Bayes' Theorem we have:
P(O | PA) * P(PA)

P(PA | O)= ----------------------
P(O)

P(O | PC) * P(PC)

P(PC | O)= ----------------------
P(O)

We have to compute P(O), P(O|PA) and P(O|PC)

P(O | PA) = 1/ 2 , if the car is behind A, Monty Hall can open either B or C
P(O | PB) = 0 , if the car is behind B, Monty Hall will not open B
P(O | PC) = 1 , if the car is behind C, Monty Hall can only open door B

P(O) = P(O|PA)* P(PA) + P(O|PB) * P(PB)+ P(O|PC) * P(PC) (see section 5.2. Normalization)

P(O) = 1/3 * (1/2 + 0 + 1) = 1/2
Therefore we obtain:

P(PA | O) = (1 / 2 * 1 / 3) / (1 / 2) = 1/3
P(PC | O) = (1 * 1/3) / (1 / 2) = 2/3

So, if you switch to door C, you double your chance to win the Porsche.

Useful expressions

P(A & B)
P(A|B) = --------------

P(B)

P(A & B)
P(A|B) = -------------------------------

P(A & B) + P(~A & B)

P(B|A) * P(A)
P(A | B) = -----------------------

P(B)

P(B|A) * P(A)
P(A | B) = ---------------------------------------

P(B|A)*P(A) + P(B|~A) * P(~A)

 Simple Bayesian Concept Learning

The Bayes' theorem can be used to solve the following problem:
Determine the most probable hypothesis out of n possible hypotheses H1, H2 , .., Hn , given a set
of evidence E. For each Hi we can compute

P(E|Hi) * P(Hi)
P(Hi | E) = -----------------------

P(E)

and take the hypothesis Hk for which P(Hk | E) has the greatest value.

This is a maximization problem – we are not looking for the particular value of each P(Hi | E) , we are
looking the hypothesis for which the posterior probability is maximum. Hence we can simplify the
expression to be computed based on the following considerations:

a) The evidence is not dependent on the hypotheses, so we can remove P(E) :

P(Hi | E) = P(E|Hi) * P(Hi)

b) Assuming that all hypotheses are equally likely (same prior probability), we can remove
the prior probability

P(Hi | E) = P(E|Hi)
We choose the hypothesis for which the value of P(E|Hi) is highest.
P(E|Hi) is known as the likelihood of the evidence E given the hypothesis Hi .

First-order logic

• First-order logic (FOL) models the world in terms of
– Objects,:which are things with individual identities
– Properties :of objects that distinguish them from other objects
– Relations :that hold among sets of objects
– Functions:which are a subset of relations where there is only one

“value” for any given “input”
• Examples:

– Objects: Students, lectures, companies, cars ...

– Relations: Brother-of, bigger-than, outside, part-of, has-color,
occurs-after, owns, visits, precedes, ...

– Properties: blue, oval, even, large, ...
– Functions: father-of, best-friend, second-half, one-more-than ...

User provides

• Constant symbols, which represent individuals in the world
– Mary
– 3
– Green

• Function symbols, which map individuals to individuals
– father-of(Mary) = John
– color-of(Sky) = Blue

• Predicate symbols, which map individuals to truth values
– greater(5,3)
– green(Grass)
– color(Grass, Green)

FOL Provides

• Variable symbols
– E.g., x, y, foo

• Connectives

– Same as in PL: not (), and (), or (), implies (),
if and only if (biconditional )

• Quantifiers
– Universal x or (Ax)
– Existential x or (Ex)

Sentences are built from terms and atoms

• A term (denoting a real-world individual) is a constant symbol,
a variable symbol, or an n-place function of n terms.

x and f(x1, ..., xn) are terms, where each xi is a
term. A term with no variables is a ground term

• An atomic sentence (which has value true or false) is an n-
place predicate of n terms

• A complex sentence is formed from atomic sentences

connected by the logical connectives:

P, PQ, PQ, PQ, PQ where P and Q are sentences

• A quantified sentence adds quantifiers  and 

• A well-formed formula (wff) is a sentence containing no

“free” variables. That is, all variables are “bound” by universal
or existential quantifiers.

(x)P(x,y) has x bound as a universally quantified variable, but y is free.

Quantifiers

• Universal quantification

– (x)P(x) means that P holds for all values of x in
the domain associated with that variable

– E.g., (x) dolphin(x)  mammal(x)
• Existential quantification

– ( x)P(x) means that P holds for some value of x in
the domain associated with that variable

– E.g., ( x) mammal(x)  lays-eggs(x)

– Permits one to make a statement about some
object without naming it

Quantifier Scope

• Switching the order of universal quantifiers does not
change the meaning:
– (x)(y)P(x,y) ↔ (y)(x) P(x,y)

• Similarly, you can switch the order of

existential quantifiers:
– (x)(y)P(x,y) ↔ (y)(x) P(x,y)

• Switching the order of universals and existentials

does change meaning:
– (x)(y) likes(x,y)
– (y)(x) likes(x,y)

Connections between All and Exists

We can relate sentences involving  and
 using De Morgan’s laws:

(x) P(x) ↔ (x) P(x)

(x) P ↔ (x) P(x)

(x) P(x) ↔  (x) P(x)

(x) P(x) ↔ (x) P(x)

Translating English to FOL

Every gardener likes the sun.
You can fool some of the people all of the
time. You can fool all of the people some of
the time. All purple mushrooms are
poisonous.
No purple mushroom is poisonous.
There are exactly two purple mushrooms.
Clinton is not tall.
X is above Y iff X is on directly on top of Y or there is a pile of one or more

other objects directly on top of one another starting with X and ending
with Y.

Translating English to FOL

Every gardener likes the sun.

x gardener(x)  likes(x,Sun)

You can fool some of the people all of the time.

x t person(x) time(t)  can-fool(x,t)

You can fool all of the people some of the time.

x t (person(x)  time(t) can-fool(x,t)) Equivalent x (person(x)

t (time(t) can-fool(x,t))

All purple mushrooms are poisonous.

x (mushroom(x)  purple(x))  poisonous(x)

No purple mushroom is poisonous.

x purple(x)  mushroom(x)  poisonous(x) Equivalent

x (mushroom(x)  purple(x)) poisonous(x)

There are exactly two purple mushrooms.

x y mushroom(x)  purple(x)  mushroom(y)  purple(y) ^ (x=y) z

(mushroom(z)  purple(z))  ((x=z)  (y=z))

Clinton is not tall.

tall(Clinton)

X is above Y iff X is on directly on top of Y or there is a pile of one or more other

objects directly on top of one another starting with X and ending with Y.

x y above(x,y) ↔ (on(x,y) z (on(x,z)  above(z,y)))

Example: A simple genealogy KB by FOL

• Build a small genealogy knowledge base using FOL that
– contains facts of immediate family relations (spouses, parents, etc.)
– contains definitions of more complex relations (ancestors, relatives)
– is able to answer queries about relationships between people

• Predicates:
– parent(x, y), child(x, y), father(x, y), daughter(x, y), etc.
– spouse(x, y), husband(x, y), wife(x,y)
– ancestor(x, y), descendant(x, y)
– male(x), female(y)
– relative(x, y)

• Facts:
– husband(Joe, Mary), son(Fred, Joe)
– spouse(John, Nancy), male(John), son(Mark, Nancy)
– father(Jack, Nancy), daughter(Linda, Jack)
– daughter(Liz, Linda)
– etc.

• Rules for genealogical relations
– (x,y) parent(x, y) ↔ child (y, x)

(x,y) father(x, y) ↔ parent(x, y)  male(x) (similarly for mother(x, y))
(x,y) daughter(x, y) ↔ child(x, y)  female(x) (similarly for son(x, y))

– (x,y) husband(x, y) ↔ spouse(x, y)  male(x) (similarly for wife(x, y))
(x,y) spouse(x, y) ↔ spouse(y, x) (spouse relation is symmetric)

– (x,y) parent(x, y)  ancestor(x, y)
(x,y)(z) parent(x, z)  ancestor(z, y)  ancestor(x, y)

– (x,y) descendant(x, y) ↔ ancestor(y, x)
– (x,y)(z) ancestor(z, x)  ancestor(z, y)  relative(x, y)

(related by common ancestry)

(x,y) spouse(x, y)  relative(x, y) (related by marriage)
(x,y)(z) relative(z, x)  relative(z, y)  relative(x, y)
(transitive) (x,y) relative(x, y) ↔ relative(y, x) (symmetric)

• Queries

– ancestor(Jack, Fred) /* the answer is yes */

– relative(Liz, Joe) /* the answer is yes */

– relative(Nancy, Matthew)

/* no answer in general, no if under closed world assumption */

– (z) ancestor(z, Fred)  ancestor(z, Liz)

Semantics of FOL

• Domain M: the set of all objects in the world (of interest)
• Interpretation I: includes

– Assign each constant to an object in M
– Define each function of n arguments as a mapping M

n
 => M

– Define each predicate of n arguments as a mapping M
n
 => {T, F}

– Therefore, every ground predicate with any instantiation will have a
truth value

– In general there is an infinite number of interpretations because |M| is

infinite
• Define logical connectives: ~, ^, v, =>, <=> as in PL
• Define semantics of (x) and (x)

– (x) P(x) is true iff P(x) is true under all interpretations
– (x) P(x) is true iff P(x) is true under some interpretation

• Model: an interpretation of a set of sentences such that
every sentence is True

• A sentence is
– satisfiable if it is true under some interpretation
– valid if it is true under all possible interpretations

– inconsistent if there does not exist any interpretation under which the

sentence is true

• Logical consequence: S |= X if all models of S are

also models of X

Resolution

• Reminder: Resolution rule for propositional logic:

– P1  P2  ...  Pn

 P1  Q2  ...  Qm

– Resolvent: P2  ...  Pn  Q2  ...  Qm

• Examples
– P and  P  Q : derive Q (Modus Ponens)
– ( P  Q) and ( Q  R) : derive  P  R
– P and  P : derive False [contradiction!]
– (P  Q) and ( P  Q) : derive True

Resolution in first-order logic

• Resolution is sound and complete for FOL
• Given sentences

P1  ...  Pn and Q1  ...  Qm

• in conjunctive normal form:
– each Pi and Qi is a literal, i.e., a positive or negated predicate

symbol with its terms,
• if Pj and Qk unify with substitution list θ, then derive

the resolvent sentence:

subst(θ, P1 ...  Pj-1  Pj+1 ... Pn  Q1  …Qk-1  Qk+1 ...  Qm)

• Example

– from clause P(x, f(a))  P(x, f(y))  Q(y)

– and clause P(z, f(a))Q(z)

– derive resolvent P(z, f(y))  Q(y)  Q(z)

– using θ = {x/z}

Resolution refutation

• Given a consistent set of axioms KB and goal sentence
Q, show that KB |= Q

• Proof by contradiction: Add Q to KB and try to prove

false.

i.e., (KB |- Q) ↔ (KB Q |- False)

• Resolution is refutation complete: it can establish that a
given sentence Q is entailed by KB, but can’t (in general) be
used to generate all logical consequences of a set of sentences

Resolution example

• KB:
– allergies(X)  sneeze(X)
– cat(Y)  allergic-to-cats(X)  allergies(X)
– cat(Felix)
– allergic-to-cats(Lise)

• Goal:
– sneeze(Lise)

Refutation resolution proof tree

allergies(w) v sneeze(w) cat(y) v ¬allergic-to-cats(z)allergies(z)

w/z

cat(y) v sneeze(z)  ¬allergic-to-cats(z) cat(Felix)

y/Felix

sneeze(z) v ¬allergic-to-cats(z) allergic-to-cats(Lise)

z/Lise

sneeze(Lise) sneeze(Lise)

false

negated query

UTILITY THEORY

A CLASSIFICATION OF DECISION MAKING

 Decision under Certainty

Definition 1. We say that the decision is taken under certainty if each action is
known to lead invariably to a specific outcome (prospect, alternative, etc.).

Mathematical tools: the calculus to find maxima and minima of functions, the
calculus of variations to find functions, production schedules, inventory schedules, etc.

Decision under Risk

Definition 2. We say that the decision is taken under risk if each action leads to
one of a set of possible specific outcomes, each outcome occurring with a known
probability.

Remark. Certainty is a degenerate case of risk where the probabilities are 0 and 1.

Example 1. An action might lead to a reward of $10 if a fair coin comes up heads, and
a loss of $5 if it comes up tails.

Example 2. More generally, consider a gamble in which one of n outcomes will occur,
and let the possible outcomes be worth a1, a2, . . . an euros, respectively. Suppose that it
is known that the respective probabilities of these outcomes are p1, p2, . . . , pn , where
each pi lies between 0 and 1 (inclusive) and their sum is 1. How much is it worth to
participate in this gamble?

The monetary expected value: b = a1p1 + a2p2 + · · · + anpn .

Objections to the monetary expected value – St. Petersburg Paradox:

Peter tosses a coin and continues to do so until it should land ”heads” when it
comes to the ground. He agrees to give Paul one ducat if he gets ”heads” on the very
first throw, two ducats if he gets it on the second, four if on the third, eight if on the
fourth, and so on, so that with each additional throw the number of ducats he must pay
is doubled. Suppose we seek to determine the value of Paul’s expectation.

The mean value of the win in ducats:

1 · 12 + 2 · 2
1
2 + 22 · 2

1
3 + · · · + 2n · 2n

1
+1 + · · · = ∞

Paradox: a reasonable person sells – with a great pleasure – the engagement in the
play for 20 ducats.

Daniel Bernoulli: a gamble should be evaluated not in terms of the value of its

alternative pay-offs but rather in terms of the value of its utilities, which he derived to
be logarithmic functions.

Decision under Uncertainty

Definition 3. We say that the decision is taken under uncertainty if either action
has as its consequence a set of possible specific outcomes, but the probabilities of
these outcomes are completely unknown or are not even meaningful.

AXIOMATIC UTILITY THEORY

Rational Preferences

Consider a finite set {A1, A2, . . . , Ar } of basic alternatives or prizes. A lottery
(p1A1, p2A2, . . . , pr Ar)

is a chance mechanism which yields the prizes A1, A2, . . . , Ar as outcomes with
known probabilities p1, p2, . . . , pr , where each pi ≥ 0, p1 + p2 · · · + pr = 1. Let us
order the alternatives downwards from the most to the least preferred one.

Among the basic alternatives, we use the symbolism Ai % Aj to denote that Aj is

not preferred to Ai . Equivalently, we say that Ai is preferred or indifferent to Aj .

Assumption 1 (ordering of alternatives). The ”preference or indifference” ordering over
all basic alternatives is complete and transitive: for any Ai and Aj , either Ai % Aj or Aj
% Ai holds; and if Ai % Aj and Aj % Ak then Ai % Ak .

Now suppose that L(1), L(2), . . . , L(s) are any s lotteries which each involve A1, A2, . .
. , Ar as prizes. If q1, q2, . . . , qr are any s nonnegative numbers which sum to 1, then

¡q1L
(1), q2L

(2), . . . , qsL
(s)¢

denotes a compound lottery in the following sense: one and only one of the given s
lotteries will be the prize, and the probability that it will be L(i) is qi .

For the sake of simplification, let us denote A1 the most preferred alternative, Ar

the least preferred one.

Assumption 2 (reduction of compound lotteries). Any compound lottery is indif-ferent
to a simple lottery with A1, A2, . . . , Ar as prizes, their probabilities being computed
according to the ordinary probability calculus. In particular, if

³ ´
L(i) = p(

1
i)A1, p

(
2
i)A2, . . . , p

(
r
i)Ar , for i = 1, 2, . . . , s,

then

¡q1L
(1), q2L

(2), . . . , qsL
(s)¢ ∼ (p1A1, p2A2, . . . , pr Ar),

where
pi = q1p

(1)
i + q2p

(2)
i + · · · + qsp

(
i
s).

Assumption 3 (continuity). Each prize Ai is indifferent to some lottery involving just

A1 and Ar . That is, there exists a number ui such that Ai is indifferent to

(uiA1, 0A2, . . . , 0Ar−1, (1 − ui)Ar).
For convenience, we write:

˜

Ai ∼ (uiA1, (1 − ui)Ar) = Ai.

˜ is substitutable for Ai , that
is,

Assumption 4 (substitutibility). In any lottery L, Ai

() ∼ (˜) p1A1, p2A2, . . . , piAi, . . . , pr Ar p1A1, p2A2, . . . , piAi, .

. . , pr Ar .

Assumption 5 (transitivity). Preference and indifference among lotteries are transi-tive

relations.

Assumption 6 (monotonicity). A lottery (pA1, (1 − p)Ar) is preferred or indifferent to

(p0A1, (1 − p0)Ar) if and only if p ≥ p0.

Theorem 1. If the preference or indifference relation 6,
there are numbers ui associated with the basic prizes
and L0 the magnitudes of the expected values

% satisfies assumptions 1
trough Ai such that for two
lotteries L

p1u1 + p2u2 + · · · + pr ur and p0

1u1 + p0
2u2 + · · · + p0

r ur
reflect the preference between the lotteries.

Definition 4. If a person imposes a transitive preference relation % over a set of
lotteries and if to each lottery L there is assigned a number u(L) such that the
magnitudes of the numbers reflect the preferences, i.e., u(L) ≥ u(L0) if and only if
L % L0, then we say there exists a utility function u over the lotteries.

If, in addition, the utility function has the property that

u (qL, (1 − q)L0) = qu(L) + (1 − q)u(L0)

for all probabilities q and lotteries L and L0, then we say the utility function is
linear.

	7.1
	7.2
	7.3
	7.4
	7.5
	page1
	page3
	page5
	page7
	page9
	page11
	page13
	page15
	page17
	page19
	page21
	page23
	page25
	page27
	page29
	page31
	page33
	page35
	page37
	page3
	page5
	page7
	page9
	page13
	page15
	page1
	page3
	page5
	page7
	page9
	page11
	page13
	page15
	page17
	page19
	page21
	page23
	page25
	page27
	page29
	page31
	page33
	page35
	page37
	page39
	page3
	page5

