
[image:]
Shambhunath Institute of Engineering and Technology

Computer Science and Engineering Department

RCS-654: Data Warehousing & Data Mining Lab

INDEX
	S.NO.
	OBJECTIVE
	Signature
	Date

	1.
	 Implementation of OLAP operations
	
	

	2
	Implementation of Varying Arrays
	
	

	3
	Implementation of Nested Tables
	
	

	4
	Demonstration of any ETL tool
	
	

	5
	Write a program of Apriori algorithm using any programming language.
	
	

	6
	 Create data-set in .arff file format. Demonstration of preprocessing on WEKA data-set.
	
	

	7
	Demonstration of Association rule process on data-set contact lenses.arff /supermarket (or any other data set) using apriori algorithm.
	
	

	8
	Demonstration of classification rule process on WEKA data-set using j48 algorithm.
	
	

	9.
	Demonstration of classification rule process on WEKA data-set using Naive Bayes algorithm.
	
	

	10.
	Demonstration of clustering rule process on data-set iris.arff using simple k-means.
	
	

Note:
· It is expected that student should implement concept of Data Mining and Warehousing.
· The open source Data Mining Tools like Rapid Miner, Weka etc. can be used to implement the concept of Data Mining and Warehousing.
· Manual is handwritten as well as printout where ever necessary as per the requirement of the objective eg in case of screen shots used take printout of the respective pages, rest will be of hand written only.

[bookmark: page3]

[bookmark: page4][bookmark: page8][bookmark: page9]
Experiment No. 1

Title: OLAP operations

S/w Requirement: ORACLE

Objectives:

· To learn fundamentals of data warehousing
· To learn concepts of dimensional modeling
· To learn OLAP operations

Reference:

· SQL‐PL/SQL by Ivan Bayross

· Data Mining Concept and Technique By Han & Kamber
· Data Warehousing Fundamentals By Paulraj
Pre‐requisite:

· Fundamental Knowledge of Database Management
· Fundamental Knowledge of SQL

Description:

OLAP is an acronym for On Line Analytical Processing. An OLAP system manages large amount of historical data, provides facilities for summarization and aggregation, and stores and manages information at different levels of granularity.

OLAP Operations

Since OLAP servers are based on multidimensional view of data, we will discuss OLAP operations in multidimensional data.

Here is the list of OLAP operations:

· Roll-up

· Drill-down

· Slice and dice

· Pivot (rotate)

Roll-up

Roll-up performs aggregation on a data cube in any of the following ways:

· By climbing up a concept hierarchy for a dimension

· By dimension reduction

The following diagram illustrates how roll-up works.

Shambhunath Institute of Engineering and Technology 	 Session 2020-21

Data warehousing and Data mining Lab (RCS-654)/Computer Science and Engineering Dept. 6th semester 2020-21
[bookmark: page10][image:]

· Roll-up is performed by climbing up a concept hierarchy for the dimension location.

· Initially the concept hierarchy was "street < city < province < country".

· On rolling up, the data is aggregated by ascending the location hierarchy from the level of city to the level of country.

· The data is grouped into cities rather than countries.

· When roll-up is performed, one or more dimensions from the data cube are removed.

Drill-down

Drill-down is the reverse operation of roll-up. It is performed by either of the following ways:

· By stepping down a concept hierarchy for a dimension

· By introducing a new dimension.

The following diagram illustrates how drill-down works:

· Drill-down is performed by stepping down a concept hierarchy for the dimension time.

[bookmark: page11][image:]

· Initially the concept hierarchy was "day < month < quarter < year."

· On drilling down, the time dimension is descended from the level of quarter to the level of month.

· When drill-down is performed, one or more dimensions from the data cube are added.

· It navigates the data from less detailed data to highly detailed data.

[image:]

[bookmark: page12]Slice

The slice operation selects one particular dimension from a given cube and provides a new sub-cube. Consider the following diagram that shows how slice works.

· Here Slice is performed for the dimension "time" using the criterion time = "Q1".

· It will form a new sub-cube by selecting one or more dimensions.

Dice

Dice selects two or more dimensions from a given cube and provides a new sub-cube.

Consider the following diagram that shows the dice operation.
[image:]

The dice operation on the cube based on the following selection criteria involves three dimensions.

· (location = "Toronto" or "Vancouver")

· (time = "Q1" or "Q2")

· (item =" Mobile" or "Modem")

Pivot

The pivot operation is also known as rotation. It rotates the data axes in view in order to provide an alternative presentation of data. Consider the following diagram that shows the pivot operation.

[bookmark: page13][image:]

	

[bookmark: page14]Experiment No. 2

Title: Implementation of Varying Arrays

S/w Requirement: ORACLE

Objectives: To learn fundamentals of var arrays

Reference:

· SQL‐PL/SQL by Ivan Bayross

· Data Mining Concept and Technique By Han & Kamber
· Data Warehousing Fundamentals By Paulraj

Pre-requisite::

· Fundamental Knowledge of Database Management
· Fundamental Knowledge of SQL

Theory:

PL/SQL programming language provides a data structure called the VARRAY, which can store a fixed-size sequential collection of elements of the same type. A varray is used to store an ordered collection of data, but it is often more useful to think of an array as a collection of variables of the same type.

All varrays consist of contiguous memory locations. The lowest address corresponds to the first
[image:]

element and the highest address to the last element.

Creating a Varray Type

A varray type is created with the CREATE TYPE statement. You must specify the maximum size and the type of elements stored in the varray.

The basic syntax for creating a VRRAY type at the schema level is:
[image:]

CREATE OR REPLACE TYPE varray_type_name IS VARRAY(n) of <element_type>

Where,
· varray_type_name is a valid attribute name,
· n is the number of elements (maximum) in the varray

Data Warehousing and Data Mining (RCS 654) Manual (CS, VI)	Page 14

· [bookmark: page15]element_type is the data type of the elements of the array.

Maximum size of a varray can be changed using the ALTER TYPE statement. For example,
[image:]

CREATE Or REPLACE TYPE namearray AS VARRAY(3) OF VARCHAR2(10);

/

Type created.

The basic syntax for creating a VRRAY type within a PL/SQL block is:
[image:]

TYPE varray_type_name IS VARRAY(n) of <element_type>

For example:
[image:]

TYPE namearray IS VARRAY(5) OF VARCHAR2(10); Type grades IS VARRAY(5) OF INTEGER;

The following program illustrates using varrays:
[image:]

DECLARE

type namesarray IS VARRAY(5) OF VARCHAR2(10); type grades IS VARRAY(5) OF INTEGER; names namesarray;

marks grades;
total integer;
BEGIN
names := namesarray('Kavita', 'Pritam', 'Ayan', 'Rishav', 'Aziz');

marks:= grades(98, 97, 78, 87, 92);

total := names.count;
dbms_output.put_line('Total '|| total || ' Students');
FOR i in 1 .. total LOOP

dbms_output.put_line('Student: ' || names(i) || '
Marks: ' || marks(i));
END LOOP;
END;

/

When the above code is executed at SQL prompt, it produces the following result:
[image:]

Student: Kavita Marks: 98
Student: Pritam Marks: 97
Student: Ayan Marks: 78
Student: Rishav Marks: 87

Student: Aziz Marks: 92

PL/SQL procedure successfully completed.

[bookmark: page16]Note:

· In oracle environment, the starting index for varrays is always 1.

· You can initialize the varray elements using the constructor method of the varray type, which has the same name as the varray.
· Varrays are one-dimensional arrays.

· A varray is automatically NULL when it is declared and must be initialized before its elements can be referenced.

[bookmark: page17]Experiment No. 3
__

Title: Implementation of Nested Tables

S/w Requirement: ORACLE

Objective:

• To learn fundamentals of Nested Arrays

Reference:

· SQL‐PL/SQL by Ivan Bayross

· Data Mining Concept and Technique By Han & Kamber
· Data Warehousing Fundamentals By Paulraj
Pre‐requisite:

· Fundamental Knowledge of Database Management
· Fundamental Knowledge of SQL

A collection is an ordered group of elements having the same data type. Each element is identified by a unique subscript that represents its position in the collection.

PL/SQL provides three collection types:

· Index-by tables or Associative array
· Nested table
· Variable-size array or Varray

Oracle documentation provides the following characteristics for each type of collections:
	
	
	
	
	Number of
	
	
	Subscript
	
	
	Dense or
	
	
	
	Can Be
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Collection Type
	
	
	
	
	
	
	
	
	
	
	Where Created
	
	Object Type
	

	
	
	
	
	Elements
	
	
	Type
	
	
	Sparse
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Attribute
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Associative array (or index-by table)
	
	
	Unbounded
	
	
	String or
	
	
	Either
	
	Only in PL/SQL
	
	No
	

	
	
	
	
	
	
	
	integer
	
	
	
	
	block
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	Starts dense,
	
	Either in PL/SQL
	
	
	

	
	Nested table
	
	
	Unbounded
	
	
	Integer
	
	
	can become
	
	block or at schema
	
	Yes
	

	
	
	
	
	
	
	
	
	
	
	sparse
	
	level
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	Always
	
	Either in PL/SQL
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Variable-size array (Varray)
	
	
	Bounded
	
	
	Integer
	
	
	
	
	block or at schema
	
	Yes
	

	
	
	
	
	
	
	
	
	
	
	dense
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	level
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

We have already discussed varray in the chapter 'PL/SQL arrays'. In this chapter, we will discuss PL/SQL tables.

[bookmark: page18]Both types of PL/SQL tables, i.e., index-by tables and nested tables have the same structure and their rows are accessed using the subscript notation. However, these two types of tables differ in one aspect; the nested tables can be stored in a database column and the index-by tables cannot.

Index-By Table

An index-by table (also called an associative array) is a set of key-value pairs. Each key is unique and is used to locate the corresponding value. The key can be either an integer or a string.

An index-by table is created using the following syntax. Here, we are creating an index-by table named table_name whose keys will be of subscript_type and associated values will be of element_type
[image:]

TYPE type_name IS TABLE OF element_type [NOT NULL] INDEX BY subscript_type;

table_name type_name;

Example:

Following example shows how to create a table to store integer values along with names and later it prints the same list of names.
[image:]

DECLARE
TYPE salary IS TABLE OF NUMBER INDEX BY VARCHAR2(20);

salary_list salary;
name	VARCHAR2(20);
BEGIN

· adding elements to the table salary_list('Rajnish') := 62000; salary_list('Minakshi') := 75000; salary_list('Martin') := 100000; salary_list('James') := 78000;

· printing the table
name := salary_list.FIRST;
WHILE name IS NOT null LOOP

dbms_output.put_line
('Salary of ' || name || ' is ' || TO_CHAR(salary_list(name)));
name := salary_list.NEXT(name);
END LOOP;
END;
/

When the above code is executed at SQL prompt, it produces the following result:
[image:]

Salary of Rajnish is 62000
Salary of Minakshi is 75000

Salary of Martin is 100000
Salary of James is 78000

PL/SQL procedure successfully completed.

[bookmark: page19]Example:

Elements of an index-by table could also be a %ROWTYPE of any database table or %TYPE of any database table field. The following example illustrates the concept. We will use the CUSTOMERS table stored in our database as:
[image:]

	Select * from customers;
	
	
	

	+----
	
	+----------
	+-----
	
	+-----------
	+----------
	
	+

	| ID | NAME
	| AGE | ADDRESS
	| SALARY
	|

	+----
	
	+----------
	+-----
	
	+-----------
	+----------
	
	+

	|
	1
	| Ramesh
	|
	32
	| Ahmedabad |
	2000.00
	|

	|
	2
	| Khilan
	|
	25
	| Delhi
	|
	1500.00
	|

	
	
	
	
	
	
	
	
	

	|
	3
	| kaushik
	|
	23
	| Kota
	|
	2000.00
	|

	|
	4
	| Chaitali |
	25
	| Mumbai
	|
	6500.00
	|

	|
	5
	| Hardik
	|
	27
	| Bhopal
	|
	8500.00
	|

	|
	6
	| Komal
	|
	22
	| MP
	|
	4500.00
	|

	+----
	
	+----------
	+-----
	
	+-----------
	+----------
	
	+

	DECLARE
	
	
	
	
	
	

	
	CURSOR c_customers is
	
	
	

	
	
	select
	name from customers;
	
	

	
	
	
	
	
	
	
	
	

TYPE c_list IS TABLE of customers.name%type INDEX BY binary_integer;
name_list c_list;

counter integer :=0;
BEGIN
FOR n IN c_customers LOOP
counter := counter +1;
name_list(counter)	:= n.name;

dbms_output.put_line('Customer('||counter|| '):'||name_list(counter));

END LOOP;
END;
/

When the above code is executed at SQL prompt, it produces the following result:
[image:]

Customer(1): Ramesh
Customer(2): Khilan
Customer(3): kaushik
Customer(4): Chaitali
Customer(5): Hardik
Customer(6): Komal

PL/SQL procedure successfully completed

Nested Tables

A nested table is like a one-dimensional array with an arbitrary number of elements. However, a nested table differs from an array in the following aspects:

· An array has a declared number of elements, but a nested table does not. The size of a nested table can increase dynamically.

· An array is always dense, i.e., it always has consecutive subscripts. A nested array is dense initially, but it can become sparse when elements are deleted from it.

A nested table is created using the following syntax:

[bookmark: page20][image:]TYPE type_name IS TABLE OF element_type [NOT NULL];

table_name type_name;

This declaration is similar to declaration of an index-by table, but there is no INDEX BY clause. A nested table can be stored in a database column and so it could be used for simplifying SQL operations where you join a single-column table with a larger table. An associative array cannot be stored in the database. Example:

The following examples illustrate the use of nested table:
[image:]

DECLARE

TYPE names_table IS TABLE OF VARCHAR2(10); TYPE grades IS TABLE OF INTEGER;

names names_table;
marks grades;
total integer;
BEGIN

names := names_table('Kavita', 'Pritam', 'Ayan', 'Rishav', 'Aziz'); marks:= grades(98, 97, 78, 87, 92); total := names.count;

dbms_output.put_line('Total '|| total || ' Students'); FOR i IN 1 .. total LOOP

dbms_output.put_line('Student:'||names(i)||', Marks:' || marks(i)); end loop;

END;
/

When the above code is executed at SQL prompt, it produces the following result:
[image:]

Total 5 Students
Student:Kavita, Marks:98
Student:Pritam, Marks:97

Student:Ayan, Marks:78
Student:Rishav, Marks:87
Student:Aziz, Marks:92

PL/SQL procedure successfully completed.

Example:

Elements of a nested table could also be a %ROWTYPE of any database table or %TYPE of any database table field. The following example illustrates the concept. We will use the CUSTOMERS table stored in our database as:

	[bookmark: page21]
	Select * from customers;
	
	
	
	
	

	
	+----
	
	+----------
	+-----
	
	+-----------
	+----------
	
	+
	

	
	| ID | NAME
	| AGE | ADDRESS
	| SALARY
	|
	

	
	+----
	
	+----------
	+-----
	
	+-----------
	+----------
	
	+
	

	
	|
	1
	| Ramesh
	|
	32
	| Ahmedabad |
	2000.00
	|
	

	
	|
	2
	| Khilan
	|
	25
	| Delhi
	|
	1500.00
	|
	

	
	|
	3
	| kaushik
	|
	23
	| Kota
	|
	2000.00
	|
	

	
	
	
	
	
	
	
	
	
	

	
	|
	4
	| Chaitali |
	25
	| Mumbai
	|
	6500.00
	|
	

	
	|
	5
	| Hardik
	|
	27
	| Bhopal
	|
	8500.00
	|
	

	
	|
	6
	| Komal
	|
	22
	| MP
	|
	4500.00
	|
	

	
	+----
	
	+----------
	+-----
	
	+-----------
	+----------
	
	+
	

	
	DECLARE
	
	
	
	
	
	
	

	
	
	CURSOR c_customers is
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	SELECT
	name FROM customers;
	
	
	

	
	
	
	
	
	
	
	
	
	
	

[image:]

TYPE c_list IS TABLE of customers.name%type; name_list c_list := c_list(); counter integer :=0;

BEGIN
FOR n IN c_customers LOOP
counter := counter +1;
name_list.extend;
name_list(counter)	:= n.name;

dbms_output.put_line('Customer('||counter||'):'||name_list(counter));

END LOOP;
END;
/

When the above code is executed at SQL prompt, it produces the following result:
[image:]

Customer(1): Ramesh
Customer(2): Khilan
Customer(3): kaushik
Customer(4): Chaitali
Customer(5): Hardik
Customer(6): Komal

PL/SQL procedure successfully completed.

[bookmark: page22]Experiment No. 4
__

Title: Demonstration of ETL tool

Objectives:
· To understand principles of clustering
· To Implement K-means algorithm for clustering

Reference:
· Data Mining Introductory & Advanced Topic by Margaret H. Dunham
· Data Mining Concept and Technique By Han & Kamber

Pre‐requisite:
· Fundamental Knowledge of Database Management
Theory:

In statistics and machine learning, k‐means clustering is a method of cluster analysis which aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean.‐Mean Clustering algorithm works?

Here is step by step k means clustering algorithm:

Step 1. Begin with a decision on the value of k = number of clusters

Step 2. Put any initial partition that classifies the data into k clusters. You may assign the training samples randomly, or systematically as the following:
1.	Take the first k training sample as single‐element clusters

Assign each of the remaining (N-k) training sample to the cluster with the nearest centroid.
After each assignment, recomputed the centroid of the gaining cluster.

Step 3. Take each sample in sequence and compute its distance from the centroid of each of the clusters. If a sample is not currently in the cluster with the closest centroid, switch this sample to that cluster and update the centroid of the cluster gaining the new sample and the cluster losing the sample.

Step 4. Repeat step 3 until coverage is achieved, that is until a pass through the training sample cause no new assignment

[bookmark: page23]Experiment No. 5
__

Title: Write a program of Apriori algorithm using C programming language

Objectives:

· To understand the idea of Apriori algorithm
Pre‐requisite:

· Knowledge of C programming language.

Theory: Apriori Algorithm is an algorithm for data mining of frequent data set and association rule learning over transactional databases. It identifies the frequent individual items in the database for example, collections of items bought by customers. Let’s take simple Example

Suppose you have records of large number of transactions at a shopping center as follows:

Transactions	Items bought

T1	A,B,C

T2	A, B

T3	B,C,D

T4	A,B,F

For example in the above table you can see A and B are bought together frequently. How Does This Algorithm works?

Step 1 : Count each items occurrence say A came 3, B – 3, C – 2, D – 1, F -1 time.
Step 2 : Remove entries which are very low in count say D,F.
Step 3 : Count Pair wise occurrence and Create table.
PS : this step we can do for A,B,C or A,B the way clients or we need aggregation.

	

[bookmark: page24]OP : AB-3, BC-2, AC-1,
Step 4 : Declare highest occurring items as AB.

#include<stdio.h>

#include<stdlib.h>

int main(int argc, char *argv[])

{

FILE *fin;

int i,cols,rows,*count;

char val;

if(argc!=2)

{

return 1;

}

fin = fopen(argv[1],"r");

//finding the number of cols

cols=0;

fscanf(fin,"%c",&val);

while(1)

{

if(val=='\n')

break;

if(val!=' ')

cols++;

fscanf(fin,"%c",&val);

}

printf("\nNumber of columns = %d\n",cols);

fclose(fin);

[bookmark: page25]fin = fopen(argv[1],"r");

//Generation of 1 item frequent items

count = (int*)malloc(sizeof(int)*cols);

for(i=0;i<cols;i++)

{

count[i] =0;

}

while(!feof(fin))

{

for(i=0;i<cols;i++)

{

fscanf(fin,"%c",&val);

if(val=='1')

count[i]++;

fscanf(fin,"%c",&val);

}

}

//Generation of 1-item frequent sets completed!!

printf("\n1-item frequent item sets..\n");

for(i=0;i<cols;i++)

{

printf("\n%d -> %d",i+1,count[i]);

}

fclose(fin);

return 0;

}

[bookmark: page26]

[bookmark: page27]Experiment No. 6

Title: Demonstration of pre-processing on dataset student.arff

Objectives: To learn to use the Weka machine learning toolkit

References
Witten, Ian and Eibe, Frank. Data Mining: Practical Machine Learning Tools and Techniques.
Springer.

Requirements

How do you load Weka?
1. What options are available on main panel?
2. What is the purpose of the the following in Weka:

1. The Explorer
2. The Knowledge Flow interface
3. The Experimenter
4. The command‐line interface
5. Describe the arff file format.

Steps of execution:

Step1: Loading the data. We can load the dataset into weka by clicking on open button in preprocessing interface and selecting the appropriate file.

Step2: Once the data is loaded, weka will recognize the attributes and during the scan of the data weka will compute some basic strategies on each attribute. The left panel in the above figure shows the list of recognized attributes while the top panel indicates the names of the base relation or table and the current working relation (which are same initially).

Step3: Clicking on an attribute in the left panel will show the basic statistics on the attributes for the categorical attributes the frequency of each attribute value is shown, while for continuous attributes we can obtain min, max, mean, standard deviation and deviation etc.,

Step4: The visualization in the right button panel in the form of cross-tabulation across two attributes.

Note: we can select another attribute using the dropdown list

Step5: Selecting or filtering attributes

Removing an attribute- When we need to remove an attribute, we can do this by using the attribute filters in weka. In the filter model panel, click on choose button, This will show a popup window with a list of available filters.

Scroll down the list and select the “weka filters unsupervised Attribute remove” filters.

Step 6: a) Next click the textbox immediately to the right of the choose button. In the resulting dialog box enter the index of the attribute to be filtered out.

b) Make sure that invert selection option is set to false. The click OK now in the filter box you will

[bookmark: page28]see “Remove-R-7”.

c) Click the apply button to apply filter to this data. This will remove the attribute and create new working relation.

d) Save the new working relation as an arff file by clicking save button on the top (button) panel(student.arff you can also use Wheather.arff as Given in your practical lab sessions.

Dataset student .arff

@relation student

@attribute age {<30, 30-40,>40}

@attribute income {low, medium, high}

@attribute student {yes, no}

@attribute credit-rating {fair, excellent}

@attribute buyspc {yes, no}

@data

%

<30, high, no, fair, no

<30, high, no, excellent, no

30-40, high, no, fair, yes

>40, medium, no, fair, yes

>40, low, yes, fair, yes

>40, low, yes, excellent, no

30-40, low, yes, excellent, yes

<30, medium, no, fair, no

<30, low, yes, fair, no

>40, medium, yes, fair, yes

<30, medium, yes, excellent, yes

30-40, medium, no, excellent, yes

30-40, high, yes, fair, yes

>40, medium, no, excellent, no

%

[bookmark: page29]Experiment No. 7

Title: Demonstration of Association rule process on dataset contactlenses.arff using apriori algorithm

Objective: To learn to use the Weka toolkit for Association Rule Mining

Execution steps

Step1: Open the data file in Weka Explorer. It is presumed that the required data fields have been discretized. In this example it is age attribute.

Step2: Clicking on the associate tab will bring up the interface for association rule algorithm.

Step3: We will use apriori algorithm. This is the default algorithm.

Step4: Inorder to change the parameters for the run (example support, confidence etc) we click on the text box immediately to the right of the choose button.

Dataset contactlenses.arff
[image:]

Dataset test.arff

@relation test

@attribute admissionyear {2005, 2006, 2007, 2008, 2009, 2010}

@attribute course {cse, mech, it, ece}

@data

%

[bookmark: page30]
2005, cse

2005, it

2005, cse

2006, mech

2006, it

2006, ece

2007, it

2007, cse

2008, it

2008, cse

2009, it

2009, ece

%

[image:]

[bookmark: page31]
The following screenshot shows the association rules that were generated when Apriori algorithm is applied on the given dataset.
[image:]

Experiment No. 8
[bookmark: page32]__

Title: Demonstration of classification rule process on dataset student.arff using j48 algorithm.

Objective: To learn to use the Weka machine learning toolkit for j48, decision tree classifier
Steps involved in this experiment:

Step-1: We begin the experiment by loading the data (student.arff) into weka.

Step2: Next we select the “classify” tab and click “choose” button to select the “j48”classifier.

Step3: Now we specify the various parameters. These can be specified by clicking in the text box to the right of the chose button. In this example, we accept the default values. The default version does perform some pruning but does not perform error pruning.

Step4: Under the “text” options in the main panel. We select the 10-fold cross validation as our evaluation approach. Since we don’t have separate evaluation data set, this is necessary to get a reasonable idea of accuracy of generated model.

Step-5: We now click ”start” to generate the model .the Ascii version of the tree as well as evaluation statistic will appear in the right panel when the model construction is complete.

Step-6: Note that the classification accuracy of model is about 69%. This indicates that we may find more work. (Either in pre-processing or in selecting current parameters for the classification).

Step-7: Now weka also lets us a view a graphical version of the classification tree. This can be done by right clicking the last result set and selecting “visualize tree” from the pop-up menu.

Step-8: We will use our model to classify the new instances.

Step-9: In the main panel under “text” options click the “supplied test set” radio button and then click the “set” button. This wills pop-up a window which will allow you to open the file containing test instances.

Dataset student .arff

@relation student

@attribute age {<30,30-40,>40}

@attribute income {low, medium, high}

@attribute student {yes, no}

@attribute credit-rating {fair, excellent}

@attribute buyspc {yes, no}

@data

%

<30, high, no, fair, no
[bookmark: page33]<30, high, no, excellent, no

30-40, high, no, fair, yes

>40, medium, no, fair, yes

>40, low, yes, fair, yes

>40, low, yes, excellent, no

30-40, low, yes, excellent, yes

<30, medium, no, fair, no

<30, low, yes, fair, no

>40, medium, yes, fair, yes

<30, medium, yes, excellent, yes

30-40, medium, no, excellent, yes

30-40, high, yes, fair, yes

>40, medium, no, excellent, no

%

The following screenshot shows the classification rules that were generated when j48 algorithm is applied on the given dataset.
[image:]

[image:]

[bookmark: page34]
[bookmark: page35][bookmark: page36]Experiment No. 9
__

Title: Demonstration of classification rule process on dataset employee.arff using naïve bayes algorithm

Aim: This experiment illustrates the use of naïve bayes classifier in weka. The sample data set used in this experiment is “employee”data available at arff format. This document assumes that appropriate data pre processing has been performed.

Steps involved in this experiment:

Step-1. We begin the experiment by loading the data (employee.arff) into weka.

Step-2: next we select the “classify” tab and click “choose” button to select the “id3”classifier.

Step-3: now we specify the various parameters. These can be specified by clicking in the text box to the right of the chose button. In this example, we accept the default values his default version does perform some pruning but does not perform error pruning.

Step-4: under the “text “options in the main panel. We select the 10-fold cross validation as our evaluation approach. Since we don’t have separate evaluation data set, this is necessary to get a reasonable idea of accuracy of generated model.

Step-5: we now click”start”to generate the model .the ASCII version of the tree as well as evaluation statistic will appear in the right panel when the model construction is complete.

Step-6: note that the classification accuracy of model is about 69%.this indicates that we may find more work. (Either in pre-processing or in selecting current parameters for the classification)

Step-7: now weka also lets us a view a graphical version of the classification tree. This can be done by right clicking the last result set and selecting “visualize tree” from the pop-up menu.

Step-8: we will use our model to classify the new instances.

Step-9: In the main panel under “text “options click the “supplied test set” radio button and then click the “set” button. This will show pop-up window which will allow you to open the file containing test instances.

Data set employee.arff:

@relation employee

[bookmark: page37]
@attribute age {25, 27, 28, 29, 30, 35, 48}
@attribute salary{10k,15k,17k,20k,25k,30k,35k,32k} @attribute performance {good, avg, poor}

@data
%

25, 10k, poor

27, 15k, poor

27, 17k, poor

28, 17k, poor

29, 20k, avg

30, 25k, avg

29, 25k, avg

30, 20k, avg

35, 32k, good

48, 34k, good

48, 32k, good

%

[bookmark: page38]
The following screenshot shows the classification rules that were generated when naive bayes algorithm is applied on the given dataset.

[image:]

[bookmark: page39][image:]

[bookmark: page40]Experiment No. 10

__

Title: Demonstration of clustering rule process on data-set iris.arff using simple k-means.

Objective: To learn to use the Weka machine learning toolkit for simple k-means clustering

Execution steps

Step 1: Run the Weka explorer and load the data file iris.arff in pre-processing interface.

Step 2: In order to perform clustering select the ‘cluster’ tab in the explorer and click on the choose button. This step results in a dropdown list of available clustering algorithms.

Step 3: In this case we select ‘simple k-means’.

Step 4: Next click in text button to the right of the choose button to get popup window shown in the screenshots. In this window we enter six on the number of clusters and we leave the value of the seed on as it is. The seed value is used in generating a random number which is used for making the internal assignments of instances of clusters.

Step 5: Once of the option have been specified. We run the clustering algorithm there we must make sure that they are in the ‘cluster mode’ panel. The use of training set option is selected and then we click ‘start’ button. This process and resulting window are shown in the following screenshots.

Step 6: The result window shows the centroid of each cluster as well as statistics on the number and the percent of instances assigned to different clusters. Here clusters centroid are means vectors for each clusters. These clusters can be used to characterized the cluster. For eg, the centroid of cluster1 shows the class iris.versicolor mean value of the sepal length is 5.4706, sepal width 2.4765, petal width 1.1294, petal length 3.7941.

Step 7: Another way of understanding characteristics of each cluster through visualization, we can do this, try right clicking the result set on the result. List panel and selecting the visualize cluster.

Step 8: We can assure that resulting dataset which included each instance along with its assign cluster. To do so we click the save button in the visualization window and save the result iris k-mean .The top portion of this file is shown in the following figure

[bookmark: page41]The following screenshot shows the clustering rules that were generated when simple k means algorithm is applied on the given dataset

[image:]

[bookmark: page42]
image2.jpeg
&
@0\\@ Chicago /am

& NewYork /15e0

Toronto /395
Vancouver

a1

£

“8aa

Time,
(Quarter)

Mobile Modem Phone Security

Toll-up onlocation itemi(types)
(fromitiesto

countries)

Mobile Modem Phone Security
item(types)

image3.jpeg
&,

P

Time
(Quarter)

Chicago

New York
Toronto /s
Vancouver,

a1
Q2
Qa3
Qs

Drilldown on
time(from
warters tomonth)

Mobile Modem Phone Security
item(types)

Time (months)

Ferury
st

Ny

oy
At
Setamber
sty
Noverir
Darer

Chicago
New York

Toronto £
Vancouver

)

Mobile Modem Phone Security
item(types)

image4.png
& Chicago
-.9‘?1\ & New York
& Teoronto
Vancouver

Mobile Modem Phone Security
itemitypes)

slice
for time
Ay~

Chicago

New York

Toronto
Vancouver

B
58
gz

Mobile Modem Phone Security
itemn(types)

image5.jpeg
&

Xy
ol | |
g |

Dicefor (location = “Toronto” or
Vancouver”)

and (time="Q1" or “Q2") and
item - "Mobile”or “Modem)

&5 chiage w7
G Newvork

Toronto

Vancouver —

m
{Quarter)
28882

Mobile Modem Phone Security

image6.jpeg
Locations

Chicago
3 New York

Toronto

Vancouver

Item

(types)

605 |s25 | 14 400

Mobile Modem Phone Security

Mobile
Modem
Phone
Security

item(types)

605

825

14

400

Chicago New Toronto Vancouver
York
Location (Cities)

image7.jpeg
First Element Last Element

l l

Numbers[1] | Numbers(2] | Numbers[3]

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.jpeg
2l

oistion; contoct onzos

d P ‘:“"f‘”’ﬁf‘“ﬁ“’: e redioed o Missing: 0 (0%) Distinct: Unique: 0 (0%)
[25prech..._[rypermetrope —lyer Freduced closss conbatknaes (N [
[T]

image23.jpeg
Weka Explorer
| Preprocess | Classiy | Custer | Associate | Select attributes | Visualze |

Assadiator

([ChooseJapriori 10-T0-C03 005U L0-#0 5101

EalE

Result s (right-cick for
=TT Associator model (full training set)

Bpriori

Minimm support: 0.1 (1 instances)
Minimm metric <confidence>: 0.9
umber of cycles perforued: 18
Generated sets of large itemsets:
Size of set of large itemsets L(l]:
Size of set of large itemsets L(2):

Best rules founs

1. coursenech 1 006 1 cont:

image24.jpeg
Weka Explorer

| Preprocess | Classiy | Custer | Associate | Select attributes | Visualze |
Assacitor

([ChooseJapriori 10-T0-C03 005U L0-#0 5101

EalE

Result s (right-cick for R AR

CERE weka, assoctations. Apriort - 10 T 0 C 0.9 -D 0.05 U 1.0 - 0.1 -

: test

Instences: 12

Aecribuces: 2
aduissionyear

Associator model (full training set)

Bpriori

Minimm support: 0.1 (1 instances)
Minimm metric <confidence>: 0.9
umber of cycles perforued: 18

Generated sets of large itemsets:

Size of set of large itemsets L(l}: 9

image25.jpeg
Weka Explorer.

Preprocess | Clssfy | Cluser | Associte | Select attrbutes | Visuaze |

Classfer

(oo Josscozsz

Test options
O Use training set

O Suppled test sot

@ Cossvaldation Folds [10

Opercentagespit |10

Wore options.

(o) buyspc

Start

Result s (ight-cickfor options)

12134153 - rees. 45

stop

Classfier output

Size of the tree : s

Tine taken to build model: 0 seconds

Stratified cross-validation =
Sumary

Correctly Classified Instances 7
Incorrectly Classified Instances 7
Kappa stavistic -0.0426
Mean absolute error 0.4167
Foot nean squared error 0.5984
Relative ahsolute error a5 %
Root relative syuared error 121.2987 %
Total Number of Instances 14
Detailed Accuracy By Class
TP Rate FP Rate Precision Recall
0.5 0.6 0.625 0.55
0.4 0.494 0333 0.4
Ueighted Avy. 0.5 0.584 0528 0.5

Confusion Matrix

ab < classified as
541a=yes
321b=mo

s0
s0

Fleasure
0.588
0.364
0.508

ROC Area
0.633
0.633
0.633

Class
ves

image26.png
Weka Explorer.

Preprocess | ClassiFy | Cluster | Associate | Select attrbutes | Visualze|

Classifier

[hooss Jaen-cozs mz

Test options Classifier cutput

© Use training set === Run information === —
© Supplied test set Set.
Schene: weka.classifiers. trees.dds -C 0.25 M 2
@ Cross-valdation Fals |10 - iy
Overcercagespit - |- | | Inscance 1a
Ateriputes: s
More cptions.
ase
(o) buyspe ~ student.
creditrating
Start Stop Buyspe
Test mode: 10-fold cross-validation
Result st (right-click for options)
Classifier wodel (rull training set)
385 pruned rree
age - <30
|” student - yes: yes (2.0)
| student = mo: mo (3.0)
age = 30-40: yes {4.0)
wae = 240
| creditrating - fair: yes (3.0)
|| creditraring - excellent: no (2.0
Nunber of Leaves : s
Size of the tree : s
L Tiwe e w0 Bulld wodel 3 <

Status.

Preprocess | Classi'y | Cluster | Associats | Select attibutes | visusizs|

Classifier

[choose_|n48-co.z5-m2

Test options Classfier output

O Use trairing sst
Size Of the tree : 8
Q) Supplied test set Get

© cross-validan T2 o0 2 eer-speciied dataset

Ting
O Pereerkage spit % [ee

More aptions Tres Yien

om) buyspc -

Start stop

Resdl

{right-click For options)

12:34:53 - brees. 148

3040 =240

]

o

yes
no

R

=Tair

Weka Classifier Tree Visualizer: 12:36:40 - trees. J48 (thuk)

= excellent

~

Status
ok

image27.jpeg
[Proprocess| Classfy | Cluster | Asocite

Select attrbutes | visualee|

- Clossfer
[[choose|aiveBayes

|

| Testoptions | Closferoutpu
O Use training set. Run inforuation
Oswpledtostset o

@ Cross-vaidaton Folds [10

Opercentagespit % [

Wore options.

wela.classifiers.bayes. NaiveBayes
enployee

1

Ateribuces: 3

age

salary

(o) performance. v

perfornance

Test mode: 10-fold cross-validation

Start [

Result s (fight-cick or opions)

Classifier model (full training set]

1263453 - rees. M5
12136140 rees. M5
1313334 - rees. M5
13:37:18 - rees.1d3

Naive Bayes Classifier

Class
Aeribuce good avg poor
(0.23) (0.36) (0.36)

age
25 Lo Lo zo
27 Lo Lo 30
28 Lo Lo 20
29 Lo 30 Lo
30 Lo 30 Lo
S 20 Lo Lo
48 .0 Lo Lo
[rotal] 10,0 1.0 110
salary
100 Lo Lo zo
s L0 Lo a

Status
o

image28.png
e

Folder

4 th program

* Weka Explorer

| Proprocess | Classity | Cluster | Associcte | Selert attrbutes | Vsualze|

Classfier
|_chooss | NaiveBayes
Test optens Classifer cukput
© Use training set
O suppiedtest set | Time taken to build model: 0 seccnds
@ Cross-volidation Folds

o A Stratified cross-validaticn =
Obexertagpanl % Summery

More options...]

Correctly Classified Instances 10 90,5091 %
Incorrectly Classified Instances 1 .0809 &
(Nary) peforance ¥ | Reppa statistic 0.0625
| Mean absolute error 0.2899
e J[==
Root mean squared error 0.3171
Resulk ist (right-click fer options) | Relative absolute error 61,3111 %
(125453 - trees. M0 Root relative squared error €3.0158 %
2106140 troes. 346 Total Muber of Instances 1u
13:33:3¢ - trees. 40
13:37:18 - trees. 1d3 Detailed Accuracy By Class ===
TP Rate FP Rate Frecizion Recall F-Measure ROC Area Class
1 i 1 1 1 1 qood
1 0.143 o8 1 o889 1 avg
0.75 0 1 0.75 0.657 1 poor
Veighted Ava. 0.909 0.052 €.927 0.905 0.908 1
Confusion Matrix
abc < classified as
3001 a=good
D40 1b=avy
0131 c=poor
Stetus
oK
-J start cka Explorer g naive emp1 - Paint

image29.png
Weka Explorer 0ee

[Proptocess| asy] e [assouate | et tabutes | Voualzs|

Run infornstion

sodato | Sooct ottributos | Visusles |

oo smoleivienns w2510

© L trining zct =
Iusances: 150

O Suppled test ot Seibeeien
O Nercentage it sepallength
O claszes to chsters evaliation sepatoidch
e retallensth
= I+ & Weles Clustaror Visw P—— 006

] Stare dusters or visualzation
Test moder |

[5 sepatengn am) 2}

) Jocer ana |00 st Qe ~ [[seect insance =l

ore atribu:

[e [s | Jiter &

Kiteans

muper of iter
Within cluster

Uluster centre

Cluoter ©
rean/tt
sed De

Cluoter 1
rean/tt
sed De

clusterd cluscerl

Ulusteree inst

Wela Explorer 060
[Preprocess | Classy | Clster _Associate | Selectattributes | Visualea |
Leters
| Choose |simplexMeans 12510
® Use traing sct -
Run infomation
O Suppletest st
O Percertage spit Sohene: veka. slusterers, SimleRieans 8 2 -5 10
(O Clossestocustars evauetion Reltim: Arls
e e o Instances: 150
[thomydess] Acributss: 5
Store dustersfr visusization sepallengtn
sepalvidth
petallength
Ignore arbutes B
‘ class
Test mde: evaluate on training data

Hodel and evalustion m training set

Muber of iterations: 7
Within cluster sun of squared errors: 62.1436382815797

Cluste: centroids:

Cluste: 0
Mean/Mode: 6.262 2.872 4.906 1.676 Iris-versicolor
5td Devs: 0.6628 0.3328 0.8256 0.4248 /A

Cluste: 1
Mean/Mode: 5.006 3.418 1.464 0.241 Iris-setosa
Std Devs: 03525 0.381 0.1735 0.1072 I/k

Clustesed Instances

wekaBplos | Y unttzd-P (3 BLOE zom

Sida Wanawres. @prepocss. B enpoyee-. | neal |

15 project

B 9ea T Ew

image1.png

