
A Brief Introduction to Mobility Workbench (MWB)

Mikkel Bundgaard

Theory Department

IT University of Copenhagen

Glentevej 67, DK-2400 NV, Denmark

{mikkelbu}@itu.dk

February 2, 2004

Contents

1 Accessing the Workbench 2

1.1 Downloading the Files . 2
1.2 Starting MWB . 2

2 Syntaxs of CCS Expressions 3

3 Features of the Workbench 3

3.1 Define Agents . 3
3.1.1 A simple agent . 3
3.1.2 A Two-element Buffer . 4

3.2 Running Agents Interactively . 4
3.2.1 Running the Two-element Buffer . 5

3.3 Handling the Agents . 6
3.4 Loading agents or Using Emacs . 6
3.5 Using Emacs . 6
3.6 Using our Favorite Editor . 6
3.7 Quitting MWB . 7
3.8 Getting more Information out of MWB . 7

4 Reading Error Descriptions in MWB 7

5 Supplementary Reading 8

1

1 ACCESSING THE WORKBENCH

Introduction

This document contains a brief description of the CCS fragment of the Mobility Work-
bench (MWB) http://www.it.uu.se/research/group/mobility/mwb version MWB’99.
MWB is a tool for describing and analyzing mobile concurrent systems described in the π-
calculus [Mil99, MPW92, Mil91], and Calculus of Communicating Systems (CCS) [Mil89].

The document describes the following: how to “install” MWB on either Windows or
Linux, how to use MWB, features of MWB, and references for further reading.

1 Accessing the Workbench

You can use a precompiled heap-image, which together with a little bat/shell script (de-
pending on your choice of OS) should be sufficient to run MWB.

If you want to run MWB at home, you must also have Standard ML of New Jersey
(SML/NJ) installed in addition to MWB, since MWB depends on the runtime-environment
of SML/NJ. The heap-image has only been tested with SML/NJ version 110.0.7, but it
will probably also work with newer versions. SML/NJ can be downloaded from http:

//smlnj.org/.

1.1 Downloading the Files

The files accompanying this document can be found on the tools page of the course home-
page http://www.itu.dk/courses/IMDD/F2004/tools.html or directly using these links.
The heap-image for Windows can be downloaded from here1

http://www.itu.dk/courses/IMDD/F2004/download/mwb.x86-win32

and the accompanying bat-file from here
http://www.itu.dk/courses/IMDD/F2004/download/mwb.bat.

The heap-image for Linux can be downloaded from here
http://www.itu.dk/courses/IMDD/F2004/download/mwb.x86-linux

and the accompanying shell-script from here
http://www.itu.dk/courses/IMDD/F2004/download/mwb.sh.

No installation procedure is necessary, since we have a heap-image, just put the two
files in the same folder and start MWB by executing the relevant script (executing either
mwb.sh in a bash-shell or mwb.bat in a DOS-prompt).

1.2 Starting MWB

When you start MWB then you will be greeted by the following screen2.

The Mobility Workbench

(MWB ’99, version 4.135, built Thu Jan 8 12:20:40 2004)

MWB>

The MWB is now ready for an interactive session.

1Notice that Internet Explorer sometimes removes the extension of the file, so the file must be renamed.
2In all session-snippets mentioned below MWB> is written by MWB and the rest of the line is written by

the user. All lines not starting with either MWB> or Step> is written entirely by MWB.

2

http://www.it.uu.se/research/group/mobility/mwb
http://smlnj.org/
http://smlnj.org/
http://www.itu.dk/courses/IMDD/F2004/tools.html
http://www.itu.dk/courses/IMDD/F2004/download/mwb.x86-win32
http://www.itu.dk/courses/IMDD/F2004/download/mwb.bat
http://www.itu.dk/courses/IMDD/F2004/download/mwb.x86-linux
http://www.itu.dk/courses/IMDD/F2004/download/mwb.sh

3 FEATURES OF THE WORKBENCH

2 Syntaxs of CCS Expressions

Since this is a introduction to the CCS fragment of MWB, we here presents the syntax of
a CCS expression P:

P ::= 0 the inactive process
α.P perform the action α and continue as P
P1 | P2 run P1 and P2 in parallel
P1 + P2 run either as P1 or P2
Id 〈 nlist 〉 run as the process named Id instantiated with the names in nlist

(^ nlist)P restrict the names in nlist

(P) parentheses are used for enforcing precedence

where α can be either name (an input action on name), ’name (an output action on name)3,
or t (the internal action), and nlist is a (non-empty) comma-separated list of names. A
name must be started with a lower-case letter. Id is a process identifier, which must start
with an upper-case letter.

The parallel operator | binds stronger than summation +, and both are weaker than
prefix α.P. So for example the following expression

a.b.0 + ’v.0 | ’a.’b.0

should be read as

(a.b.0) + ((’v.0) | (’a.’b.0))

Comments are started with the delimiter (* and ended with *). For examples on the
syntax of CCS expressions and what the constructions mean, see Section 3.1 and 3.2.

3 Features of the Workbench

This section describes the relevant features and commands of MWB.

3.1 Define Agents

3.1.1 A simple agent

An agent declaration, which defines an agent identifier, can be declared as follows:

MWB>agent P(a,b) = ’a.b.P<a,b>

This declares the agent identifier P as a process which first outputs on a, then inputs
on b, and then goes back and behave as P again (instantiating with the same names).
Processes in MWB must be closed, meaning that all unrestricted names used in the process
must appear as formal parameters to the process. So since the names a and b are not
restricted they appear as formal parameters to the process.

When we use the process we can instantiate these formal parameters with names,
otherwise MWB will choose some arbitrary names, which have not been used before. See
the first example in Section 3.2, where we instantiate with the names x and y.

When declaring an agent identifier the left-hand side of = must consist of agent followed
by an agent identifier, again followed by a list of formal parameters (possibly empty). The
right-hand side must follow the grammar as defined in the beginning of Section 2.

3The sign ’ is the key just to the right of ø on a danish keyboard

3

3 FEATURES OF THE WORKBENCH 3.2 Running Agents Interactively

3.1.2 A Two-element Buffer

If we look at the following declaration of a two-element buffer (accessible from http:

//www.itu.dk/courses/IMDD/F2004/download/buffer.ag), where we have abstracted
away the actual content of the buffer:

MWB>agent Buf0(in,out) = in.Buf1<in,out>

MWB>agent Buf1(in,out) = in.Buf2<in,out > + ’ out.Buf0<in,out>

MWB>agent Buf2(in,out) = ’ out.Buf1<in,out>

Here we declare the buffer using three interconnected agent declarations. We use one
agent declaration for each state that the buffer can be in:

Buf0 The Buffer is empty, so it is only possible to put something in it and it then behave
as Buf1.

Buf1 The buffer contains one element, so we can either put another element in the buffer
(and become Buf2), or remove the element from the buffer (and behave as Buf0).

Buf2 The buffer now contains two elements (and is thereby full), so the only thing we
can do is to remove an element (and continue as Buf1).

The buffer can be drawn as the state-transition diagram in Figure 1, where we represent
the states as circles and the possible actions (transitions) of a state is represented by the
out-going arcs from the circle.

Figure 1: The state-transition diagram of the buffer

Notice that it is necessary to pass the names in and out as argument between the
agents, in order to ensure, that they all use the same names for input and output (and
thereby maintains a consistent interface to the environment).

When we later will run or otherwise use the agent definitions, we can instantiate these
names to what we think is fitting. For a sample run of the buffer see Section 3.2.1.

3.2 Running Agents Interactively

You can use the command step P to interactively run a defined process P step-by-step.
As an example we use the declaration from Section 3.1.1 and we instantiate the names of
P with x and y.

At each step of the simulation MWB present us with the different possible actions of
the process (numbered from 0 to N). We can then choose one of the actions and MWB will
then present us for the new choices etc.

4

http://www.itu.dk/courses/IMDD/F2004/download/buffer.ag
http://www.itu.dk/courses/IMDD/F2004/download/buffer.ag

3 FEATURES OF THE WORKBENCH 3.2 Running Agents Interactively

MWB>step P<x,y>

* Valid responses are:

a number N >= 0 to select the Nth commitment,

<CR> to select commitment 0,

q to quit.

0: |>’x.y.P<x,y>

Step>0

0: |>y.’x.y.P<x,y>

Step>0

[Circular behaviour detected]

0: |>’x.’y.P<x,y>

Step>q

MWB>

Typing q terminates the simulation. Notice that MWB discovers (signaled with [Cir-

cular behaviour detected]) if we enter a state that we have been in before.

3.2.1 Running the Two-element Buffer

The following is an sample run of the two-element buffer defined in Section 3.1.2.

MWB>step Buf0<in, out>

* Valid responses are:

a number N >= 0 to select the Nth commitment,

<CR> to select commitment 0,

q to quit.

0: |>in.(in.Buf2<in,out > + ’ out.Buf0<in,out>)

Step>0

0: |>in.’out.Buf1<in,out>

1: |>’ out.in.Buf1<in,out>

Step>0

0: |>’ out.(in.Buf2<in,out > + ’ out.Buf0<in,out>) (*)

Step>0

[Circular behaviour detected]

0: |>in.’out.Buf1<in,out>

1: |>’ out.in.Buf1<in,out>

Step>1

[Circular behaviour detected]

0: |>in.(in.Buf2<in,out > + ’ out.Buf0<in,out>)

Step>q

...

As noted in the previous sections we can decide to instantiate the names to something
else (but here we have just decided to keep the original names).

In the concrete example above we first input an element, then input another. The
buffer is now full and the only possible action is to remove an element from the buffer, so
only the possibility 0 is available (indicated in the example with (*)).

5

3 FEATURES OF THE WORKBENCH 3.3 Handling the Agents

3.3 Handling the Agents

One can use the command env to print all the current agent declarations, and env Buf0

just to print out the declaration of Buf0. For example after the declaration of the two-
element buffer in Section 3.1.2 the output is the following:

MWB>env

agent Buf0 = (\ in,out)in.Buf1<in,out>

agent Buf1 = (\ in,out)(in.Buf2<in,out > + out.Buf0<in,out>)

agent Buf2 = (\ in,out)(in.0 + out.Buf1<in,out>)

MWB>env Buf0

agent Buf0 = (\ in,out)in.Buf1<in,out>

If one needs to remove an agent declaration then the command clear P can be used.
clear removes all the declarations.

MWB>clear Buf0

MWB>env

agent Buf1 = (\ in,out)(in.Buf2<in,out > + out.Buf0<in,out>)

agent Buf2 = (\ in,out)(in.0 + out.Buf1<in,out>)

MWB>clear

Clearing environment.

MWB>env

MWB>

3.4 Loading agents or Using Emacs

The basic way of using MWB is to type the agent declarations and commands directly
into MWB, this cannot be recommended. The front-end of MWB does not support many
helpful features for text editing: such as copy-and-pasting, retyping the last command,
and editing an old command. So, if you for example type a long command

agent P(x,y) = ’x.y. ...

and then press enter, just to receive Error in line 1: syntax error found at EOL.
Then you have to type the entire command again to correct the error, and this will soon
be quite annoying ;-). Therefore it is recommended to use one of the following methods:

3.5 Using Emacs

This method describes how one can use Emacs for typing commands in MWB. Since Emacs
is quite different compared to “traditional” editors, one should only choose this solution if
they are either familiar with Emacs or are willing to spend some time getting to know it.

Emacs contains a useful feature for being a front-end for interactive sessions (as found
in different kinds of programming languages like e.g. ML and Prolog). Using the command
M-x shell one can run a shell or DOS-prompt through Emacs. This has the advantage
that one has all the features of Emacs available together with a standard shell. E.g. going
back through the history of the last 30 commands with M-p, forward with M-n, and the
usual copy-paste shortcuts etc.

3.6 Using our Favorite Editor

If you are not comfortable with Emacs, then you can instead use the favorite editor of
our choice. In this editor you then type your agent definitions. When you are done

6

4 READING ERROR DESCRIPTIONS IN MWB 3.7 Quitting MWB

typing your agent definitions, you can then use the command input "filename" to load
the definitions into MWB4. If you for example have a text file agents.ag (accessible
from http://www.itu.dk/courses/IMDD/F2004/download/agents.ag) containing agent
definitions of agent P and agent Q:

agent P(x,y) = ’x.Q<x,y>

agent Q(x,y) = y.P<x,y>

and a fresh MWB session

MWB>

then you can load these definitions into your MWB session by using the input command.

MWB>input " agents.ag"

MWB only responds if an error occurs, e.g. if the file agents.ag does not exists or if it
contains errors in the code. So to verify, that our definitions have been loaded correctly
we use the command env to print all agent definitions.

MWB>env

agent P = (\x,y)’x.Q<x,y>

agent Q = (\x,y)y.P<x,y>

MWB>

3.7 Quitting MWB

You can exit from MWB using the command quit.

3.8 Getting more Information out of MWB

Using the set debug n, where n is a non-negative integer one can increase/decrease the
amount of information from MWB. The default setting is 0 (meaning no additional in-
formation), when one needs more information from MWB, then 1 is probably the most
appropriate setting. For values above 1 the information often becomes too overwhelming,
and thereby useless.

4 Reading Error Descriptions in MWB

The error description of syntax errors in MWB is unfortunately not always precise. In the
example below we have forgotten to make y a part of the definition of P.

MWB>agent P(x) = ’x.y.0

Error: Definition of P has free name y

In the example below we have forgotten to end the processes with a trailing 0, but the
error description only tells us that the error is near the token PAR (the symbol |)5.

4Actually you can also type some of the interactive commands in the text file, but normally this is not
preferred.

5This is a result of MWB uses the standard lexer- and parser-generators of SML/NJ.

7

http://www.itu.dk/courses/IMDD/F2004/download/agents.ag

5 SUPPLEMENTARY READING

MWB>agent P(x) = ’x | x

Error: syntax error found at PAR

MWB>agent P(x) = ’x.0 | x.0

MWB>

As can be observed, the error description does not use the concrete syntax, but instead
uses the names of the tokens. A translation between the most common token names and
their actual syntax is provided in Table 1.

Syntax Name of Token

| PAR

Name of Actions x,y,... ACT

(LPAR

) RPAR

. DOT

0 NIL

= EQUALS

t TAU

> GREATERTHAN

< LESSTHAN

1 ONE

End of Line EOL

Table 1: Syntax and Tokens

5 Supplementary Reading

The following references, which can be found on the homepage under “Tools, notes, etc”,
are not part of the curriculum, but serves as a good foundation for understanding MWB.
For texts describing CCS and π-calculus see the references in the Introduction.

• [Vic95] is the main material for this document. The manual contains information
about additional commands, the model checker and its associated logic, but is quite
succinct in its description of the syntax and the basic commands.

• [VM94] the paper about the original prototype of MWB. The paper contains a
brief introduction to π-calculus, the implementation of equality checking, and some
example sessions.

• [Vic94] a more thorough description of the concepts presented in the User Guide.

• [Bes98] A Master’s thesis describing the model checker and logic in the new version
of MWB (MWB’99). The thesis also contains descriptions of: λ-calculus, π-calculus,
and the implementation of the model checker.

8

REFERENCES REFERENCES

References

[Bes98] Fredrick B. Beste. The model prover — a sequent-calculus based modal µ-
calculus model checker tool for finite control π-calculus agents. Master’s thesis,
Department of Computer Systems, Uppsala University, 1998. Available as re-
port DoCS 98/97.

[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

[Mil91] Robin Milner. The Polyadic π-Calculus: A Tutorial. Technical Report ECS-
LFCS-91-180, LFCS, Department of Computer Science, University of Edin-
burgh, 1991.

[Mil99] Robin Milner. Communicating and Mobile Systems: the π-calculus. Cambridge
University Press, 1999.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile Pro-
cesses, Parts I and II. Journal of Information and Computation, 100:1–40 and
41–77, 1992.

[Vic94] Björn Victor. A Verification Tool for the Polyadic π-Calculus. Licentiate the-
sis, Department of Computer Systems, Uppsala University, 1994. Available as
report DoCS 94/50.

[Vic95] Björn Victor. The Mobility Workbench User’s Guide: Polyadic version 3.122.
Department of Information Technology, Uppsala University, 1995.

[VM94] Björn Victor and Faron Moller. The Mobility Workbench — a tool for the
π-calculus. Technical Report DoCS 94/45, Department of Computer Systems,
Uppsala University, 1994. Also available as Technical Report ECS-LFCS-94-
285, Laboratory for Foundations of Computer Science, Department of Com-
puter Science, University of Edinburgh.

9

The Mobility Workbench User's GuidePolyadic version 3.122Bj�orn VictorOctober 9, 1995Contents1 Introduction 22 Input syntax 22.1 Model checking : 33 Commands of the MWB 53.1 help : 53.2 quit : 53.3 agent : 53.4 clear : 53.5 env : 53.6 input "�lename" : 53.7 eq agent1 agent2 : 53.8 eqd (name1,: : : ,namen) agent1 agent2 : : : : : : : : : : : : : : : 53.9 weq agent1 agent2 : 63.10 weqd (name1,: : : ,namen) agent1 agent2 : : : : : : : : : : : : : : 63.11 check agent formula : 63.12 sort agent : 63.13 deadlocks agent : 63.14 step agent : 63.15 size agent : 63.16 time command : 63.17 set : 63.18 show : 74 Example use 75 Availability 9
1

1 IntroductionThe Mobility Workbench (MWB) is a tool for manipulating and analyzing mo-bile concurrent systems described in the �-calculus [MPW92, Mil91], developedby Bj�orn Victor1, Faron Moller2, Lars-Henrik Eriksson3 and Mads Dam4. It iswritten in Standard ML, and currently runs under the New Jersey SML com-piler.In the current version, the two basic functionalities are equivalence checkingand model checking.The tool implements algorithms [Vic94] to decide the open bisimulationequivalences of Sangiorgi [San93], for agents in the polyadic �-calculus withthe original positive match operator. This is decidable for �-calculus agentswith �nite control, corresponding to CCS �nite-state agents, which do not ad-mit parallel composition within recursively de�ned agents.The algorithm is based on the alternative \e�cient" characterizations of theequivalences described in [San93, Vic94], and generates the state space \on they". Algorithms for both the strong and weak equivalences are implemented.The tool also contains an experimental implementation ofMads Dam'smodelchecker [Dam93].There are also commands e.g. for �nding deadlocks and interactively simu-lating an agent.We refer to [MPW92, Mil91, San93, Vic94, Dam93] for the formal frameworkof the tool; the �-calculus, the de�nition of the equivalences, the modal logic,etc.The MWB is undergoing constant and dynamic changes. This guide describesthe current version as of October 1995. Some parts of the guide will be rewritten,and a section on sortings will be added.2 Input syntaxInput lines can be split using the continuation character \n" at the end of aninput line, or (perhaps preferrably) by wrapping things in parentheses. Anythingbetween \(*" and *)" is a comment and is treated as whitespace. Note thatcomments cannot (at present) be nested.The syntax of agents is given by the following grammar:P ::= 0 ��� �:P ��� pfx :P ��� [a = b]P ��� P1 jP2 ��� P1 + P2 ���Id<nlist> ��� (^nlist)P ��� (nnlist)P ��� [nlist]P ��� (P)where nlist is a (non-empty) comma-separated list of names; � is an action: �(silent) or a name (input) or a co-name (output); pfx is an abbreviated pre�x(see below); and Id is a name starting with an upper-case letter. Names muststart with a lowercase letter but can after that include the characters , $, ',letters and digits. The parallel operator j binds stronger than summation +.Both bind weaker than pre�x : and match [: : :].1Department of Computer Systems, Uppsala University, Box 325, S-751 05 Uppsala, Swe-den; email: Bjorn.Victor@DoCS.UU.SE. Work supported by the ESPRIT BRA project 6454\CONFER"2SICS, Box 1263, S-164 28 Kista, Sweden; email: fm@sics.se. Work supported by theESPRIT BRA projects 7166 \CONCUR2" and 6454 \CONFER".3Logikkonsult NP AB, Swedenborgsgatan 2, S-118 48 Stockholm, Sweden; email:lhe@lk.se. Work supported by the ESPRIT BRA projects 6454 \CONFER" and 8130\LOMAPS".4SICS, Box 1263, S-164 28 Kista, Sweden; email: mfd@sics.se. Work supported by theESPRIT BRA project 8130 \LOMAPS". 2

F ::= TT TruthFF Falsitya = b Equality between namesa#b Inequalty between namesF1&F2 ConjunctionF1jF2 Disjunctionnot F Negation<�>F Possibility modality[�]F Necessity modalitySigma a:F Sigma-expressionBsigma a:F Bound sigmaPi a:F Universal quanti�cationexists a:F Existential quanti�cationId(nlist) Use of �xpoint identi�er(�Id(nlist):F)(nlist) Fixpoint expression�Id:F Alternative to the above without args(F)where � is either mu (least �xpoint operator) or nu (greatest �xpoint operator).Figure 1: Syntax of formulaeThe following translations and shorthands are used:Input Translation^ � restrictionn � abstraction0 0 null process'� � output actiont � internal actiona(nlist). a.(nnlist) input pre�x'a<nlist>. 'a.[nlist] output pre�x2.1 Model checkingThe syntax of formulae is given by the grammar in Figure 1.A brief description of the semantics is given in Figure 2. For full details,please refer to [Dam93].Note that modalities bind the action. That is, given a formula such as<x>P , x is bound in P to the name of the action of some transition the agentcan perform. Example: a:A + b:B j= <x>P i� A j= Pfa=xg or B j= Pfb=xg.Another example: a:A+ b:B j= [x]P i� A j= Pfa=xg and B j= Pfb=xg.Modal logics often use another semantics where the actual name of the actionis inside the diamond or box, rather than a bound variable. To achieve the samee�ect with our semantics, write:Other semantics Our semantics[a]P [x](a#xjP)<a>P <x>(a = x&P)Note also that, because of implementation issues, �xpoint formulae mustbe closed. E.g. nu D.<x>(x=b&D) is invalid, but the equivalent formula (nuD(b).<x>(x=b&D(b)))(b) is OK. This will be remedies in the near future.3

A j= TT Always true.A j= FF Always false.A j= a = b True i� a and b are the same names.A j= a#b True i� a and b are di�erent names.A j= P&Q True i� A j= P and A j= Q.A j= P jQ True i� A j= P or A j= Q.A j= not P True i� not A j= P .A j= <x>P True i� the agent can commit to some input actionA � a:A0 and A0 j= Pfa=xg.A j= <0x>P True i� the agent can commit to some output ac-tion A �0 a:A0 and A0 j= Pfa=xg.A j= [x]P True i� for every input commitment A � a:A0 theagent can perform, A0 j= Pfa=xg.A j= [0x]P True i� for every output commitment A �0 a:A0the agent can perform, A0 j= Pfa=xg.[a]A j= Sigma x:P True i� A j= Pfa=xg.(^y)[y]A j= Bsigma x:P True i� Afa=yg j= Pfa=xg, where a is a newname.5A j= (�D(x1; : : : ; xn):P)(a1; : : : ; an)Fixpoint formula. True i� the appropriate �xpointof P is true. � should be nu for the greatest �x-point or mu for the least �xpoint. The �xpointis a predicate with formal arguments x1; : : : ; xnand actual arguments a1; : : : ; an. Within P , D isbound to the �xpoint expression itself.Figure 2: Brief semantics of formulae.
4

3 Commands of the MWB3.1 helpgives a general help text. ? (questionmark) is a synonym for this command.3.1.1 help commandgives a help text for command.3.2 quitterminates the program. End-of-�le (typically Control-D) is a synonym for thiscommand.3.3 agentde�nes an agent identi�er. Two equivalent examples:agent P(x,y) = (^z)'x<y,z>.y(x,y).P<y,x>agent P = (nx,y)(^z)'x.[y,z]y.(nx,y)P<y,x>An agent de�nition must be closed, i.e., its free names must be a subset ofthe argument list. Only guarded recursion is handled.3.4 clearremoves agent identi�er de�nitions. clear P removes the de�nition of the agentidenti�er P, while clear without an argument removes all de�nitions.3.5 envprints all agent de�nitions in the environment. env P shows the de�nition ofthe agent identi�er P.3.6 input "�lename"reads commands from the �le named �lename. The double quotes are part ofthe syntax but not of the �lename.3.7 eq agent1 agent2checks whether agent1 and agent2 are strong open bisimulation equivalent.If the two agents are equivalent, a bisimulation relation is available6 forinspection by the user.3.8 eqd (name1,: : : ,namen) agent1 agent2checks whether agent1 and agent2 are strong open bisimulation equivalent giventhe distinction formed by making name1, : : : , namen distinct fromall free namesin agent1 and agent2. fname1, : : : , nameng should be a subset of the free namesof agent1 and agent2. (Names not free in agent1 or agent2 are meaningless andare simply removed).6if MWB is running interactively, i.e. not reading commands from a �le.5

3.9 weq agent1 agent2checks whether agent1 and agent2 are weak open bisimulation equivalent.3.10 weqd (name1,: : : ,namen) agent1 agent2checks whether agent1 and agent2 are weak open bisimulation equivalent giventhe distinction formed by making name1,: : : , namen distinct from all free namesin agent1 and agent2. fname1, : : : , nameng should be a subset of the free namesof agent1 and agent2.3.11 check agent formulaResponds yes if the agent is a model for the formula, otherwise no.3.12 sort agentDisplays the object sort and most general sorting of agent, or gives an errormessage if the agent doesn't respect any sorting.3.13 deadlocks agent�nds and describes deadlocks in the agent given as argument. It displays theagent in which the deadlock is found.The deadlocks are displayed as they are found, which makes the commanduseful even if the state space is in�nite.3.14 step agentinteractively simulates the agent, by presenting the possible commitments ofthe agent and letting the user select one, and repeating this until there are nopossible commitments. Typing q terminates the simulation.3.15 size agentgives a low measure of the graph size of the agent. This is not always minimal,but the agent space being explored by the equivalence checking commands ispossibly larger.3.16 time commandperforms the command7 and prints timing information for its execution.3.17 setsets various parameters of the MWB. set ? shows what can be set.3.17.1 set debug nsets the debugging level of the program. n should be a non-negative integer;the only value we expect to be valuable to users other than the developers is 0(meaning debugging is turned o�). The use of this command for higher valuesof n is discouraged, and as such is left undocumented here.7in non-interactive mode 6

3.17.2 set threshold nsets the rehashing threshold of the internal hashtables to n%. n should bebetween 1 and 100; its inital value is 30.3.17.3 set remember on/o�sets whether commitments are recorded in hashtables whenever they are com-puted, so as to save computational work. For large agents, this may requirelarge amounts of memory. Using set remember off lowers the memory re-quirements, but may instead increase the runtime.3.17.4 set rewrite on/o�sets the automatic rewrite ag on or o�. With rewriting on, (�x)P) 0 if8� : P � �:P 0; n(�) = x. Since the commitments of P are computed to seeif the rewrite is applicable, we do not recommend using set rewrite on incombination with set remember off. With set remember on however, thereis no extra cost for computing these commitments.3.18 showshows various parameters of the MWB. show ? shows what can be shown.3.18.1 show debugshows the debug level.3.18.2 show thresholdshows the rehash threshold.3.18.3 show remembershows the remember setting.3.18.4 show versionshows the version of the MWB.3.18.5 show allshows all of the above.3.18.6 show tablesshows the sizes etc of the internal hash tables used for recording commitments.4 Example useIn Figure 3 we have a sample session which demonstrates some simple usage.In the sample session, we �rst de�ne an agent Buf1 implementing a one-placebu�er, then another, Buf2, implementing a two-place bu�er by composing twoinstances of Buf1, and �nally three agents, Buf20, Buf21 and Buf22, togetherimplementing a two-place bu�er without parallel composition.7

The Mobility Workbench(Polyadic version 3.122)MWB> agent Buf1(i,o) = i(x).'o<x>.Buf1(i,o)MWB> agent Buf2(i,o) = (^m)(Buf1(i,m) | Buf1(m,o))MWB> agent Buf20(i,o) = i(x).Buf21(i,o,x)MWB> agent Buf21(i,o,x) = i(y).Buf22(i,o,x,y) + 'o<x>.Buf20(i,o)MWB> agent Buf22(i,o,x,y) = 'o<x>.Buf21(i,o,y)MWB> weq Buf2(i,o) Buf20(i,o)The two agents are related.Relation size = 18. Do you want to see it? (y or n) yR= < (^v2)(i.(nx)'v2.[x]Buf1<i,v2> | v2.(nx)'i.[x]Buf1<v2,i>),i.(nx)Buf21<i,i,x> > fg� � �MWB> step Buf2(i,o)0: |>i.(nv2)(^v3)('v3.[v2]Buf1<i,v3> | v3.(nx)'o.[x]Buf1<v3,o>)Step> 0Abstraction (nv2)0: |>t.(^v3)(i.(nx)'v3.[x]Buf1<i,v3> | 'o.[v2]Buf1<v3,o>)Step> 00: |[i=o]>t.(^v3)('v3.[v2]Buf1<i,v3> | v3.(nx)'o.[x]Buf1<v3,o>)1: |>i.(nv3)(^v4)('v4.[v3]Buf1<i,v4> | 'o.[v2]Buf1<v4,o>)2: |>'o.[v2](^v3)(i.(nx)'v3.[x]Buf1<i,v3> | v3.(nx)'o.[x]Buf1<v3,o>)Step> 1Abstraction (nv3)0: |>'o.[v2](^v4)('v4.[v3]Buf1<i,v4> | v4.(nx)'o.[x]Buf1<v4,o>)Step> quitMWB> agent Buf22 = (ni,o,x,y)('o.[x]Buf21(i,o,y) + [i=o]t.0)MWB> weq Buf2 Buf20The two agents are NOT related.MWB> weqd (i) Buf2(i,o) Buf20(i,o)The two agents are related.Relation size = 8. Do you want to see it? (y or n) yR = < (^v2)(i.(nx)'v2.[x]Buf1<i,v2> | v2.(nx)'o.[x]Buf1<v2,o>),i.(nx)Buf21<i,o,x> > fi#og� � � Figure 3: A simple sample session with the MWB.8

We proceed with this example by comparing the two implementations forweak equality. The MWB responds by saying that they are equivalent and thatit found a bisimulation relation with 18 tuples, and asks us if we want to inspectit. We respond positively and the MWB prints out the relation as a list of pairsof agents with associated distinction sets.We then simulate the behaviour of the agent Buf2(i,o). The MWB presentsthe possible commitments, including their least necessary conditions (if nottrivial), and prompts the user to select one of them. When the user selects acommitment whose derivative is an abstraction or concretion, the bound namesare instantiated automatically. After having a single choice on the �rst twosteps, we then get a choice of three commitments; the �rst which is possibleonly if the names i and o are the same.Next, we change the de�nition of Buf22 to introduce a possible deadlockand again check for weak equivalence between Buf2 and Buf20, this time asabstractions, without instantiating their arguments. We �nd that they are notequivalent, and proceed by trying to equate Buf2(i,o) and Buf20(i,o) underthe proviso that i is di�erent from all other free names of the two agents (namelyo). Under this distinction, there are no deadlocks, and the MWB reports thatthey are once again equivalent.5 AvailabilityThe MWB is available by anonymous FTP from the host ftp.docs.uu.se in thedirectory pub/mwb. The �le README contains further directions and information.An up-to-date version of this guide is always part of the distribution.Binary executables are provided for some architectures and operating sys-tems. Source code is also provided which can be compiled with the SML-NJcompiler. SML-NJ is currently available from the host ftp.research.att.com,directory dist/ml and the host princeton.edu, directory pub/ml.There is also information on the MWB available on the World Wide Web,in the URL http://www.docs.uu.se/~victor/mwb.html.Any bug reports, queries, feedback etc should be sent to:email: mwb-bugs@DoCS.UU.SEfax: +46 18 550225mail: Bj�orn VictorDept. of Computer SystemsUppsala UniversityBox 325S-751 05 UppsalaSWEDENReferences[Dam93] M. Dam. Model checking mobile processes. In E. Best, editor, CON-CUR'93, 4th Intl. Conference on Concurrency Theory, volume 715of Lecture Notes in Computer Science, pages 22{36. Springer-Verlag,1993. Full version in Research Report R94:01, Swedish Institute ofComputer Science, Kista, Sweden.[Mil91] R. Milner. The polyadic �-calculus: a tutorial. Technical ReportECS-LFCS-91-180, Laboratory for Foundations of Computer Science,9

Department of Computer Science, University of Edinburgh, UK, Oc-tober 1991. Also in Logic and Algebra of Speci�cation, ed. F. L.Bauer, W. Brauer and H. Schwichtenberg, Springer-Verlag, 1993.[MPW92] R. Milner, J. Parrow and D. Walker. A calculus of mobile processes,Parts I and II. Journal of Information and Computation, 100:1{77,September 1992.[San93] D. Sangiorgi. A theory of bisimulation for the �-calculus. TechnicalReport ECS-LFCS-93-270, Laboratory for Foundations of ComputerScience, Department of Computer Science, University of Edinburgh,UK, June 1993. A revised version will appear in Acta Informatica. Anextended abstract appeared in E. Best, editor, CONCUR'93, 4th Intl.Conference on Concurrency Theory, volume 715 of Lecture Notes inComputer Science, pages 127-142. Springer-Verlag, 1993.[Vic94] B. Victor. A Veri�cation Tool for the Polyadic �-Calculus. Licen-tiate thesis, Department of Computer Systems, Uppsala University,Sweden, May 1994. Available as report DoCS 94/50.

10

	Accessing the Workbench
	Downloading the Files
	Starting MWB

	Syntaxs of CCS Expressions
	Features of the Workbench
	Define Agents
	A simple agent
	A Two-element Buffer

	Running Agents Interactively
	Running the Two-element Buffer

	Handling the Agents
	Loading agents or Using Emacs
	Using Emacs
	Using our Favorite Editor
	Quitting MWB
	Getting more Information out of MWB

	Reading Error Descriptions in MWB
	Supplementary Reading

