
UTILITY THEORY  
 
A CLASSIFICATION OF DECISION MAKING 

 Decision under Certainty  

 
 

Definition 1. We say that the decision is taken under certainty if each action is 
known to lead invariably to a specific outcome (prospect, alternative, etc.). 

 
 

Mathematical tools: the calculus to find maxima and minima of functions, the 

calculus of variations to find functions, production schedules, inventory schedules, etc. 

 

Decision under Risk  
 

 

Definition 2. We say that the decision is taken under risk if each action leads to 
one of a set of possible specific outcomes, each outcome occurring with a known 
probability. 

 
 
 
Remark. Certainty is a degenerate case of risk where the probabilities are 0 and 1. 
 
Example 1. An action might lead to a reward of $10 if a fair coin comes up heads, and 
a loss of $5 if it comes up tails. 
 
Example 2. More generally, consider a gamble in which one of n outcomes will occur, 
and let the possible outcomes be worth a1, a2, . . . an euros, respectively. Suppose that it 
is known that the respective probabilities of these outcomes are p1, p2, . . . , pn , where 
each pi lies between 0 and 1 (inclusive) and their sum is 1. How much is it worth to 
participate in this gamble?  

The monetary expected value: b = a1p1 + a2p2 + · · · + anpn . 
 
Objections to the monetary expected value – St. Petersburg Paradox: 
 

Peter tosses a coin and continues to do so until it should land ”heads” when it 

comes to the ground. He agrees to give Paul one ducat if he gets ”heads” on the very 

first throw, two ducats if he gets it on the second, four if on the third, eight if on the 

fourth, and so on, so that with each additional throw the number of ducats he must pay 

is doubled. Suppose we seek to determine the value of Paul’s expectation.  
The mean value of the win in ducats: 
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Paradox: a reasonable person sells – with a great pleasure – the engagement in the 

play for 20 ducats. 
 

Daniel Bernoulli: a gamble should be evaluated not in terms of the value of its 

alternative pay-offs but rather in terms of the value of its utilities, which he derived to 
be logarithmic functions. 
 
 

Decision under Uncertainty  
 
 
 

Definition 3. We say that the decision is taken under uncertainty if either action 
has as its consequence a set of possible specific outcomes, but the probabilities of 
these outcomes are completely unknown or are not even meaningful. 

 
 
 
 
AXIOMATIC UTILITY THEORY  
 

Rational Preferences  
Consider a finite set {A1, A2, . . . , Ar } of basic alternatives or prizes. A lottery 

(p1A1, p2A2, . . . , pr Ar ) 
 
is a chance mechanism which yields the prizes A1, A2, . . . , Ar as outcomes with 
known probabilities p1, p2, . . . , pr , where each pi ≥ 0, p1 + p2 · · · + pr = 1. Let us 
order the alternatives downwards from the most to the least preferred one.  

Among the basic alternatives, we use the symbolism Ai % Aj to denote that Aj is 

not preferred to Ai . Equivalently, we say that Ai is preferred or indifferent to Aj . 
 
 

Assumption 1 (ordering of alternatives). The ”preference or indifference” ordering over 
all basic alternatives is complete and transitive: for any Ai and Aj , either Ai % Aj or Aj 
% Ai holds; and if Ai % Aj and Aj % Ak then Ai % Ak . 
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. , Ar as prizes. If q1, q2, . . . , qr are any s nonnegative numbers which sum to 1, then 
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denotes a compound lottery in the following sense: one and only one of the given s 

lotteries will be the prize, and the probability that it will be L
(i)

 is qi . 

 

For the sake of simplification, let us denote A1 the most preferred alternative, Ar 

the least preferred one. 

 
Assumption 2 (reduction of compound lotteries). Any compound lottery is indif-ferent 
to a simple lottery with A1, A2, . . . , Ar as prizes, their probabilities being computed 
according to the ordinary probability calculus. In particular, if  
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Assumption 3 (continuity). Each prize Ai is indifferent to some lottery involving just 

A1 and Ar . That is, there exists a number ui such that Ai is indifferent to 
 

(uiA1, 0A2, . . . , 0Ar−1, (1 − ui)Ar ).  
For convenience, we write: 
 

˜   

Ai  ∼ (uiA1, (1 − ui)Ar ) = Ai.  

˜ is substitutable for Ai , that 

is, 

 

Assumption 4 (substitutibility). In any lottery L, Ai   

( ) ∼ ( 
˜
 ) p1A1, p2A2, . . . , piAi, . . . , pr Ar p1A1, p2A2, . . . , piAi, . 

. . , pr Ar . 

 

Assumption 5 (transitivity). Preference and indifference among lotteries are transi-tive 

relations. 

 

Assumption 6 (monotonicity). A lottery (pA1, (1 − p)Ar ) is preferred or indifferent to 

(p
0
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0
)Ar ) if and only if p ≥ p

0
. 

 
 

Theorem 1. If the preference or indifference relation 6, 
there are numbers ui associated with the basic prizes 
and L

0
 the magnitudes of the expected values 
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reflect the preference between the lotteries. 
 
 
 

Definition 4. If a person imposes a transitive preference relation % over a set of 
lotteries and if to each lottery L there is assigned a number u(L) such that the 
magnitudes of the numbers reflect the preferences, i.e., u(L) ≥ u(L

0
) if and only if 

L % L
0
, then we say there exists a utility function u over the lotteries. 

 
If, in addition, the utility function has the property that 
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for all probabilities q and lotteries L and L

0
, then we say the utility function is 

linear. 
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