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The groul;ing of the terms (UAVC
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The Stefan-Boltzmann law. The law
states that the emissive power of a black
body is directlv proportional to fourth
power of its absolute temperature.
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While dealing with problems of conduction of heat thiough systems having cylindrical geometries
(e.g.. rods and pipes) it i I coordinates.

convenient o use cylindri

Consider an clemental volume having the coordinates (r, 0, z), for three-dimensional heat
conduction analysis, as shown in Fig. 2.
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The volume of the element = rd.dr.dz
Let, g, = Heat generation (uniform) per unit volume per unit time.

Further, let us assume that k (thermal conductivity), p (density), ¢ (specific heat) do not alter with
position.

A. Net heat accumulated in the element due 10 conduction of heat from all the coordinate directions
considered :
Heat flow in radial direction (x-9) plane :

Heat influx, 0 =~k (rdwn')—' .dt W

Heat efflux, Qirean =07 + 5~ (Q ydr @
Heat accumulation in the element duL tw heat flow in radial direc: tion,

g, =0 =0 . [subtracting (i) fram (i)




image16.jpeg
=_%(Q,’)dr
.__l[ l(nlmrl‘)—- (l'tjldr
Jar Jr
=k (drd(pdz) — [I’ 2’—](1‘!
ar

% 3
= k (drddds )[ : ; +.L’Jdr

ar




image17.jpeg
=k (dr.rdod:z) [a—, ¥ . ﬂ:l dt
TP . ar’  ror
cat flow in tangential direction (r-z) plane :

Heat influx, Q, =~k (drdz) % dt
T

Heat efflux, Oioran) =0 + 2 (Q5) rdo
r.ob
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Heat flow in axial direction (r-¢ plane) :

Heat influx,

Heat efflux, Q. 4,

= -k (rdod
Q (r r)a

=0l +

ar

(Q )dz

dt

«(V)

-.(vi)
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Heat accumulated 1n the element due to heat flow in
axial direction,

Q. =0.-0Q\. 4
=_ 8% [7 k (rdodr) % d'r] dz
a—f .dt
P

=k (drrdodz)
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Net heat accumulated in the element

= kdr.rdod: P— Lo

T

P

B. Hear generated within the element (Q',l &

The total heat generated within the element is given by
0, = q, (drrdo.dz).ds L(220)

C. Energy stored in the element :

The increase in thermal energy in the element is equal to

ar
=p(drrdodz).c.—.d
2 T

(219
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(A) +(B) =(O) - Energy balance/equation
P 1 ar 9%

1
kdr.rd¢dz [; i ,—'a¢. 32 ]‘“*‘h (dr.rdodz).dt

= p(dr.nlopd:)t.?; .dt
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Dividing both sides by dr.rdd.dz.dt, we have
2 - 52 2
k[a'+]')'+|-d—‘+n']+qk=9

o rar 2 o0
41 a2 4
__dl+r}Y]+Iy_

P 1 ERi
do’ a2’

A0 i,
or, .
[Brl r

Equation (2.22) is the peneral heat conduction equation in cylindrical ¢
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The boundary conditions are :

) At x=0, 6=0,
" a_y
i At x =1L T
Applying these boundary conditions fo eqn. (2.131), we have
(o =6, i
Further =1, =C e+ Gem™ [Eqn. 2.131]
& e - mCye™
dx
[ﬂ] —mG ™= mCye =0
dxli=t

o =
cem-Gem =t [As per boundary condition (i)]
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Solving eqns. (i) and (ii), we have

or,

or,

or,

or,

Cc,=6,- C,
Ciem—(0,-Cpem =0
Cenl -9, em 4 Cem =0
C (& + ey = 0, el

e

~ml
e
ol

e
=0,- |0, ———m
con o

-[From eq, o)

~-[From eqn, (j
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Inserting the values of C, and C, in eqn. (2.131), we have

i ml
e "{’:’}"’* “[ﬁ—] o
g [emtx-ygmi-0 il =0 4 glomil =)
L[ [
The above expression, in terms of hyperbolic functions, can be expensed as
ty _ coshim(l — x)}
Tmt, cosh(m) L2139

«.Expression for temperature distribution
mil =) o lem(t ~x)1 L e—-ml}

2 , and cosh (ml) = —
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The rate of heat flow from the fin is given by

d
Qpn=-kA, [Z'] it

1= 1,= (1, — 1,)| SLSUmU = 1)) [From eqn. (.13
Now, cosh (ml)
di _ sinh (m(l - )]
o 1, h)[T(ml):l( m)

[ 2, [cosh (mx)] = MSinh(mx)]
dx

[ﬂ] = =mlt,~ t,) tanh (ml)
dxle=g

2,135
O =kA, m (1,~1,) tanh (ml) -2
(Substituting for m)

T, Qpn = JPHKA, (1, = 1,) tanh (mi)
or,
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Refer Fig. 10.10, which shows the flow arrangement and temperature distribution in a single.
pass counter-flow heat exchanger.
Annulus surrounding

/~ the pipe
T " Pipe

<« <— Cold e b oment /

Hot

-« -

« < Cold

(a) Flow arrangement
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Arca —p
(b) Temperature distri bution
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Ler us consider an elementary area dA of the heat exchanger. The rate of flow of heat through this
elementary area is given by
dQ = U.dA (h~t1)=U.dA. A1 -(10.11)
In this case also, due to heat transfer dQ through the area dA, the hot fluid is cooled down by
dr, whereas the cold fluid is heated by dr_. The energy balance over a differential area dA may be
written as
dQ:—n'x,,,rP,.dt,,=—mA.cP(.dt( ..(10.12)
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" B irection of heat
1n a counter-flow system, the temperatures of both the fluids decrease in the direction

changer length, hence the - ve signs,
2

dy=-—t2___do

iy €, Ch

do do

d,=-—=_=_2%2%

and, e, C.

[
dy - di =~ ag| L -
# Q[Ch ]
X1

or,

df = - d
Q[c,. C

..(10.13)




image33.jpeg
Inserting the value of dQ from eqn. (10.11), we get

or,

Integrating the above equation from A = 010 A = A, we get
1 1
In(8,/8,)=-U.A|— - —
G G
Now, the total heat transfer rate between the two fluids is given by

0 =Gyl =t =C, (=1,

+..(10.14)

..(10.15)
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or,

1

Cy Q -.[10.15 (a)]
or i
o

[10.15 (b))
Q

1 I .
substituting the values of — and — into eqn. (10.14), we get
Ch .

-y b=ty
:,.(e_,/e,)=_u,,[u Tl]

(]
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vA ua
== Ll ra = Z 00y = Do,

UA (8:-8,)
or, 9= e.m,)
Since, o=UAS,
0, - 6, 6,-6,
o Btz Bl .(10.16)

n (8,/8,)  In (8,/8,)

A Special case arises when 6, = 8, = 8 in case of a counter-flow heat exchanger. In such a
‘ase, we have

0-8 _0

= @m0





image36.jpeg
ot ch a case can be f
This value is indeterminate. The value of 8, for su ound

Hospital’s rule :

e.[%-l}
m %2=6 _ oy L9 ]

0,0, In (0,/8,) (001 In (8,/8))
Let (8,/6,) = R. Therefore, the above expresion can be written as
B(R-1
R=1 In(R)

by Dl

Differentiating the numerator and denomenator with respect to R and taking limits, e w

lim — -
* S WKy

Hence, when 6, =6, eqn. (10.3) becomes

Q=UAB




image1.jpeg
Efficiency of fin (n;,) :

The efficiency of a fin is defined as the ratio of the actual heat transferred by the fin 1o the
maximum heat transferable by fin, if entire fin area were at base temperature.
Actual heat transferred by the fin (0 ;)

Maximum heat that would be transferred if whole surface of the fin
" is maintained at the base temperature (O )

ie. Nfin =
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(i) Effectiveness for the “Parallel-flow™ heat exchanger :
Refer Fig. 10.8. The heat exchange dg through an arca dA of the heat exchanger is given by
dQ = UdA (1, -1) =0
= =t pydty, = titg Cpe i
=-Cydt, = C.d1,
From expression (ii), we have

i)

a,="92 a4 -2

Cu C.
d (1, -1.)=-dQ L+L
G G

Substituting the value of dQ from expression (i) and rearranging, we get
dt, —t) _
(r, —1.)
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Upon integration. we get
lu[('h; AL
(1 = 101) G Ce

In [‘_’n:‘_ﬂ{] =- va i G
(ty = 1) Cy C.
or ['—":—;]= exp [ (UAIC,) 1+ (GICON)

From egn. (10.38). we have the expressions for effectiveness
_ G tn —ta) _ G (e —ta)
Cin g~ 1) Coin Uit = el)
€ Couin U —ta)

tha =M = C
v

Hence

...(10..40)

..(10.41)
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o Conin iy = Te1)

.(10.42)

Eliminating 1,, and 7, from eqn- (10.40) with the help of eqns. (10.41) and (10.42), we get

(= 1)
1 1 ”
i [ L |=exp - WA ) (1+ GICHN
or, 1 Ec’""[c.*q] exp ) 1+ Gy
_l-exp [~ WAIG,) {1 + G/CON
- 1,1

G| i
G G
I C, > C, then €, = G 204 €. = .- hence cqn. (10.43) becomes
1+ (Cpin/Crna)

z 1€, < C, then Cpur = C.and G = C,. hence eqn. (10.43) becomes

or,

g
1+ ol Cpa)

11
[w. ~101) =€ Con U = u'[c +F)]=ew [- WAIC,) (1 + C/ICHN
..(10.43)

.(10.44)

.(10.45)
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By rearranging eqns. (10.44) and (10.45), we get a common cquation
exp [~ (VAIC,,,,) (1 + €, /)]
T4 Cu/Car)
where C,. and C, _represent the smaller and larger of the two heat capacities € and <,
© The grouping of the terms (UA)/C,,,, is a dimensionless expression called the number of
transfer units NTU; NTU is a measure of effectiveness of the heat exchanger.
® C,,/C,,, is the second dimensionless parameter and is called the capacity ratio k.
© The last dimensionless parameter is the flow arrangement, i.c.., parallel flow, counter-
flow, cross-flow and s0 on.
Thus the effectiveness of a parallel flow heat exchanger is given by
- 1 —exp [= NTU {1 +(C,,,/C,pi)} ]

£

2N L1046}
14 (Co/ Crire)
I—exp (- NTU (1 + R
oIy e= RN S B) .{10.46 (a}

I+R
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Solution. Refer Fig. 2.13.
Given : L,=120mm=0.12 m;
L,=240 mm=0.24 m;
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Silica bricks
Magnesite bricks

Inlerface

_-_~_+_

Temperature drop
at the interface

|

; 1,=110°C
@ ® |

K—L—»k—L—bl

=120 mm =240 mm
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S
ky = 1.7 W/m°C; ky=5.8 W/m°C
The contact thermal resistance (R,)
= 0.0035°C/w
The temperature at the inside surface of

silica brick wall, 1, = 725°C
The temperature at the outside surface of
he magnesite brick wall, 1, =110°C
(i) The rate of heat loss per unit area
of wall, g :
Ar _ At
"I Ry Rya+ (Ry) coms. + Ryy_p
= (h —1)
T Ly kg +0.0035 + Ly 1k,
= (725 - 110)
T 0.12/1.7 + 0.0035 + 0.24/5.8

_ 615
7 0.0706 + 0.0035 + 0.0414

cont.

=5324.67 W/m®
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The rate of heat loss per unit area of wall, ¢ = 5324.67 W/m?
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3

[=)

or, fp=725-5324.67 % T =349.14°C

& (r; — 110

imilarly. 532467 = ——

Similarly. 034758

-
or, t; =110+ 3324.67x 05 84 =330.33°C

Hence. the temperature drop at the interface =1, — 15
=349.14 - 330.33 = 18.81°C (Ans.)

.
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The rate equation for the convective heat transfer (regardless of particular nature) between 2
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Solution. Thickness of metal plate, L =4mm=0004m
Thermal conductivity of plate material, & = 95.5 W/m°C
Temperature of vapour (hot fluid), hy,, =100°C
Temperature of water (cold Muid), 1, =25°C

Heat transfer coefficients : !

Vapour side. hy, = 14500 W/m*C

Vate hy =2250 Wim*C
(i) The rate of heat transfer per m? g :

Water side,

_ A _ iy = tg)
(Riiorat (R duovat

= (ty = 19)

R eown o ¥ Ry o2t (Ryeom—cr
100 - 25)

q

o o
14500 955 2250
75

7 6896 x 107 + 4.188 x 10~ + 44.444 x 107
=1.35 x 10 W/m?
Hence. rate of heat wransfer, g = 1.35 x 10 W/m? (Ans.)
(i) The overall heat transfer coefficient, U:
The rate of heat transfer through a composite system is given by
0 = UA. (&)

overall

5
vo—Q _a 13X g0 wimiec (Ans)
LA A1 (100-25)

(iif) Temperature drop at each side of heat transfer ;
We know that ¢ =q,,,=4) 2= 5= 1.35 x 10° W/m*

or,

_@Any

e, W Radoom et

s S =S
or. (A, = 1.35x10°X 13500 931°C
i.e.. Temperature drop in vapour film = 9.31°C  (Ans.)

Az L 0.004

Similarly. UE R (AN _,=135x10"x oo =5.65°C
i.e., Temperature drop in the metal = 5.65°C (Ans.)

(Any
ok U™ Repoom -t

! o,
(A1), =135x10°x e T 80°C

rature drop in the water film = 60°C (Ans.)
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g ="
() Case 1. n=6andl=10cm=01m

ml =447 x 0.1 =0.447 Ta— T QSL-\HL)
o 0, = 61200 x 2 x 10+ x 4.47 x (230 - 30) tanh (0.447)] = 89.99 w
(ii) Case II. n=12and/=5cm=005m ml =447 x 0.05 =0.2235

4
1

121200 x 2 x 107 x 4.47 (230 - 30) tanh (0.2235)] = 94.34 w

Thn shows that the rate of heat transfer is higher in second case, therefore, this arangemep
(Case IN) is better.
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Solution. Diameter of the rod, d=35mm=0.035m
The atmospheric air temperature, 1,=25°C
Heat transfer cocfficient; h = 65 W/m2°C

‘The starting point x = 0 is considered at the first point where the temperature is measured; x =
is considered at the outer point, Assume that the end of the fin is insulated.

FW, we iﬂave

-.[Eqn. (2.134]
At x ={, this equation, red,
6 1 WEPind m=0, & 7l
% _—6, coshml -0
Here,

=145-25=120°Cand 0

180 - 25 = 155°C
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155 coshml ml
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ml =0.747
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4h? 4% 65 x 0,182
it =431.34 Wm°C
5 0.558d (558 0035 = 43134

|where, I = 180 mm = 018 m (given))

(Ans.)




image54.png
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(k = 55 W/m"C)
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Solution. Refer to Fig. 2.134. i
=55 Wm°C: h
1= 45 mm =0.045 m; b = Im; y = Smm = 0.005m; k=55 W/m'
125°C; 1, = 25°C.
(i) Temperature at the end of the fin, f,

Assuming heat loss by convection from the end of the fin: under this condition.
end of the fin is given by

= 145 Wm™Cir =

temperature at the

By
- — 1-x)
0 _ 1o, _|cohlmll -2} + isinhimd - 91 . [Refer Eqn. 2.136]

cosh (ml) + 2 [sinh(mD)]
km

1
or,

cosh (m) + L {sinh (mD)]
m
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me |BP_ [ix@b+2y w2
where, A, kx(bxy) VE ¥

or, ml = 3247 x 0045 = 1 461
5-25 _ 1
125-25 135 =41

cosh (1.461) + Flsinh(l 461)]

5532
6,=25+041(125-25)=66°C (Ans.)
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surface and an adjacent fluid is prescribed by Newton's law of cooling
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(if) Temperature at the middle of the fin, 1,,

)
o

N
N cosh(m(l - x)} + E[smh(m(l - .n}]‘\
h.-.
cushlml)+;"hlnh1ml!l ‘

ml h ml
hp—te _ mSh( } km {smh( ]}
or. -

or,

I

o= la

cush(ml)+~ nh
o (S1ER D)}

145
cosh(0.7305) + —=2
025 _ : 0 37 15inh (0.7305,))
125-25 cosh (1.461) +

x3" 47 (sinh (Lae1))
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[1 2789 + 0.0647

22711+ 0. lGSS] =05514

=25+ 05514 (125 - 25) =

80.14°C (Ans,)
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(i) Total heat dissipated by the fin, 0, (per metre width) :

h
tanh (ml) +
Q= PHA (1, = 1) — ki

I
1+ “tanh (ml)
km

“an. (2.137)]

. tanh (ml) + kh
=VUb + y) X 2 % 1k (b % v) (t,=1,)] = L

142 cvan (it
km

(1461 14
anh (1.461) +
= e LAOD s a7
= 4 0.005) X 25 T35 55 % (1% 0.00%) (125 - 25) | ~—5 ——
+ > # tanh (1.461)
55 % 32.47

0.8978 + !)‘l
14+ 00770

or Qi = 8.9526 x l(l)x{ ]: 816.9W  (Ans.)
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The area of heat exchanger, 4 :
The heat exchanger is shown diagrammatically in Fig. 10.14.
Q =iy Xcpy X (= th2)
= 0.2 x 4.187 x (75 — 45) = 25.122 kl/s

The heat transfer rate,

Heat lost by hot water = Heat gained by cold water
rity X cpp X (0 = 1h2) = i, X Cpe X (o2 = 1)
02 x 4.187 x (75 — 45) = 0.5 X 4.187 X (15— 20)
1, =32°C
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Logarithmic mean temperature difference (LM 1 L) 1S EIVELL Uy

o 6,-6,
™ In (6,/8,) *
o (tyy = ta) = (p — 12)
= " = T Gt — o) 2 —12)]

_ (75-20) - (45 - 32)
T In [(75 — 20/(45 - 32)]
55-13

== 20129
G e
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T
1 =20°C —» Cold water > > 1

- —» o
1 =75°C =——> Hot water => ==>>45°C (1)

1, =200C —> Cold water —

— s

(a) Flow arrangement
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4y =75°C

(5

2

g

b}

e

5

L Cold water
t,=20C

Area/Length —p
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Overall heat transfer coefficient U is calculated from the relation

1
U _Z E
I S
630 650 325

U =325 W/m2°C
Also, 0=UA 8,

A=_Q _25122x1000
or, St o

.22 x 1000 4
g U9 5% 2912 2.66 m
Eessiennnibea B8 A TL. P 397" "
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30000
Solution. Given :

Mag = my = oy = B3 kel o, = 36 KIkg"C; 1, = 100°C;

& 50000 m "

e =M= = B89kg = 42 WKECL 1 = 10°C; U = 1000 Wi C; A = 10 .
@) The outlet temperature of oil and water, ,,.1,,:

Gy = My, =8333x(36x1000)=30x 10 =C,,
C. = mc, = 1389 x (42 % 1000) = 58.34 x 10" = C,
(5 30x10°

= 0514
Coae 5834 x10°
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Fig. 10.52.
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Q=hAl~1)
Q = Rate of conductive heat transfer,

A = Area exposed to heat transfer.
1, = Surface temperature.

where,

1; = Fluid temperature. and

h = Co-efficient of convective heat transfer.
The units of / are,

h= 0 -
A, -1,) mieC

or W/m*°C
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NTU = UA _1000x10 ~033

Crn 30x10°
Conin
For the calculated values of ﬁ = 0514 4nd NTU = 0.3, from the Fig. 10.44, we get
max
€ =032
Also. = Caln —ti) _ Cellea = le) .[Eqn. (10.38)]
: Crin (= 1e)) Coin (g — 1)
5 .
& 032:30)("73[100—!“): 5834 x10° (1., - 10)
30x10° (100 -10) 30 10° (100 - 10)
100 — 1, 10
32 = =1.945
5, a3 ( ~10 ] (100
=100-0.32 (100 - 10) = 71.2°C  (Ans.)
032(100-10) 16 248°C (Ans)

and, 6 =% o
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(i) The maximum possible outlet temperature of water, £, :
When maximum possible outlet temperature of water exists then,

1 = 1,, and under this case
aity Cppy (Byg — Te2) = M Cc (12 = 1ep)
or, 30 x 10% (100 - 1) =58.34 x 10° (1, - 10)
or, 100 1, = 1.945 (1, - 10) = 1.945 1, - 1945

1, = 405°C (Ans)
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M SRS SN LU
or, W/m?K
The coefficient of convective heat transfer */
be defined as “the amount of heat transmitted  fo

“

L " a unit temperature difference between the fluid and
unit area of surface in unit rime."
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Consideration of fouling or smlin;( Inaheat
exchanger. during normal operation the tube
surface gets covered by deposits of ash, soot, dirt
and scale etc. This phenomenon of rust formation
and deposition of fluid impurities is called fouling.
Due to these surface deposits the thermal resistance
isincreased and eventually the performance of the
heat exchanger lowers.)Since it is difficult to
ascertain the thickness 4nd thermal conductivity
of the scale deposits, the effect of scale on heat
flow is considered by specifying an equivalent
scale heat transfer coefficient h‘. If h" and hm be
the heat transfer coefficients for the scale deposited
on the inside and outside surfaces respectively,
then the thermal resistances to scale formation
onthe inside surface (R ;) and outside surface (R,
are given by




