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Introduction 

 
We de ne/summarize a pattern recognition system using the block diagram in Figure 1.1. 
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Figure 1.1: Pattern recognition system; x a tuple of p measurements, output  — class label. 

 
In some cases, this might work; i.e. we collect the pixel values of a sub-image that contains the object of interest and place them 

in a p-tuple x and leave everything to the classi er algorithm. However, Figure 1.2 shows a more realistic setup. In this 

arrangement — still somewhat idealised, for example, we assume that we have somehow isolated the object in a (sub)image  
— we segment the image into object pixels (value 1, say) and background pixels (value 0). 
 
In such a setup we can do all the problem speci c processing in the rst two stages, and pass the feature vector (in general p-

dimensional) to a general purpose classi er. 
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(*) General pattern recognition 
 

* For example, in the trivial case of identifying '0' and '1' we 

could have a feature vector (x1 = width, x2 = ink area). 
 

++ class = 0, 1; in a true OCR problem (A−Z;0−9), class = 1..36. 

 
Figure 1.2: Image pattern recognition — problem separated. 

 
Pattern recognition (classi cation) may be posed as an inference problem. The inference involves class labels, that is we 

have a set of examples (training data), XT = fxi; ig
n

i=1. x is the pattern vector — of course, we freely admit that in certain 

situations x is a simple scalar.  is the class label,  2  = f1; : : : ; cg; given an unseen pattern x, we infer . In 

general, x = (x0 x1 : : : xp 1)
T

 , a p-dimensional vector; 
T

 denotes transposition.  
From now on we concentrate on classi er algorithms, and we refer only occasionally to concrete examples. 
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2 Simple classifier algorithms: 
 

2.1  Thresholding for one-dimensional data 
 
 
In our simplistic character recognition system we require to recognise two characters, `0' and `1'. We extract two features: 

width and inked area. These comprise the feature vector, x = (x1 x2)
T

 . 
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Figure 2.1: Width data, x1. 
 
Let us see whether we can recognise using width alone (x1. Figure 2.1 shows some (training) data that has been collected. 

We see that a threshold (T) set at about x1 = 2:8 is the best we can do; the classi cation algorithm is: 

 

 

  = 1 when x1   T; (2.1) 

= 0 otherwise: (2.2) 

 
Use of histograms, see Figure 2.2 might be a more methodical way of determining the threshold, T . 
 
If enough training data were available, n ! , the histograms, h0(x1); h1(x1), properly normalised would approach probability 

densities: p0(x1); p1(x1), more properly called class conditional probability densities: p(x1 j );  = 0; 1, see Figure 2.3. 
 
When the feature vector is three-dimensional (p = 3) or more, it becomes impossible to estimate the probability densities 

using histogram binning — there are a great many bins, and most of them contain no data. 
 
 
 



 
freq.       

h1(x1)       

    h0(x1)   

  0 0 0 0 0 0 0 0 0 0   

1 1 1 1 1 1     

1 2 3 4 5 6 x1 

  T     
 

Figure 2.2: Width data, x1, with histogram. 
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Figure 2.3: Class conditional densities. 
 
 
 
 
 
 

 

 



 

2.2 Linear separating lines/planes for two-dimensions 
 

Since there is overlap in the width, x1, measurement, let us use the two features, x = (x1x2)
T

 , i.e. (width, area). Figure 2.4 

shows a scatter plot of these data. 
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Figure 2.4: Two dimensions, scatter plot. 

 
The dotted line shows that the data are separable by a straight line; it intercepts the axes at x1 = 4:5 and x2 = 6. 
 
Apart from plotting the data and drawing the line, how could we derive it from the data? (Thinking of a computer program.) 
 

 

2.3 Nearest mean classifier: 
 
 
Figure 2.5 shows the line joining the class means and the perpendicular bisector of this line; the perpendicular bisector 

turns out to be the separating line. We can derive the equation of the separating line using the fact that points on it are 

equidistant to both means, µ0; µ1, and expand using Pythagoras's theorem, 
 
 

jx  µ0j
2
 =   jx  µ1j

2
; (2.3) 

(x1   µ01)
2
 + (x2   µ02)

2
 =   (x1   µ11)

2
 + (x2   µ12)

2
: (2.4) 

We eventually obtain   

(µ01   µ11)x1 + (µ02   µ12)x2   (µ01
2
 + µ02

2
   µ11

2
   µ12

2
) = 0; (2.5) 

which is of the form   

b1x1 + b2x2   b0 = 0: (2.6) 

In Figure 2.5, µ01 = 4; µ02 = 3; µ11 = 2; µ12 = 1:5; with these values, eqn 2.6 becomes  

4x1 + 3x2   18:75 = 0; (2.7) 

which intercepts the x1 axis at 18:75=4  4:7 and the x2 axis at 18:75=3 = 6:25.  
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Figure 2.5: Two dimensional scatter plot showing means and separating line. 

 

2.4  Normal form of the separating line, projections, and linear discriminants 
 
 
Eqn 2.6 becomes more interesting and useful in its normal form,  

a1x1 + a2x2   a0 = 0; (2.8) 

  

where a1
2
 + a2

2
 = 1; eqn 2.8 can be obtained from eqn 2.6 by dividing across by 

q
 b1

2
 + b2

2
 .  

Figure 2.6 shows interpretations of the normal form straight line equation, eqn 2.8. The coef cients of the unit vector 

normal to the line are n = (a1a2)
T

 and a0 is the perpendicular distance from the line to the origin. Incidentally, the 

components correspond to the direction cosines of n = (a1a2)
T

 = (cos  sina2)
T

 . Thus, (Foley, van Dam, Feiner, Hughes 
& Phillips 1994) n corresponds to one row of a (frame) rotating matrix; in other words, see below, section 2.5, dot product 
of the vector expression of a point with n, corresponds to projection onto n. (Note that cos=2  = sin.) 
 

Also as shown in Figure 2.6, points x = (x1x2)
T

 on the side of the line to which 

n whilst points on the other side have a1x1 + a2x2 a0 < 0; as we know, points on 

 

= (a1a2)
T

 points have a1x1 + a2x2 a0 > 0, 

the line have a1x1 + a2x2 a0 = 0. 
 
 

2.5  Projection and linear discriminant 

 

We know that a1x1 + a2x2 = a
T

 x, the dot product of n = (a1a2)
T

 and x represents the projection of points x onto n — 

yielding the scalar value along n, with a0 xing the origin. This is plausible: projecting onto n yields optimum separability. 
 
Such a projection,  

g(x) = a1x1 + a2x2; (2.9) 
 
is called a linear discriminant; now we can adapt equation eqn. 2.2, 
 
 
 

  = 0 when g(x) > a0; (2.10) 

= 1; g(x) < a0; (2.11) 

= tie; g(x) = a0: (2.12) 

 
Linear discriminants, eqn. 2.12, are often written as 
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Figure 2.6: Normal form of a straight line, interpretations. 

 
 
 

g(x) = a1x1 + a2x2   a0; (2.13) 
 
whence eqn. 2.12 becomes 
 
 
 

  = 0 when g(x) > 0; (2.14) 

= 1; g(x) < 0; (2.15) 

= tie; g(x) = 0: (2.16) 
 
 

2.6  Projections and linear discriminants in p dimensions 
 
 
Equation 2.13 readily generalises to p dimensions, n is a unit vector in p dimensional space, normal to the the p 1 

separating hyperplane. For example, when p = 3, n is the unit vector normal to the separating plane. 
 
Other important projections used in pattern recognition are Principal Components Analysis (PCA), see section A.1 and 

Fisher's Linear Discriminant, see section A.2. 
 
 

2.7  Template Matching and Discriminants 
 
 
An intuitive (but well founded) classi cation method is that of template matching or correlation matching. Here we have 

perfect or average examples of classes stored in vectors fz jg
c

j=1, one for each class. Without loss of generality, we assume 

that all vectors are normalised to unit length. 
 

Classi cation of an newly arrived vector x entails computing its template/correlation match with all c templates:  

x
T

 zj; (2.17) 

class  is chosen as j corresponding to the maximum of eqn. 2.17.  

Yet again we see that classi cation involves dot product, projection, and a linear discriminant.  



 

2.8  Nearest neighbour methods 

 
Obviously, we may not always have the linear separability of Figure 2.5. One non-parametric method is to go beyond 

nearest mean, see eqn. 2.4, to compute the nearest neighbour in the entire training data set, and to decide class according to 

the class of the nearest neighbour. 
 
A variation is k nearest neighbour, where a vote is taken over the classes of k nearest neighbours. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 3.Statistical methods: 
 
 
 
 
 
Recall Figure 2.3, repeated here as Figure 3.1. 
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Figure 3.1: Class conditional densities. 
 

We have class conditional probability densities: p(x1 j );  = 0; 1; given a newly arrived x
0

1 we might decide on its class 

according to the maximum class conditional probability density at x
0

1, i.e. set a threshold T where p(x1 j 0) and p(x1 j 1) 
cross, see Figure 3.1. 
 
This is not completely correct. What we want is the probability of each class (its posterior probability) based on the 

evidence supplied by the data, combined with any prior evidence. 
 
In what follows, P( j x) is the posterior probability or ―a posteriori probability‖ of class  given the observation x; P(w) is 

the prior probability or ―a priori probability‖. We use upper case P(:) for discrete probabilities, whilst lower case p(:) 

denotes probability densities. 
 
Let the Bayes decision rule be represented by a function g(:) of the feature vector x: 
 

g(x) = arg maxw j2W[P( j j x)] (3.1) 

 
To show that the Bayes decision rule, eqn. 3.1, achieves the minimum probability of error, we compute the probability of 

error conditional on the feature vector x — the conditional risk — associated with it: 
 

c  

R(g(x) =  j j x) =   å  P(k j x): (3.2) 
k=1;k6= j 
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That is to say, for the point x we compute the posterior probabilities of all the c  1 classes not chosen. 
 

Since  = f1; : : : ; cg form an event space (they are mutually exclusive and exhaustive) and the P(k j x)
c

k=1 are 

probabili-ties and so sum to unity, eqn. 3.2 reduces to:  
R(g(x) =  j) = 1  P( j j x): (3.3) 

 
It immediately follows that, to minimise R(g(x) =  j), we maximise P( j j x), thus establishing the optimality of eqn. 3.1. 

The problem now is to determine P( j x) which brings us to Bayes' rule. 

 

3.1  Bayes' Rule for the Inversion of Conditional Probabilities 

 

From the de nition of conditional probability, we have:  

p(; x) = P( j x) p(x); (3.4) 

and, owing to the fact that the events in a joint probability are interchangeable, we can equate the joint probabilities :  

p(; x) = p(x; ) = p(x j )P(): (3.5) 
 
Therefore, equating the right hand sides of these equations, and rearranging, we arrive at Bayes' rule for the posterior 

proba-bility P( j x):  

P( j x) = p(x j )P() : (3.6) 
 p(x)   

P() expresses our belief that  will occur, prior to any observation. If we have no prior knowledge, we can assume equal 
priors for each class: P(1) = P(2) : : : = P(c); 

c
   P( 

j) = 1. Although we avoid further discussion here, we note that 
j=1 

the matter of choice of prior probabilities is the subject of considerable discussion especially in the literature on Bayesian 

inference, see, for example, (Sivia 1996). 
 
p(x) is the unconditional probability density of x, and can be obtained by summing the conditional densities: 
 

c 

p(x) = å p(x j  j)P( j): (3.7)  
j=1 

 
Thus, to solve eqn. 3.6, it remains to estimate the conditional densities. 
 
 

3.2  Parametric Methods 

 
Where we can assume that the densities follow a particular form, for example Gaussian, the density estimation problem is 

reduced to that of estimation of parameters. 
 
The multivariate Gaussian or ―Normal‖ density, p-dimensional, is given by: 
 

p(x j  j) = 
1 

exp[ 
1 
(x  µ j)

T
 Kj 

1
(x  µ j)] 

 

(2)
p=2

 j Kj j
1=2

 2 
 

   
  

p(x j  j) is completely speci ed by µ j, the p-dimensional mean vector, and K j the corresponding  

µ j = E[x]w=w j ;  

Kj = E[(x  µ j)(x  µ j)
T

 ]w=w j : 
 
The respective maximum likelihood estimates are: 

 

 
(3.8) 

 
 

p p covariance matrix: 

(3.9) 

(3.10) 

 
    

1 
Nj  

 

  µ j = å xn; (3.11)  
    

    Nj n=1  
 

and,   
Nj 

  
 

 

1 
   

 

Kj =  å (xn   µ j)(xn   µ j)
T ; (3.12)  

   

 Nj   1 n=1   
 

where we have separated the training data XT = fxn; ng
N

n=1 into sets according to class. 



 

3.3  Discriminants based on Gaussian Density 

 

We may write eqn. 3.6 as a discriminant function:   

g j(x) = P( j j x) = p(x j  j)P( j) ; (3.13) 

p(x)   

so that classi cation, eqn. 3.1, becomes a matter of assigning x to class w j if,   

g j(x) > gk(x); 8 k 6= j:  (3.14) 

 
Since p(x), the denominator of eqn. 3.13 is the same for all g j(x) and since eqn. 3.14 involves comparison only, we may 

rewrite eqn. 3.13 as  
g j(x) = p(x j  j)P( j): (3.15) 

 
We may derive a further possible discriminant by taking the logarithm of eqn. 3.15 — since logarithm is a monotonically 

increasing function, application of it preserves relative order of its arguments: 
 

g j(x) = log p(x j  j) + log P( j): (3.16) 

 
In the multivariate Gaussian case, eqn. 3.16 becomes (Duda & Hart 1973),  

g j(x) = 1 (x  µ j)
T

 K 
1
 (x  µ j)

p 
log2 

1
log j Kj j +logP( j) (3.17) 

 2 j 2 2  
 
Henceforth, we refer to eqn. 3.17 as the Bayes-Gauss classi er. 
 
The multivariate Gaussian density provides a good characterisation of pattern (vector) distribution where we can model the 

generation of patterns as `ideal pattern plus measurement noise'; for an instance of a measured vector x from class  j: 
 

xn = µ j + en; (3.18) 
 
where en   N(0; Kj), that is, the noise covariance is class dependent. 
 

 

3.4  Bayes-Gauss Classi er – Special Cases 
 
 
(Duda & Hart 1973, pp. 26–31) 
 
Revealing comparisons with the other learning paradigms which play an important role in this thesis are made possible if we 

examine particular forms of noise covariance in which the Bayes-Gauss classi er decays to certain interesting limiting forms: 

 

Equal and Diagonal Covariances (K j = 
2
I; 8 j, where I is the unit matrix); in this case certain important 

equivalences with eqn. 3.17 can be demonstrated:  
 

– Nearest mean classi er;  
 

– Linear discriminant;  
 

– Template matching;  
 

– Matched  lter;  
 

– Single layer neural network classi er.  
 

Equal but Non-diagonal Covariance Matrices.  
 

– Nearest mean classi er using Mahalanobis distance; 

and, as in the case of diagonal covariance,  

– Linear discriminant function;  
 

– Single layer neural network;  



 
 
3.4.1  Equal and Diagonal Covariances 
 

When each class has the same covariance matrix, and these are diagonal, we have, K j = 
2
I, so that K j 

1
 = 1 I. Since the  

2  

covariance matrices are equal, we can eliminate the 2
1
 j logKj j; the 2

p
 log2 term is constant in any case; thus,

s
including the 

 

simpli cation of the (x  µ j)
T

 Kj 
1
(x  µ j), eqn. 3.17 may be rewritten:   

 

g j(x)   =  
1 

(x  µ j)
T

 (x  µ j) + logP( j) (3.19) 
 

2
2 

 

= 
1 

kx  µ j)k
2
 + logP( j): (3.20) 

 

 

2
2
 

 

      
 

 
Nearest mean classi er If we assume equal prior probabilities P( j), the second term in eqn. 3.20 may be eliminated for 

comparison purposes and we are left with a nearest mean classi er. 

 

Linear discriminant  If we further expand the squared distance term, we have,  
 

g j(x) = 

1 

(x
T

 x  2µ
T

j x + µ
T

j µ j) + logP( j); (3.21) 

 

  

2
2
 

 

which may be rewritten as a linear discriminant:        
 

  g j(x) = w j0 + w
T

j x (3.22) 
 

where  
1 

(µ
T

j µ j) + logP( j); 

 
 

   
 

wj0 = 
 

(3.23) 
 

2
2
 

 

and  
1   

 

    
 

   

wj = 

 

µ j: (3.24) 

 

   
2
 

 

 
Template matching In this latter form the Bayes-Gauss classi er may be seen to be performing template matching or 

correlation matching, where w j = constant µ j, that is, the prototypical pattern for class j, the mean µ j, is the template. 

 
Matched lter In radar and communications systems a matched lter detector is an optimum detector of (subsequence) 

signals, for example, communication symbols. If the vector x is written as a time series (a digital signal), x[n]; n = 0; 1; : : :  
then the matched  lter for each signal j may be implemented as a convolution: 
 

N  1 

y j[n] = x[n]   h[n] =  å x[n  m] h j[m]; (3.25)  
m=0 

 
where the kernel h[:] is a time reversed template — that is, at each time instant, the correlation between h[:] and the last N 

samples of x[:] are computed. Provided some threshold is exceeded, the signal achieving the maximum correlation is detected. 

 
Single Layer Neural Network  If we restrict the problem to two classes, we can write the classi cation rule as: 
 
 
 

 
where w0 
 
and w = 

 
 

      g(x)   = g1(x)   g2(x)    0: 1; otherwise 2 (3.26) 
 

      = w0 + w
T

 x; (3.27) 
 

= 1 (µ
T
 µ µ

T
 µ ) + log P

(
w1

)
   

 

2s
2 

   

  1 1 2  2 P(w2)   
 

1 (µ1   µ2).      
 

2      
 

s        
 

In other words, eqn. 3.27 implements a linear combination, adds a bias, and thresholds the result — that is, a single layer 

neural network with a hard-limit activation function. 
 
(Duda & Hart 1973) further demonstrate that eqn. 3.20 implements a hyper-plane partitioning of the feature space. 



 
 
 
 
3.4.2  Equal but General Covariances 

 

When each class has the same covariance matrix, K, eqn. 3.17 reduces to:  

g j(x) =   (x  µ j)
T

 K 
1
(x  µ j) + logP( j) (3.28) 

 
Nearest Mean Classi er, Mahalanobis Distance  If we have equal prior probabilities P( j), we arrive at a nearest mean  
classi er where the distance calculation is weighted. The Mahalanobis distance (x µ j)

T
 Kj 

1
(x µ j) effectively weights 

contributions according to inverse variance. Points of equal Mahalanobis distance correspond to points of equal conditional 

density p(x j  j). 
 
 

Linear Discriminant  Eqn. 3.28 may be rewritten as a linear discriminant, see also section 2.5:  
 

 g j(x) = w j0 + w
T

j x (3.29) 
 

where 
1 

(µ
T

j K 
1
µ j) + logP( j); 

 
 

  
 

 wj0 =    2 (3.30) 
 

and  

wj = K 
1
µ j: (3.31) 

 

  
 

 
Weighted template matching, matched lter In this latter form the Bayes-Gauss classi er may be seen to be performing 

weighted template matching. 

 
Single Layer Neural Network As for the diagonal covariance matrix, it can be easily demonstrated that, for two classes, 

eqns. 3.29– 3.31 may be implemented by a single neuron. The only difference from eqn. 3.27 is that the non-bias weights, 

instead of being simple a difference between means, is now weighted by the inverse of the covariance matrix. 
 
 

3.5  Least square error trained classi er 
 
 
We can formulate the problem of classi cation as a least-square-error problem. Let us require the classi er to output a class 

membership indicator 2 [0; 1] for each class, we can write: 
 

d = f (x) (3.32) 
 

where d = (d1; d2; : : : dc)
T

 is the c-dimensional vector of class indicators and x, as usual, the p-dimensional feature 

vector. We can express individual class membership indicators as: 

      p       

     d j = b0 + å bixi + e:     (3.33) 
      i=1       

In order to continue the analysis, we recall the theory of linear regression 

(Beck & Arnold 1977).          

Linear Regression The simplest linear model, y = mx + c, of school mathematics, is given by:    

      y = b0 + b1x + e;     (3.34) 
 
which shows the dependence of the dependent variable y on the independent variable x. In other words, y is a linear 

function of x and the observation is subject to noise, e; e is assumed to be a zero-mean random process. Strictly eqn. 3.34 is 

af ne, since b0 is included, but common usage dictates the use of linear. Taking the nth observation of (x; y), we have 

(Beck & Arnold 1977, p. 133):  
yn = b0 + b1xn + en (3.35) 



 
 

Least square error estimators for b0 and b1, b
ˆ

0 and b
ˆ

1 may be obtained from a set of paired observations fxn; yng
N

n=1 by 
minimising the sum of squared residuals: 

N N   

S = å rn
2
 = å (yn   yˆn)

2
 (3.36) 

n=1 n=1   

N    

S = å (yn   b0 b1xn)
2
 (3.37) 

n=1    

 

Minimising with respect to b0 and b1, and replacing these with their estimators, b
ˆ

0 and b
ˆ

1, gives the familiar result:  

b
ˆ

1 = N[åynxn   (åyi)(åxi)]=[N(åxi
2
)   (åxi)

2
] (3.38) 

 

b
ˆ

0 = 

 yn 

xn 

b
ˆ

1  xn 

(3.39) 

 

N N 
  

The validity of these estimates does not depend on the distribution of the errors en; that is, assumption of Gaussianity is not 

essential. On the other hand, all the simplest estimation procedures, including eqns. 3.38 and 3.39, assume the xn to be error 

free, and that the error en is associated with yn. 
 
In the case where y, still one-dimensional, is a function of many independent variables — p in our usual formulation of p-

dimensional feature vectors — eqn. 3.35 becomes: 
 

p  

yn = b0 + å bixin + en (3.40) 
i=1  

where xin is the i-th component of the n-th feature vector.  

Eqn. 3.40 can be written compactly as:  

yn = xn
T

 b + en (3.41) 

where b = (b0; b1; : : : ; bp)
T

 is a p + 1 dimensional vector of coef cients, and xn = (1; x1n; x2n; : : : ; xpn) is the augmented feature 

vector. The constant 1 in the augmented vector corresponds to the coef cient b0, that is it is the so called bias term of  
neural networks, see sections 2.5 and 4. 
 
All N observation equations may now be collected together: 
 

  y = Xb + e     (3.42) 
 

where  y =  (y1; y2; : : : ; yn; : : : ; yN )
T

   is  the  N   1 vector  of  observations  of  the  dependent  variable, and  e = 
 

(e1; e2; : : : ; en; : : : ; eN )
T

 . X is the Np + 1 matrix formed by N rows of p + 1 independent variables.  
 

Now, the sum of squared residuals, eqn. 3.36, becomes:          
 

  

S = (y 

 ˆ T 

: (3.43) 
 

  Xb)   
 

            
  
 

& Arnold 1977, p. 235): 
ˆ 
 

T 

X) 

1 

X 

T 

y: (3.44) 

 

  
 

 b = (X     
  

The jk-th element of the ( p + 1) ( p + 1) matrix X
T

X is 
N

n=1 xn jxnk, in other words, just N the jk-th element of the 

autocorrelation matrix, R, of the vector of independent variables x estimated from the N sample vectors. 
 
If, as in the least-square-error classi er, we have multiple dependent variables (y), in this case, c of them, we can replace y 

in eqn. 3.44 with an appropriate matrix N c matrix Y formed by N rows each of c observations. Now, eqn. 3.44 becomes: 

ˆ T 
X) 

1 
X 

T 
Y (3.45) 

 

B = (X    
 

X
T

Y is a p + 1 c matrix, and Bˆ is a ( p + 1) c matrix of coef cients — that is, one column of p + 1 coef cients for each 

class. 
 
Eqn. 3.45 de nes the training `algorithm' of our classi er. 



 
 

 

Application of the classi er to a feature vector x may be expressed as:  
 

ˆ 

(3.46) 
 

yˆ = Bx: 
 

 
It remains to  nd the maximum of the c components of yˆ. 
 
In a two-class case, this least-square-error training algorithm yields an identical discriminant to Fisher's linear discriminant 

(Duda & Hart 1973). Fisher's linear discriminant is described in section A.2. 
 

Eqn. 3.45 has one signi cant weakness: it depends on the condition of the matrix X
T

 X. As with any autocorrelation or 

auto-covariance matrix, this cannot be guaranteed; for example, linearly dependent features will render the matrix singular. 

In fact, there is an elegant indirect implementation of eqn. 3.45 involving the singular value decomposition (SVD) (Press, 

Flannery, Teukolsky & Vetterling 1992), (Golub & Van Loan 1989). The Widrow-Hoff iterative gradient-descent training 

procedure (Widrow & Lehr 1990) developed in the early 1960s tackles the problem in a different manner. 
 
 

3.6  Generalised linear discriminant function 
 
 

Eqn. 2.13 may be adapted to cope with any function(s) of the features xi; we can de ne a new feature vector x
0

 where:  

xk
0

 = fk(x): (3.47) 
 

In the pattern recognition literature, the solution of eqn. 3.47 involving now the vector x
0

 is called the generalised linear 

discriminant function (Duda & Hart 1973, Nilsson 1965). 
 
It is desirable to escape from the xed model of eqn. 3.47: the form of the fk(x) must be known in advance. Multilayer 

perceptron (MLP) neural networks provide such a solution. We have already shown the correspondence between the linear 

model, eqn. 3.41, and a single layer neural network with a single output node and linear activation function. An MLP with 

appropriate non-linear activation functions, e.g. sigmoid, provides a model-free and arbitrary non-linear solution to learning 

the mapping between x and y (Kosko 1992, Hecht-Nielsen 1990, Haykin 1999).



Principal Components Analysis and Fisher's  
Linear Discriminant Analysis 
 
 
 

A.1  Principal Components Analysis 
 
 
Principal component analysis (PCA), also called Karhunen-Loeve transform (Duda, Hart & Stork 2000) is a linear transfor-mation 

which maps a p-dimensional feature vector x 2 R
p
 to another vector y 2 R

p
 where the transformation is optimised such that the 

components of y contain maximum information in a least-square-error sense. In other words, if we take the rst  
r p components (y

0
 2 R

q
), then using the inverse transformation, we can reproduce x with minimum error. Yet another view is 

that the rst few components of y contain most of the variance, that is, in those components, the transformation stretches  
the data maximally apart. It is this that makes PCA good for visualisation of the data in two dimensions, i.e. the rst two 

principal components give an optimum view of the spread of the data. 
 
We note however, unlike linear discriminant analysis, see section A.2, PCA does not take account of class labels. Hence 

it is typically a more useful visualisation of the inherent variability of the data. 
 
In general x can be represented, without error, by the following expansion: 

 
p  

x = Uy = å yiui (A.1) 
i=1  

where  

yi is the ith component of y and (A.2) 

where  

U = (u1; u2; : : : ; up) (A.3) 

is an orthonormal matrix:  

uj
t
uk =  jk = 1; when i = k; otherwise = 0: (A.4) 

If we truncate the expansion at i = q  

q  
x
0

 = Uqy = å yiui; (A.5) 
i=1  

we obtain a least square error approximation of x, i.e.  

jx  x
0
j = minimum: (A.6) 
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The optimum transformation matrix U turns out to be the eigenvector matrix of the sample covariance matrix C: 

 

C = 
1 

A
t
A; (A.7) 

 

N  

   
 

 
where A is the N  p sample matrix. 
 
 

UCU
t
 = ; (A.8) 

 
the diagonal matrix of eigenvalues. 
 
 
 
 
 
 
Linear Discriminant Analysis (LDA): 
 

Linear Discriminant Analysis (LDA) is most commonly used as dimensionality reduction technique in 

the pre-processing step for pattern-classification and machine learning applications. The goal is to 

project a dataset onto a lower-dimensional space with good class-separability in order avoid overfitting 

(“curse of dimensionality”) and also reduce computational costs. 

Ronald A. Fisher formulated the Linear Discriminant in 1936 (The Use of Multiple Measurements in 

Taxonomic Problems), and it also has some practical uses as classifier. The original Linear 

discriminant was described for a 2-class problem, and it was then later generalized as “multi-class 

Linear Discriminant Analysis” or “Multiple Discriminant Analysis” by C. R. Rao in 1948 (The 

utilization of multiple measurements in problems of biological classification) 

The general LDA approach is very similar to a Principal Component Analysis (for more information 

about the PCA, see the previous article Implementing a Principal Component Analysis (PCA) in 

Python step by step), but in addition to finding the component axes that maximize the variance of our 

data (PCA), we are additionally interested in the axes that maximize the separation between multiple 

classes (LDA). 

So, in a nutshell, often the goal of an LDA is to project a feature space (a dataset n-dimensional 

samples) onto a smaller subspace kk (where k≤n−1k≤n−1) while maintaining the class-discriminatory 

information.  

In general, dimensionality reduction does not only help reducing computational costs for a given 

classification task, but it can also be helpful to avoid overfitting by minimizing the error in parameter 

estimation (“curse of dimensionality”). 

 

A.2  Fisher's Linear Discriminant Analysis 
 
 
In contrast with PCA (see section A.1), linear discriminant analysis (LDA) transforms the data to 

provide optimal class separability (Duda et al. 2000) (Fisher 1936). 
 
Fisher's original LDA, for two-class data, is obtained as follows. We introduce a linear discriminant u 

(a p-dimensional vector of weights — the weights are very similar to the weights used in neural 

networks) which, via a dot product, maps a feature vector x to a scalar, 

 

y = u
t
x: 

(A.9

) 
 
u is optimised to maximise simultaneously, (a) the separability of the classes (between-class 

separability), and (b) the clus-tering together of same class data (within-class clustering). 

http://onlinelibrary.wiley.com/doi/10.1111/j.1469-1809.1936.tb02137.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1469-1809.1936.tb02137.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1469-1809.1936.tb02137.x/abstract
http://www.jstor.org/stable/2983775
http://www.jstor.org/stable/2983775
http://www.jstor.org/stable/2983775
http://sebastianraschka.com/Articles/2014_pca_step_by_step.html
http://sebastianraschka.com/Articles/2014_pca_step_by_step.html
http://sebastianraschka.com/Articles/2014_pca_step_by_step.html


Mathematically, this criterion can be expressed as: 
 

J(u) = u
t
SBu : 

u
t
SW

u  
where SB is the between-class covariance, 
 
 

SB = (m1   m2)(m1   m2)t
 ;  

and 
 
 

Sw = C1 + C2; 

 

the sum of the class-conditional covariance matrices, see 

section A.1. m1 and m2 are the class means. 

 
u is now computed as: 

 

u = Sw
1
m1   m2: 

 
 
(A.1

0) 
 
 
 

 

(A.1

1) 
 
 
 
 
(A.1

2) 
 
 
 
 
 
 
 
 

 

(A.1

3) 

 

There are other formulations of LDA (Duda et al. 2000) (Venables & Ripley 2002), particularly 

extensions from two-class to multi-class data. 
 
In addition, there are extensions (Duda et al. 2000) (Venables & Ripley 2002) which form a second 

discriminant, orthogonal to the rst, which optimises the separability and clustering criteria, subject to 

the orthogonality constraint. The second dimension/discriminant is useful to allow the data to be view 

as a two-dimensional scatter plot. 

Support Vector Machines (SVM) : 

Support Vector Machines are based on the concept of decision planes that define decision boundaries. A decision plane is 

one that separates between a set of objects having different class memberships. A schematic example is shown in the 

illustration below. In this example, the objects belong either to class GREEN or RED. The separating line defines a 

boundary on the right side of which all objects are GREEN and to the left of which all objects are RED. Any new object 

(white circle) falling to the right is labeled, i.e., classified, as GREEN (or classified as RED should it fall to the left of the 

separating line). 

 

The above is a classic example of a linear classifier, i.e., a classifier that separates a set of objects into their respective 

groups (GREEN and RED in this case) with a line. Most classification tasks, however, are not that simple, and often more 

complex structures are needed in order to make an optimal separation, i.e., correctly classify new objects (test cases) on the 

basis of the examples that are available (train cases). This situation is depicted in the illustration below. Compared to the 



previous schematic, it is clear that a full separation of the GREEN and RED objects would require a curve (which is more 

complex than a line). Classification tasks based on drawing separating lines to distinguish between objects of different class 

memberships are known as hyperplane classifiers. Support Vector Machines are particularly suited to handle such tasks. 

 

The illustration below shows the basic idea behind Support Vector Machines. Here we see the original objects (left side of 

the schematic) mapped, i.e., rearranged, using a set of mathematical functions, known as kernels. The process of 

rearranging the objects is known as mapping (transformation). Note that in this new setting, the mapped objects (right side 

of the schematic) is linearly separable and, thus, instead of constructing the complex curve (left schematic), all we have to 

do is to find an optimal line that can separate the GREEN and the RED objects. 

 

 

Technical Notes 

Support Vector Machine (SVM) is primarily a classier method that performs classification tasks by constructing 

hyperplanes in a multidimensional space that separates cases of different class labels. SVM supports both regression and 

classification tasks and can handle multiple continuous and categorical variables. For categorical variables a dummy 

variable is created with case values as either 0 or 1. Thus, a categorical dependent variable consisting of three levels, say 

(A, B, C), is represented by a set of three dummy variables: 

A: {1 0 0}, B: {0 1 0}, C: {0 0 1} 

To construct an optimal hyperplane, SVM employs an iterative training algorithm, which is used to minimize an error 

function. According to the form of the error function, SVM models can be classified into four distinct groups: 

 Classification SVM Type 1 (also known as C-SVM classification) 

 Classification SVM Type 2 (also known as nu-SVM classification) 

 Regression SVM Type 1 (also known as epsilon-SVM regression) 

 Regression SVM Type 2 (also known as nu-SVM regression) 

Following is a brief summary of each model. 

    

 



 

CLASSIFICATION SVM TYPE 1 

For this type of SVM, training involves the minimization of the error function: 

 

subject to the constraints: 

 

where C is the capacity constant, w is the vector of coefficients, b is a constant, and  represents 

parameters for handling nonseparable data (inputs). The index i labels the N training cases. Note 

that  represents the class labels and xi represents the independent variables. The kernel  is used to 

transform data from the input (independent) to the feature space. It should be noted that the larger the C, 

the more the error is penalized. Thus, C should be chosen with care to avoid over fitting. 

CLASSIFICATION SVM TYPE 2 

In contrast to Classification SVM Type 1, the Classification SVM Type 2 model minimizes the error function: 

 

subject to the constraints: 

 

 

 
 

In a regression SVM, you have to estimate the functional dependence of the dependent variable y on a set of 

independent variables x. It assumes, like other regression problems, that the relationship between the 

independent and dependent variables is given by a deterministic function f plus the addition of some additive 

noise: 

Regression SVM 

y = f(x) + noise 

The task is then to find a functional form for f that can correctly predict new cases that the SVM has not been 

presented with before. This can be achieved by training the SVM model on a sample set, i.e., training set, a 

process that involves, like classification (see above), the sequential optimization of an error function. 

Depending on the definition of this error function, two types of SVM models can be recognized: 

REGRESSION SVM TYPE 1 

For this type of SVM the error function is: 



 

which we minimize subject to: 

 

REGRESSION SVM TYPE 2 

For this SVM model, the error function is given by: 

 

which we minimize subject to: 

 

There are number of kernels that can be used in Support Vector Machines models. These include linear, 

polynomial, radial basis function (RBF) and sigmoid: 

Kernel Functions 

 

where  

that is, the kernel function, represents a dot product of input data points mapped into the higher 

dimensional feature space by transformation  

Gamma is an adjustable parameter of certain kernel functions. 

The RBF is by far the most popular choice of kernel types used in Support Vector Machines. This is mainly 

because of their localized and finite responses across the entire range of the real x-axis. 

 

k-means clustering algorithm 

k-means is  one of  the simplest unsupervised  learning  algorithms  that  solve  the well  known clustering problem. The procedure 

follows a simple and  easy  way  to classify a given data set  through a certain number of  clusters (assume k clusters) fixed apriori. 

The  main  idea  is to define k centers, one for each cluster. These centers  should  be placed in a cunning  way  because 

of  different  location  causes different  result. So, the better  choice  is  to place them  as  much as possible  far away from each other. 

The  next  step is to take each point belonging  to a  given data set and associate it to the nearest center. When no point  is  pending,  

the first step is completed and an early group age  is done. At this point we need to re-calculate k new centroids as barycenter of  

the clusters resulting from the previous step. After we have these k new centroids, a new binding has to be done  between  the same 

data set points  and  the nearest new center. A loop has been generated. As a result of  this loop we  may  notice that the k centers 

change their location step by step until no more changes  are done or  in  other words centers do not move any more. Finally, this  



algorithm  aims at  minimizing  an objective function know as squared error function given by:   

                                                                       
where, 

                           ‘||xi - vj||’ is the Euclidean distance between xi and vj. 

                           ‘ci’ is the number of data points in i
th

 cluster.  

                           ‘c’ is the number of cluster centers. 

 
 

Algorithmic steps for k-means clustering 

Let  X = {x1,x2,x3,……..,xn} be the set of data points and V = {v1,v2,…….,vc} be the set of centers. 

1) Randomly select ‘c’ cluster centers. 

2) Calculate the distance between each data point and cluster centers. 

3) Assign the data point to the cluster center whose distance from the cluster center is minimum of all the cluster centers.. 

4) Recalculate the new cluster center using:   

 

 

where, ‘ci’ represents the number of data points in i
th

 cluster. 

 

5) Recalculate the distance between each data point and new obtained cluster centers. 

6) If no data point was reassigned then stop, otherwise repeat from step 3). 

  

Advantages 

1) Fast, robust and easier to understand. 

2) Relatively efficient: O(tknd), where n is # objects, k is # clusters, d is # dimension of each object, and t  is # iterations. 

Normally, k, t, d << n. 

3) Gives best result when data set are distinct or well separated from each other. 

 
Fig I: Showing the result of k-means for 'N' = 60 and 'c' = 3 

Note: For more detailed figure for k-means algorithm please refer to k-means figure sub page.  

Disadvantages 

https://sites.google.com/site/dataclusteringalgorithms/k-means-clustering-algorithm/k-means-figure


1) The learning algorithm requires apriori specification of the number of  cluster centers. 

2) The use of  Exclusive Assignment - If  there are two highly overlapping data then k-means will not be able to resolve       that there 

are two clusters. 

3) The learning algorithm is not invariant to non-linear transformations i.e. with different representation of data we get 

    different results (data represented in form of cartesian co-ordinates and polar co-ordinates will give different results). 

4) Euclidean distance measures can unequally weight underlying factors. 

5) The learning algorithm provides the local optima of the squared error function.  

6) Randomly choosing of the cluster center cannot lead us to the fruitful result. Pl. refer Fig. 

7) Applicable only when mean is defined i.e. fails for categorical data. 

8) Unable to handle noisy data and outliers. 

9) Algorithm fails for non-linear data set. 

 
Fig II: Showing the non-linear data set where k-means algorithm fails 

 

 
 
 
 
 

 

 

https://sites.google.com/site/dataclusteringalgorithms/k-means-clustering-algorithm/k-means_initial_cluster_selection
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