
SIET AI  Notes                                                                               By- Niraj Kumar Tiwari 

 

UNIT-II Page 1 
 

Search:
   
Search is the systematic examination of states to find path from the start/root state to the goal 
state. The set of possible states, together with operators defining their connectivity constitute the 
search space. 

 
The output of a search algorithm is a solution, that is, a path from the initial state to a state 
that satisfies the goal test. 

 

Search Terminology 
 

 Problem Space − It is the environment in which the search takes place. (A set of states and 

set of operators to change those states) 



 Problem Instance − It is Initial state + Goal state. 



 Problem Space Graph − It represents problem state. States are shown by nodes and operators 

are shown by edges. 



 Depth of a problem − Length of a shortest path or shortest sequence of operators from Initial 


State to goal state. 



 Space Complexity − The maximum number of nodes that are stored in memory. 



 Time Complexity − The maximum number of nodes that are created. 



 Admissibility − A property of an algorithm to always find an optimal solution. 



 Branching Factor − The average number of child nodes in the problem space graph. 



 Depth − Length of the shortest path from initial state to goal state. 
 
Problem Solving by Search 
An important aspect of intelligence is goal-based problem solving. 

 
The solution of many problems can be described by finding a sequence of actions that lead to a 
desirable goal. Each action changes the state and the aim is to find the sequence of actions and 
states that lead from the initial (start) state to a final (goal) state.  

 Initial state 


 Operator or successor function - for any state x returns s(x), the set of states reachable 
from x with one action 

 State space - all states reachable from initial by any sequence of actions 

 Path - sequence through state space 


 Path cost - function that assigns a cost to a path. Cost of a path is the sum of costs of 
individual actions along the path 

 Goal test - test to determine if at goal state 
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.  
Problem-solving agents 

 
A Problem solving agent is a goal-based agent . It decide what to do by finding sequence 

of actions that lead to desirable states. The agent can adopt a goal and aim at satisfying it.  
To illustrate the agent‘s behavior ,let us take an example where our agent is in the city 
of Arad, which is in Romania. The agent has to adopt a goal of getting to Bucharest. 

 
Goal formulation, based on the current situation and the agent‘s performance measure, is 
the first step in problem solving. 
The agent‘s task is to find out which sequence of actions will get to a goal state. 

 
Problem formulation is the process of deciding what actions and states to consider given a goal. 

 

 

Example: Route finding problem  
Referring to figure 1.19 

On holiday in Romania : currently in Arad.  
Flight leaves tomorrow from Bucharest 

Formulate goal: be in Bucharest 

 
Formulate problem: 

states: various 
cities 
actions: drive between cities 

 
Find solution:  
sequence of cities, e.g., Arad, Sibiu, Fagaras,  
 
Bucharest Problem formulation 

 
A problem is defined by four 
items: initial state e.g., ―at 
Arad" 

 
successor function S(x) = set of action-state 
pairs e.g., S(Arad) = {[Arad -> 
Zerind;Zerind],….} goal test, can be 

 
explicit, e.g., x = at 
Bucharest" implicit, e.g., 
NoDirt(x) 
path cost (additive) 

 
e.g., sum of distances, number of actions 
executed, etc. c(x; a; y) is the step cost, assumed 
to be >= 0 
A solution is a sequence of actions leading from the initial state to a goal state. 

 

Figure 1.17 Goal formulation and problem formulation 
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What is Search?  
An agent with several immediate options of unknown value can decide what to do by examining 

different possible sequences of actions that leads to the states of known value, and then choosing 
the best sequence. The process of looking for sequences actions from the current state to reach the 
goal state is called search. 
 
The search algorithm takes a problem as input and returns a solution in the form of action 
sequence. Once a solution is found, the execution phase consists of carrying out the 
recommended action.. 
 
Figure 1.18 shows a simple ―formulate, search, execute‖ design for the agent. Once solution has 
been executed, the agent will formulate a new goal. 

 
function SIMPLE-PROBLEM-SOLVING-AGENT( percept) returns an action 
inputs : percept, a percept 
static: seq, an action sequence, initially empty 
 

state, some description of the current world state 
goal, a goal, initially null 

 
problem, a problem formulation 

state UPDATE-STATE(state, percept) 
if seq is empty then do  

goal  FORMULATE-GOAL(state) 
problem  FORMULATE-PROBLEM(state, 
goal) seq  SEARCH( problem) 

 
action  FIRST(seq); 

seq REST(seq) 
return action 
 
Figure 1.18 A Simple problem solving agent. It first formulates a goal and a problem, searches for 
a sequence of actions that would solve a problem, and executes the actions one at a time. 
 

The agent design assumes the Environment is  
 

• Static: The entire process carried out without paying attention to changes that 
might be occurring in the environment.  

 
• Observable : The initial state is known and the agent‘s sensor detects all aspects that 

are relevant to the choice of action  
 

• Discrete : With respect to the state of the environment and percepts and actions so 
that alternate courses of action can be taken   

• Deterministic : The next state of the environment is completely determined by   
the current state and the actions executed by the agent. Solutions to the problem 
are single sequence of actions 

 
An agent carries out its plan with eye closed. This is called an open loop system because 
ignoring the percepts breaks the loop between the agent and the environment. 

 

Well-defined problems and solutions 

 

A problem can be formally defined by four components: 
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The initial state that the agent starts in . The initial state for our agent of example problem is 
described by In(Arad)  
 

A Successor Function returns the possible actions available to the agent. Given a state 
x,SUCCESSOR-FN(x) returns a set of {action, successor} ordered pairs where each action 
is one of the legal actions in state x, and each successor is a state that can be reached from 
x by applying the action.  

 
For example, from the state In(Arad),the successor function for the Romania problem 
would return 
{ [Go(Sibiu),In(Sibiu)],[Go(Timisoara),In(Timisoara)],[Go(Zerind),In(Zerind)] } 

 
State Space : The set of all states reachable from the initial state. The state space forms a 
graph in which the nodes are states and the arcs between nodes are actions.   
  
A path in the state space is a sequence of states connected by a sequence of 
actions. Thr goal test determines whether the given state is a goal state.  

 
A path cost function assigns numeric cost to each action. For the Romania problem the cost 
of path might be its length in kilometers.  

 
The step cost of taking action a to go from state x to state y is denoted by c(x,a,y). The 
step cost for Romania are shown in figure 1.18. It is assumed that the step costs are non 
negative.   
A solution to the problem is a path from the initial state to a goal state.  
 
An optimal solution has the lowest path cost among all solutions.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 1.19 A simplified Road Map of part of Romania 
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EXAMPLE PROBLEMS 

The problem solving approach has been applied to a vast array of task environments. Some 
best known problems are summarized below. They are distinguished as toy or real-world 
problems 

 
A toy problem is intended to illustrate various problem solving methods. It can 
be easily used by different researchers to compare the performance of algorithms. 
A real world problem is one whose solutions people actually care about. 

 

Vacuum World Example 

 
o States: The agent is in one of two locations. each of which might or might not contain dirt. Thus there are 2 x 

2
2
 = 8 possible world states.  

o Initial state: Any state can be designated as initial state. 
 

o Successor function : This generates the legal states that results from trying the three 
actions (left, right, suck). The complete state space is shown in figure 2.3  

o Goal Test : This tests whether all the squares are clean. 
o Path test : Each step costs one ,so that the the path cost is the number of steps in the path. 

 
Vacuum World State Space 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.20 The state space for the vacuum world. 

Arcs denote actions: L = Left,R = Right,S = Suck 
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The 8-puzzle 

 
An 8-puzzle consists of a 3x3 board with eight numbered tiles and a blank space. A tile adjacent to 
the blank space can slide into the space. The object is to reach the goal state, as shown in figure 
2.4  
Example: The 8-puzzle 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.21 A typical instance of 8-puzzle. 
 
 
 
 
The problem formulation is as follows : 
 

o States : A state description specifies the location of each of the eight tiles and the blank in 
one of the nine squares.  

 
o Initial state : Any state can be designated as the initial state. It can be noted that any given 

goal can be reached from exactly half of the possible initial states.  
 

o Successor function : This generates the legal states that result from trying the four 
actions(blank moves Left, Right, Up or down).  

  
o Goal Test : This checks whether the state matches the goal configuration shown in figure 

2.4.(Other goal configurations are possible)   
o Path cost : Each step costs 1,so the path cost is the number of steps in the path. o 

 
The 8-puzzle belongs to the family of sliding-block puzzles, which are often used as 
test problems for new search algorithms in AI. This general class is known as NP-
complete. The 8-puzzle has 9!/2 = 181,440 reachable states and is easily solved. 

 
The 15 puzzle ( 4 x 4 board ) has around 1.3 trillion states, an the random instances can 
be solved optimally in few milli seconds by the best search algorithms.  
The 24-puzzle (on a 5 x 5 board) has around 10

25
 states ,and random instances are still 

quite difficult to solve optimally with current machines and algorithms. 
 

8-queens problem 
 

The goal of 8-queens problem is to place 8 queens on the chessboard such that no 
queen attacks any other.(A queen attacks any piece in the same row, column or 
diagonal). Figure 2.5 shows an attempted solution that fails: the queen in the right most 
column is attacked by the queen at the top left. 

 
An Incremental formulation involves operators that augments the state description, 
starting with an empty state. for 8-queens problem, this means each action adds a queen to 
the state.  
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A complete-state formulation starts with all 8 queens on the board and move them around. 
In either case the path cost is of no interest because only the final state counts 

 
 
 
      
 
 
 
 
 
 
 
 
 
 
 

 

                                         Figure 1.22 8-queens problem 
 

 

The first incremental formulation one might try is the following : 
 

o States : Any arrangement of 0 to 8 queens on board is a state. 
o Initial state : No queen on the board. 

 
o Successor function : Add a queen to any empty square. o 
Goal Test : 8 queens are on the board, none attacked. 

 

In this formulation, we have 64.63…57 = 3 x 10
14

 possible sequences to investigate. 

A better formulation would prohibit placing a queen in any square that is already attacked. 
: 
 

o States : Arrangements of n queens ( 0 <= n < = 8 ) ,one per column in the left most columns 
,with no queen attacking another are states.  

 
o Successor function : Add a queen to any square in the left most empty column such that it is 

not attacked by any other queen.   
This formulation reduces the 8-queen state space from 3 x 10

14
 to just 2057,and solutions are easy to 

find.  
For the 100 queens the initial formulation has roughly 10

400
 states whereas the improved 

formulation has about 10
52

 states. This is a huge reduction, but the improved state space is still 
too big for the algorithms to handle. 

 

REAL-WORLD PROBLEMS 

 

ROUTE-FINDING PROBLEM 
 

Route-finding problem is defined in terms of specified locations and transitions along links 
between them. Route-finding algorithms are used in a variety of applications, such as 
routing in computer networks, military operations planning, and air line travel planning 
systems. 

 

AIRLINE TRAVEL PROBLEM 
The airline travel problem is specifies as follows : 

 
o States : Each is represented by a location(e.g., an airport) and the current time.  
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O    Initial state : This is specified by the problem. 
 

o Successor function : This returns the states resulting from taking any scheduled 
flight(further specified by seat class and location),leaving later than the current time 
plus the within-airport transit time, from the current airport to another.  
 

o   Goal Test : Are we at the destination by some prespecified time? 
Path cost : This depends upon the monetary cost, waiting time, flight time, customs and 
immigration procedures, seat quality, time of dat,type of air plane, frequent-flyer mileage awards, 
and so on.  

 

TOURING PROBLEMS 

 
   Touring problems are closely related to route-finding problems, but with an important 
difference.  
  Consider for example, the problem, Visit every city at least once‖ as shown in Romania map. 
 
  As with route-finding the actions correspond to trips between adjacent cities. The         

state space, however, is quite different. 
  The initial state would be ―In Bucharest; visited{Bucharest}‖. 
  A typical intermediate state would be ―In Vaslui;visited {Bucharest,Urziceni,Vaslui}‖. 

  The goal test would check whether the agent is in Bucharest and all 20 cities have been visited. 

 

THE TRAVELLING SALESPERSON PROBLEM(TSP) 
 

Is a touring problem in which each city must be visited exactly once. The aim is to find 
the shortest tour. The problem is known to be NP-hard. Enormous efforts have been 
expended to improve the capabilities of TSP algorithms. These algorithms are also used in 
tasks such as planning movements of automatic circuit-board drills and of stocking 
machines on shop floors. 

 

VLSI layout 
 

A VLSI layout problem requires positioning millions of components and connections on 
a chip to minimize area ,minimize circuit delays, minimize stray capacitances, and 
maximize manufacturing yield. The layout problem is split into two parts : cell layout and 
channel routing. 

 

ROBOT navigation 
 

ROBOT navigation is a generalization of the route-finding problem. Rather than a discrete set of 
routes, a robot can move in a continuous space with an infinite set of possible actions and states. 
For a circular Robot moving on a flat surface, the space is essentially two-dimensional. When the 
robot has arms and legs or wheels that also must be controlled, the search space becomes multi-
dimensional. Advanced techniques are required to make the search space finite. 

 

AUTOMATIC ASSEMBLY SEQUENCING 
 

The example includes assembly of intricate objects such as electric motors. The aim in 
assembly problems is to find the order in which to assemble the parts of some objects. If the 
wrong order is choosen,there will be no way to add some part later without undoing some work 
already done. Another important assembly problem is protein design, in which the goal is to 
find a sequence of Amino acids that will be fold into a three-dimensional protein with the right 
properties to cure some disease 
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INTERNET SEARCHING 
 

In recent years there has been increased demand for software robots that perform 
Internet searching. Looking for answers to questions, for related information, or for 
shopping deals. The searching techniques consider internet as a graph of nodes (pages) 
connected by links. 

Example: Water Jug Problem 
 

A Water Jug Problem: You are given two jugs, a 4-gallon one and a 3-gallon one, a pump 

which has unlimited water which you can use to ll the jug, and the ground on which water 

may be poured. Neither jug has any measuring markings on it. How can you get exactly 2 

gallons of water in the 4-gallon jug? 

 

State Representation and Initial State { we will represent a state of the problem as a tuple (x, y) 
where x represents the amount of water in the 4-gallon jug and y represents the amount 
of water in the 3-gallon jug. Note 0 x 4, and 0 y 3. Our initial state: (0,0) 

 
Goal Predicate { state = (2,y) where 0   y   3. 

Operators { we must de  ne a set of operators that will take us from one state to another: 
 
 

1. Fill 4-gal jug (x,y)  ! (4,y) 

 x < 4   

2. Fill 3-gal jug (x,y)  ! (x,3) 

 y < 3   

3. Empty 4-gal jug on ground (x,y)  ! (0,y) 

 x > 0   

4. Empty 3-gal jug on ground (x,y)  ! (x,0) 

 y > 0   

5. Pour water from 3-gal jug (x,y)  ! (4, y - (4 - x)) 

to ll 4-gal jug 0 < x+y 4 and y > 0 

6. Pour water from 4-gal jug (x,y)  ! (x - (3-y), 3) 

to ll 3-gal-jug 0 < x+y 3 and x > 0 

7. Pour all of water from 3-gal jug (x,y)  ! (x+y, 0) 

into 4-gal jug 0 < x+y 4 and y 0 

8. Pour all of water from 4-gal jug (x,y)  ! (0, x+y) 

into 3-gal jug 0 < x+y 3 and x 0 
 
Through Graph Search, the following solution is found : 
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Gals in 4-gal jug Gals in 3-gal jug Rule Applied 

0 0  

  1. Fill 4 

4 0  

  6. Pour 4 into 3 to ll 

1 3  

  4. Empty 3 

1 0  

  8. Pour all of 4 into 3 

0 1  

  1. Fill 4 

4 1  

  6. Pour into 3 

2 3  

 

Example: Tic-Tac-Toe: 
Tic-tac-toe is not a very challenging game for human beings. If you‘re an 

enthusiast, you‘ve probably moved from the basic game to some variant like three-

dimensional tic-tac-toe on a larger grid. 
 

If you sit down right now to play ordinary three-by-three tic-tac-toe with a 

friend, what will probably happen is that every game will come out a tie. Both you 

and your friend can probably play perfectly, never making a mistake that would 

allow your opponent to win. 
 

But can you describe how you know where to move each turn? Most of the 

time, you probably aren‘t even aware of alternative possibilities; you just look at 

the board and instantly know where you want to move. That kind of instant 

knowledge is great for human beings, because it makes you a fast player. But it 

isn‘t much help in writing a computer program. For that, you have to know very 

explicitly what your strategy is. 
 

By the way, although the example of tic-tac-toe strategy is a relatively trivial 

one, this issue of instant knowledge versus explicit rules is a hot one in modern 

psychology. Some cognitive scientists, who think that human intelligence works 

through mechanisms similar to computer programs, maintain that when you know 

how to do something without knowing how you know, you have an explicit set of 

rules deep down inside. It‘s just that the rules have become a habit, so you don‘t 

think about them deliberately. 
 
 

They‘re ―compiled,‖ in the jargon of cognitive psychology. On the other hand, 

some people think that your implicit how-to knowledge is very different from the 

sort of lists of rules that can be captured in a computer program. They think that 

human thought is profoundly different from the way computers work, and that a 
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Computer cannot be programmed to simulate the full power of human problem-

solving. These people would say, for example, that when you look at a tic-tac-toe 

board you immediately grasp the strategic situation as a whole, and your eye is 

drawn to the best move without any need to examine alternatives according to a set 

of rules. (You might like to try to be aware of your own mental processes as you 

play a game of tic-tac-toe, to try to decide which of these points of view more 

closely resembles your own experience—but on the other hand, the psychological 

validity of such introspective evidence is another hotly contested issue in 

psychology!) 
 
 Before you read further, try to write down a set of strategy rules that, if followed 

consistently, will never lose a game. Play a few games using your rules. Make sure 

they work even if the other player does something bizarre. 
 

I‘m going to number the squares in the tic-tac-toe board this way: 
 

1 2 3 
4 5 6 
7 8 9 

 

Squares 1, 3, 7, and 9 are corner squares. I‘ll call 2, 4, 6, and 8 edge squares. And 

of course number 5 is the center square. I‘ll use the word position to mean a 

specific partly-filled-in board with X and O in certain squares, and other squares 

empty. 
 

One way you might meet my challenge of describing your strategy explicitly is 

to list all the possible sequences of moves up to a certain point in the game, then 

say what move you‘d make next in each situation. How big would the list have to 

be? There are nine possibilities for the first move. For each first move, there are 

eight possibilities for the second move. If you continue this line of reasoning, 

you‘ll see that there are nine factorial, or 362880, possible sequences of moves. 
 
Your computer may not have enough memory to list them all, and you certainly 
don‘t have enough patience! 
 

Fortunately, not all these sequences are interesting. Suppose you are describing 

the rules a computer should use against a human player, and suppose the human 

being moves first. Then there are, indeed, nine possible first moves. But for each of 

these, there is only one possible computer move! After all, we‘re programming the 

computer. We get to decide which move it will choose. Then there are seven 

possible responses by the opponent, and so on. The number of sequences when the 

human being plays first is 9 times 7 times 5 times 3, or 945. If the computer plays 

first, it will presumably always make the single best choice. 
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Then there are eight possible responses, and so on. In this case the number of 

possible game sequences is 8 times 6 times 4 times 2, or 384. Altogether we have 

1329 cases to worry about, which is much better than 300,000 but still not an 

enjoyable way to write a computer program. 
 

In fact, though, this number is still too big. Not all games go for a full nine 

moves before someone wins. Also, many moves force the opponent to a single 

possible response, even though there are other vacant squares on the board. 

Another reduction can be achieved by taking advantage of symmetry. For example, 

if X starts in square 5, any game sequence in which O responds in square 1 is 

equivalent to a sequence in which O responds in square 3, with the board rotated 90 

degrees. In fact there are only two truly different responses to a center-square 

opening: any corner square, or any edge square. 
 

With all of these factors reducing the number of distinct positions, it would 

probably be possible to list all of them and write a strategy program that way. I‘m 

not sure, though, because I didn‘t want to use that technique. I was looking for 

rules expressed in more general terms, like ―all else being equal, pick a corner 

rather than an edge.‖ 
 

Why should I prefer a corner? Each corner square is part of three winning 

combinations. For example, square 1 is part of 123, 147, and 159. (By expressing 

these winning combinations as three-digit numbers, I‘ve jumped ahead a bit in the 

story with a preview of how the program I wrote represents this information.) An 

edge square, on the other hand, is only part of two winning combinations. For 

example, square 2 is part of 123 and 258. Taking a corner square makes three 

winning combinations available to me and unavailable to my opponent. 
 

Since I‘ve brought up the subject of winning combinations, how many of them 

are there? Not very many: three horizontal, three vertical, and two diagonal. Eight 

altogether. That is a reasonable amount of information to include in a program, and 

in fact there is a list of the eight winning combinations in this project. 
 

You might, at this point, enjoy playing a few games with the program, to see if 

you can figure out the rules it uses in its strategy. If you accepted my earlier 

challenge to write down your own set of strategy rules, you can compare mine to 

yours. Are they the same? If not, are they equally good? 
 

The top-level procedure in this project is called ttt. It takes no inputs. When 
you invoke this procedure, it will ask you if you‘d like to play first (X) or second 
 
(O). Then you enter moves by typing a digit 1–9 for the square you select. The 
program draws the game board on the Logo graphics screen. 
  
Strategy 
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The highest-priority and the lowest-priority rules seemed obvious to me right away. The highest-priority 
are these: 
 

1. If I can win on this move, do it.  
 

2. If the other player can win on the next move, block that winning square.  
 
Here are the lowest-priority rules, used only if there is nothing suggested more strongly by the board 
position: 
 
n   2. Take the center square if it‘s free. 
 
n   1. Take a corner square if one is free. 
 

n. Take whatever is available. 
 
The highest priority rules are the ones dealing with the most urgent situations: either I or my opponent 

can win on the next move. The lowest priority ones deal with the least urgent situations, in which there 

is nothing special about the moves already made to guide me. 
 
 

What was harder was to find the rules in between. I knew that the goal of my own tic-tac-toe 

strategy was to set up a fork, a board position in which I have two winning moves, so my opponent can 

only block one of them. Here is an example: 
 

x o x  

 
x o  

X can win by playing in square 3 or square 4. It‘s O‘s turn, but poor O can only block one of those 

squares at a time. Whichever O picks, X will then win by picking the other one. 
 

Given this concept of forking, I decided to use it as the next highest priority rule: 
 

3. If I can make a move that will set up a fork for myself, do it. 
 
That was the end of the easy part. My first attempt at writing the program used only these six rules. 

Unfortunately, it lost in many different situations. I needed to add something, but I had trouble finding a 

good rule to add. 
 

My first idea was that rule 4 should be the defensive equivalent of rule 3, just as rule 2 is the 
defensive equivalent of rule 1: 
 

4a. If, on the next move, my opponent can set up a fork, block that possibility by moving into the 
square that is common to his two winning combinations. 

SEARCHING FOR SOLUTIONS 

 

SEARCH TREE 
 

Having formulated some problems, we now need to solve them. This is done by a search 
through the state space. A search tree is generated by the initial state and the successor 
function that together define the state space. In general, we may have a search graph rather than 
a search tree, when the same state can be reached from multiple paths
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UNINFORMED SEARCH STRATGES 
 

Uninformed Search Strategies have no additional information about states beyond that 
provided in the problem definition. 
Strategies that know whether one non goal state is ―more promising‖ than another are called 
Informed search or heuristic search strategies. 

There are five uninformed search strategies as given below. 
           
         o Breadth-first search  

o Uniform-cost search 
o Depth-first search 
o Depth-limited search 
o Iterative deepening search   
 

Breadth-first search 
 

Breadth-first search is a simple strategy in which the root node is expanded first, then all 
successors of the root node are expanded next, then their successors, and so on. In general, all 
the nodes are expanded at a given depth in the search tree before any nodes at the next level 
are expanded. 

 
Breath-first-search is implemented by calling TREE-SEARCH with an empty fringe that is a 
first-in-first-out(FIFO) queue, assuring that the nodes that are visited first will be expanded first. 
In otherwards ,calling TREE-SEARCH(problem, FIFO-QUEUE()) results in breadth-first-
search. The FIFO queue puts all newly generated successors at the end of the queue, which 
means that Shallow nodes are expanded before deeper nodes. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 1.27 Breadth-first search on a simple binary tree. At each stage ,the node to be expanded next 
is indicated by a marker. 
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Figure 1.29 Time and memory requirements for breadth-first-
search. The numbers shown assume branch factor of b = 10 ; 10,000 
nodes/second; 1000 bytes/node  

 

 

 

Time complexity for BFS 

 
 

Assume every state has b successors. The root of the search tree generates b nodes at the first 
level, each of which generates b more nodes, for a total of b

2
 at the second level. Each of 

these generates b more nodes, yielding b 
3
 nodes at the third level, and so on. Now suppose, 

that the solution is at depth d. In the worst case, we would expand all but the last node at 
level degenerating b

d+1
 - b nodes at level d+1.  

Then the total number of nodes generated is 
b + b

2
 + b

3
 + …+ b

d
 + ( b

d+1
 + b) = O(b

d+1).
  

Every node that is generated must remain in memory, because it is either part of the fringe or 
is an ancestor of a fringe node. The space complexity is, therefore ,the same as the time 
complexity 
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UNIFORM-COST SEARCH 

 
Instead of expanding the shallowest node, uniform-cost search expands the node n with the 
lowest path cost. uniform-cost search does not care about the number of steps a path has, but 
only about their total cost. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 1.30 Properties of Uniform-cost-search 

 

 

 

DEPTH-FIRST-SEARCH 

 
Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data 

structures. One starts at the root (selecting some arbitrary node as the root in the case of a graph) 

and explores as far as possible along each branch before backtracking. 

 

Depth-first-search always expands the deepest node in the current fringe of the search tree. 
The progress of the search is illustrated in figure 1.31. The search proceeds immediately to 
the deepest level of the search tree,where the nodes have no successors. As those nodes are 
expanded,they are dropped from the fringe,so then the search ―backs up‖ to the next 
shallowest node that still has unexplored successors. 
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Figure 1.31 Depth-first-search on a binary tree. Nodes that have been expanded and have no 
descendants in the fringe can be removed from the memory;these are shown in black. Nodes 
at depth 3 are assumed to have no successors and M is the only goal node. 

 
This strategy can be implemented by TREE-SEARCH with a last-in-first-out 
(LIFO) queue,also known as a stack. 

 
Depth-first-search has very modest memory requirements.It needs to store only a single path 
from the root to a leaf node,along with the remaining unexpanded sibling nodes for each node 
on the path. Once the node has been expanded,it can be removed from the memory,as soon as its 
descendants have been fully explored(Refer Figure 2.12). 

 
For a state space with a branching factor b and maximum depth m,depth-first-search requires 
storage of only bm + 1 nodes. 

 
Using the same assumptions as Figure 2.11,and assuming that nodes at the same depth as the 
goal node have no successors,we find the depth-first-search would require 118 kilobytes instead 
of 10 petabytes,a factor of 10 billion times less space. 

 

Drawback of Depth-first-search 
 
The drawback of depth-first-search is that it can make a wrong choice and get stuck going down 
very long(or even infinite) path when a different choice would lead to solution near the root of the 
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search tree. For example, depth-first-search will explore the entire left sub tree even if node C 
is a goal node. 

 

BACKTRACKING SEARCH 
 

A variant of depth-first search called backtracking search uses less memory and only one successor is 
generated at a time rather than all successors.; Only O(m) memory is needed rather than O(bm) 

 

DEPTH-LIMITED-SEARCH 
 

 
The problem of unbounded trees can be alleviated by supplying depth-first-search with a pre-

determined depth limit l. That is, nodes at depth l are treated as if they have no successors. This 
approach is called depth-limited-search. The depth limit soves the infinite path problem. Depth 

limited search will be non optimal if we choose l > d. Its time complexity is O(b
l
) and its  

space complexity is O(bl). Depth-first-search can be viewed as a special case of depth-limited 
search with l = oo 

 
Sometimes, depth limits can be based on knowledge of the problem. For, example,on the map of 
Romania there are 20 cities. Therefore, we know that if there is a solution., it must be of length 
19 at the longest, So l = 10 is a possible choice. However, it oocan be shown that any city can be 
reached from any other city in at most 9 steps. This number known as the diameter of the state 
space, gives us a better depth limit. 

 
Depth-limited-search can be implemented as a simple modification to the general tree-search 
algorithm or to the recursive depth-first-search algorithm. The pseudo code for recursive 
depth-limited-search is shown in Figure 1.32. 

 
It can be noted that the above algorithm can terminate with two kinds of failure : the standard 
failure value indicates no solution; the cutoff value indicates no solution within the depth limit. 
Depth-limited search = depth-first search with depth limit l, 
returns cut off if any path is cut off by depth limit 

 
function Depth-Limited-Search( problem, limit) returns a solution/fail/cutoff 
return Recursive-DLS(Make-Node(Initial-State[problem]), problem, limit) 
function Recursive-DLS(node, problem, limit) returns solution/fail/cutoff 
cutoff-occurred?  false 

 
if Goal-Test(problem, State[node]) then return 
Solution(node) else if Depth[node] = limit then return cutoff 

 
else for each successor in Expand(node, problem) do 
result  Recursive-DLS(successor, problem, 
limit) if result = cutoff then cutoff occurred?  
true else if result not = failure then return result  
if cutoff occurred? then return cutoff else return failure  
Figure 1.32 Recursive implementation of Depth-limited-search: 

 
 
 
 

ITERATIVE DEEPENING DEPTH-FIRST SEARCH 
 
Iterative deepening search (or iterative-deepening-depth-first-search) is a general strategy 
often used in combination with depth-first-search,that finds the better depth limit. It does this
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By gradually increasing the limit – first 0,then 1,then 2, and so on – until a goal is found. 
This will occur when the depth limit reaches d,the depth of the shallowest goal node. The 
algorithm is shown in Figure 2.14. 

 
Iterative deepening combines the benefits of depth-first and breadth-first-
search Like depth-first-search, its memory requirements are mode st;O(bd) to 
be precise. 
 
Like Breadth -first-search, it is complete when the branching factor is finite and optimal 
when the path cost is a non decreasing function of the depth of the node. 
 
Figure 2.15 shows the four iterations of ITERATIVE-DEEPENING_SEARCH on a binary search 
tree, where the solution is found on the fourth iteration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.33 The iterative deepening search algorithm ,which repeatedly applies depth-
limited-search with increasing limits. It terminates when a solution is found or if the depth 
limited search returns failure, meaning that no solution exists. 
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Figure 1.34 Four iterations of iterative deepening search on a binary tree 

 
Iterative search is not as wasteful as it might seem 
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Figure 1.35   Iterative search is not as wasteful as it might seem 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    Properties of iterative deepening search 
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INFORMED SEARCH AND EXPLORATION 

 

Informed(Heuristic) Search Strategies  
Informed search strategy is one that uses problem-specific knowledge beyond the definition 

of the problem itself. It can find solutions more efficiently than uninformed strategy. 
 

 

INFORMED SEARCH 
 
 
 

 BEST FIRST SEARCH 
 

 GENERATE & TEST 

 

 HILL CLIMBING 
 
 

BRANCH & BOUND 
 
 
 
 

MEANS END ANALYSIS 
 
 
 
 

PROBLEM REDUCTION 
 
 
 

Best-first search 
 
Best-first search is an instance of general TREE-SEARCH or GRAPH-SEARCH algorithm in 
which a node is selected for expansion based on an evaluation function f(n). The node with lowest 
evaluation is selected for expansion, because the evaluation measures the distance to the goal. 

 
This can be implemented using a priority-queue, a data structure that will maintain the 
fringe in ascending order of f-values. 
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 Heuristic functions 
 

A heuristic function or simply a heuristic is a function that ranks alternatives in various 
search algorithms at each branching step basing on an available information in order to make a 
decision which branch is to be followed during a search. 
 

The key component of Best-first search algorithm is a heuristic function, denoted by h(n): 

 
h(n) = estimated cost of the cheapest path from node n to a goal node. 

 
For example, in Romania, one might estimate the cost of the cheapest path from Arad 

to Bucharest via a straight-line distance from Arad to Bucharest (Figure 2.1). 
 
Heuristic function are the most common form in which additional knowledge is imparted to the 
search algorithm.  
Greedy Best-first search 
 
Greedy best-first search tries to expand the node that is closest to the goal,on the grounds that 
this is likely to a solution quickly. 
It evaluates the nodes by using the heuristic function f(n) = h(n). 
 
Taking the example of Route-finding problems in Romania , the goal is to reach Bucharest starting 
from the city Arad. We need to know the straight-line distances to Bucharest from various cities as 
shown in Figure 2.1. For example, the initial state is In(Arad) ,and the straight line distance 
heuristic hSLD(In(Arad)) is found to be 366. 
Using the straight-line distance heuristic hSLD ,the goal state can be reached faster. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 2.1 Values of hSLD - straight line distances to Bucharest 
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Figure 2.2 stages in greedy best-first search for Bucharest using straight-line distance 
heuristic hSLD. Nodes are labeled with their h-values. 
 

 
Figure 2.2 shows the progress of greedy best-first search using hSLD to find a path from Arad to 
Bucharest. The first node to be expanded from Arad will be Sibiu,because it is closer to 
Bucharest than either Zerind or Timisoara. The next node to be expanded will be Fagaras,because 
it is closest. Fagaras in turn generates Bucharest, which is the goal. 
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Properties of greedy search 

 
o Complete?? No–can get stuck in loops, 

e.g., Iasi ! Neamt ! Iasi ! Neamt ! 
Complete in finite space with repeated-state checking 

 
o Time?? O(bm), but a good heuristic can give dramatic improvement o   
 
Space?? O(bm)—keeps all nodes in memory 
 
o Optimal?? No 

 
Greedy best-first search is not optimal, and it is incomplete.  
The worst-case time and space complexity is O(b

m
),where m is the maximum depth of the 

search space.  
 

A
*
 Search:  

 

A
*
 search is a combination of lowest-cost-first and best-first searches that considers both path cost 

and heuristic information in its selection of which path to expand. For each path on the 

frontier, A
*
 uses an estimate of the total path cost from a start node to a goal node constrained to 

start along that path. It uses cost(p), the cost of the path found, as well as the heuristic 

function h(p), the estimated path cost from the end of p to the goal. 

  
A

*
 Search is the most widely used form of best-first search. The evaluation function f(n) 

is obtained by combining 
(1) g(n) = the cost to reach the node, and  
(2) h(n) = the cost to get from the node to the goal :  

f(n) = g(n) + h(n).  
A

*
 Search is both optimal and complete. A 

*
 is optimal if h(n) is an admissible heuristic. 

The obvious example of admissible heuristic is the straight-line distance hSLD. It cannot be 
an overestimate.  
A

*
 Search is optimal if h(n) is an admissible heuristic – that is, provided that 

h(n) never overestimates the cost to reach the goal.  
An obvious example of an admissible heuristic is the straight -line distance hSLD that we used in 
getting to Bucharest. The progress of an A

*
 tree search for Bucharest is shown in Figure 2.2.  

The values of ‗g ‗ are computed from the step costs shown in the Romania map( figure 
2.1). Also the values of hSLD are given in Figure 2.1. 

 

Recursive Best-first Search(RBFS) 
 
Recursive best-first search is a simple recursive algorithm that attempts to mimic the operation of 
standard best-first search, but using only linear space. The algorithm is shown in figure 2.4. 
 
Its structure is similar to that of recursive depth-first search, but rather than continuing 
indefinitely down the current path, it keeps track of the f-value of the best alternative path 
available from any ancestor of the current node. If the current node exceeds this limit,the 
recursion unwinds back to the alternative path. As the recursion unwinds, RBFS replaces the f-
value of each node along the path with the best f-value of its children.  
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Figure 2.3 Stages in A
*
 Search for Bucharest. Nodes are labeled with f = g + h . The h-

values are the straight-line distances to Bucharest taken from figure 2.1 
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function RECURSIVE-BEST-FIRST-SEARCH(problem) return a solution or failure 

return RFBS(problem, MAKE-NODE(INITIAL-STATE[problem]),∞) 

 
function RFBS( problem, node, f_limit) return a solution or failure and a new f-

cost limit  
if GOAL-TEST[problem](STATE[node]) then return node successors 

 
EXPAND(node, problem) if successors is empty then return failure, ∞ for 
each s in successors do f [s] max(g(s) + h(s), f [node]) repeat best the 
lowest f-value node in successors if f [best] > f_limit then return failure, f 

 
[best] alternative the second lowest f-value among successors result, f 
[best] RBFS(problem, best, min(f_limit, alternative)) if result failure then 
return result 

 
 
 
 
Figure 2.4 The algorithm for recursive best-first search 
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Figure 2.5 Stages in an RBFS search for the shortest route to Bucharest. The f-limit value for 
each recursive call is shown on top of each current node. (a) The path via Rimnicu Vilcea is 
followed until the current best leaf (Pitesti) has a value that is worse than the best alternative 
path (Fagaras). 
 
(b) The recursion unwinds and the best leaf value of the forgotten subtree (417) is backed up to 
Rimnicu Vilcea;then Fagaras is expanded, revealing a best leaf value of 450.   
(c) The recursion unwinds and the best leaf value of the forgotten sub tree (450) is backed   
upto Fagaras; then Rimni Vicea is expanded. This time because the best alternative 
path(through Timisoara) costs at least 447,the expansion continues to Bucharest 
RBFS Evaluation :. 
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RBFS is a bit more efficient than IDA* 

 
– Still excessive node generation (mind changes) 

Like A*, optimal if h(n) is admissible  
Space complexity is O(bd). 

 
– IDA* retains only one single number (the current f-cost limit) 

Time complexity difficult to characterize  
 

– Depends on accuracy if h(n) and how often best path changes. 
IDA* en RBFS suffer from too little memory.  

 

Heuristic Functions 
 

A heuristic function or simply a heuristic is a function that ranks alternatives in various 
search algorithms at each branching step basing on an available information in order to make a 
decision which branch is to be followed during a search 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.6 A typical instance of the 8-puzzle. 

The solution is 26 steps long. 

 

The 8-puzzle 
 
The 8-puzzle is an example of Heuristic search problem. The object of the puzzle is to slide 
the tiles horizontally or vertically into the empty space until the configuration matches the goal 
configuration(Figure 2.6) 
 
The average cost for a randomly generated 8-puzzle instance is about 22 steps. The branching 
factor is about 3.(When the empty tile is in the middle, there are four possible moves; when it is in 
the corner there are two; and when it is along an edge there are three). This means that an 

exhaustive search to depth 22 would look at about 3
22

 approximately = 3.1 X 10
10

 states.  
By keeping track of repeated states, we could cut this down by a factor of about 170,000,because there 
are only 9!/2 = 181,440 distinct states that are reachable. This is a manageable number ,but the 
corresponding number for the 15-puzzle is roughly 10

13
.  

If we want to find the shortest solutions by using A
*
,we need a heuristic function that 

never overestimates the number of steps to the goal. 
The two commonly used heuristic functions for the 15-puzzle are : 
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(1) h1 = the number of misplaced tiles. 
 
For figure 2.6 ,all of the eight tiles are out of position, so the start state would have h1 = 8. h1 is 
an admissible heuristic. 
 

(2) h2 = the sum of the distances of the tiles from their goal positions. This is called the 
city block distance or Manhattan distance.  

 
h2 is admissible ,because all any move can do is move one tile one step closer to the goal. 

Tiles 1 to 8 in start state give a Manhattan distance of 
h2 = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18. 

 
Neither of these overestimates the true solution cost ,which is 26. 

 

The Effective Branching factor 
 

One way to characterize the quality of a heuristic is the effective branching factor b*. If 
the total number of nodes generated by A* for a particular problem is N,and the solution 

depth is d, then b
*
 is the branching factor that a uniform tree of depth d would have to have 

in order to contain N+1  

N + 1 = 1 + b
*
 + (b

*
)
2
+…+(b

*
)
d
  

For example, if A
*
 finds a solution at depth 5 using 52 nodes, then effective branching factor is 1.92. A 

well designed heuristic would have a value of b
*
 close to 1,allowing failure large problems to be solved. 

 
To test the heuristic functions h1 and h2,1200 random problems were generated with solution 

lengths from 2 to 24 and solved them with iterative deepening search and with A
*
 search using 

both h1 and h2. Figure 2.7 gives the average number of nodes expanded by each strategy and the 
effective branching factor.  
The results suggest that h2 is better than h1,and is far better than using iterative deepening 
search. For a solution length of 14,A

*
 with h2 is 30,000 times more efficient than uninformed 

iterative deepening search. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.7 Comparison of search costs and effective branching factors for the ITERATIVE-
DEEPENING-SEARCH and A

*
 Algorithms with h1,and h2. Data are average over 100 instances of 

the 8-puzzle,for various solution lengths. 

 
Inventing admissible heuristic    

 nodes. Thus, 
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Functions Relaxed problems  A problem with fewer restrictions on the actions is called a 

relaxed problem 
 

o The cost of an optimal solution to a relaxed problem is an admissible heuristic for 
the original problem  

 
o If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then h1(n) gives the 

shortest solution  
 

o If the rules are relaxed so that a tile can move to any adjacent square, then h2(n) gives the 
shortest solution  

 

LOCAL SEARCH ALGORITHMS AND OPTIMIZATION PROBLEMS 
 

o In many optimization problems, the path to the goal is irrelevant; the goal state itself is 
the solution  

 
o For example, in the 8-queens problem, what matters is the final configuration of queens, 

not the order in which they are added.  

 
o In such cases, we can use local search algorithms. They operate using a single current 

state(rather than multiple paths) and generally move only to neighbors of that state.  
 

o The important applications of these class of problems are (a) integrated-circuit 
design,(b)Factory-floor layout,(c) job-shop scheduling,(d)automatic 
programming,(e)telecommunications network optimization,(f)Vehicle routing, 
and  
(g) portfolio management.  

 

Key advantages of Local Search Algorithms 
(1) They use very little memory – usually a constant amount; and  
 
(2) they can often find reasonable solutions in large or infinite(continuous) state spaces for 
which systematic algorithms are unsuitable.  

 

OPTIMIZATION PROBLEMS 
 
In addition to finding goals, local search algorithms are useful for solving pure 
optimization problems, in which the aim is to find the best state according to an 
objective function. 

 

State Space Landscape 
 
To understand local search, it is better explained using state space landscape as shown in 
figure 2.8. 
 
A landscape has both ―location‖ (defined by the state) and ―elevation‖(defined by the value 
of the heuristic cost function or objective function). 
 
If elevation corresponds to cost, then the aim is to find the lowest valley – a global minimum; if 
elevation corresponds to an objective function, then the aim is to find the highest peak – a 
global maximum. 
 
Local search algorithms explore this landscape. A complete local search algorithm always finds a 
goal if one exists; an optimal algorithm always finds a global minimum/maximum. 
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Figure 2.8 A one dimensional state space landscape in which elevation corresponds to the 
objective function. The aim is to find the global maximum. Hill climbing search modifies the 
current state to try to improve it ,as shown by the arrow. The various topographic features are 
defined in the text 

 

 

 

Hill-climbing search 
 
The hill-climbing search algorithm as shown in figure 2.9, is simply a loop that continually moves 
in the direction of increasing value – that is, uphill. It terminates when it reaches a ―peak‖ where 
no neighbor has a higher value. 
Hill climbing is a mathematical optimization technique which belongs to the family of local search. 

It is an iterative algorithm that starts with an arbitrary solution to a problem, then attempts to find a 

better solution by incrementally changing a single element of the solution. If the change produces a 

better solution, an incremental change is made to the new solution, repeating until no further 

improvements can be found. For example, hill climbing can be applied to the travelling salesman 

problem. It is easy to find an initial solution that visits all the cities but will be very poor compared 

to the optimal solution. The algorithm starts with such a solution and makes small improvements to 

it, such as switching the order in which two cities are visited. Eventually, a much shorter route is 

likely to be obtained. 

Hill climbing is good for finding a local optimum (a solution that cannot be improved by 

considering a neighboring configuration) but it is not necessarily guaranteed to find the best 

possible solution (the global optimum) out of all possible solutions (the search space).. 

https://en.wikipedia.org/wiki/Optimization_(mathematics)
https://en.wikipedia.org/wiki/Local_search_(optimization)
https://en.wikipedia.org/wiki/Incremental_heuristic_search
https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Local_optimum
https://en.wikipedia.org/wiki/Global_optimum
https://en.wikipedia.org/wiki/Candidate_solution
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Function HILL-CLIMBING( problem) return a state that is a 

local maximum input: problem, a problem 
 

local variables: current, a node. 
neighbor, a 
node. 

 
current MAKE-NODE(INITIAL-STATE[problem]) 
loop do 

neighbor   a highest valued successor of current 
 

if VALUE [neighbor] ≤ VALUE[current] then return STATE[current] 
current neighbor 

 
 
Figure 2.9 The hill-climbing search algorithm (steepest ascent version),which is the most basic 
local search technique. At each step the current node is replaced by the best neighbor; the neighbor 
with the highest VALUE. If the heuristic cost estimate h is used, we could find the neighbor with 
the lowest h.  
 
 
Hill-climbing is sometimes called greedy local search because it grabs a good neighbor state without 
thinking ahead about where to go next. Greedy algorithms often perform quite well.  
Problems with hill-climbing 
Hill-climbing often gets stuck for the following reasons : 
 
Local maxima :  
 
A local maximum is a peak that is higher than each of its neighboring states, but lower than 
the global maximum. Hill-climbing algorithms that reach the vicinity of a local maximum will 
be drawn upwards towards the peak, but will then be stuck with nowhere else to go  
 
Ridges :  
 
A ridge is shown in Figure 2.10. Ridges results in a sequence of local maxima that is very difficult 
for greedy algorithms to navigate.  
 
Plateaux :  
 
A plateau is an area of the state space landscape where the evaluation function is flat. It can be a 
flat local maximum, from which no uphill exit exists, or a shoulder, from which it is possible to 
make progress.  
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Figure 2.10 Illustration of why ridges cause difficulties for hill-climbing. The grid of states(dark 
circles) is superimposed on a ridge rising from left to right,creating a sequence of local maxima 
that are not directly connected to each other. From each local maximum,all th available options 
point downhill. 
 
 
Hill-climbing variations 

 
Stochastic hill-climbing  

o Random selection among the uphill moves. 
o The selection probability can vary with the steepness of the uphill move.  

First-choice hill-climbing   
o cfr. stochastic hill climbing by generating successors randomly until a better one  

is found.  
Random-restart hill-climbing   

o Tries to avoid getting stuck in local maxima.   
Simulated annealing search 
 
A hill-climbing algorithm that never makes ―downhill‖ moves towards states with lower 
value(or higher cost) is guaranteed to be incomplete, because it can stuck on a local maximum. 
In contrast, a purely random walk –that is, moving to a successor chosen uniformly at random 
from the set of successors – is complete, but extremely inefficient. 
 
Simulated annealing is an algorithm that combines hill-climbing with a random walk in 
someway that yields both efficiency and completeness. 
 
Figure 2.11 shows simulated annealing algorithm. It is quite similar to hill climbing. Instead of 
picking the best move,however,it picks the random move. If the move improves the situation, it 
is always accepted. Otherwise,the algorithm accepts the move with some probability less than     
 
1. The probability decreases exponentially with the ―badness‖ of the move – the amount E by 
which the evaluation is worsened. 
 
Simulated annealing was first used extensively to solve VLSI layout problems in the early 
1980s. It has been applied widely to factory scheduling and other large-scale optimization 
tasks. 
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Figure 2.11 The simulated annealing search algorithm,a version of stochastic hill climbing 
where some downhill moves are allowed. 

 

Problem Reduction with AO* Algorithm. 

 
PROBLEM REDUCTION ( AND - OR graphs - AO * Algorithm) 

 

When a problem can be divided into a set of sub problems, where each sub problem can be solved 

separately and a combination of these will be a solution, AND-OR graphs or AND - OR trees are used 

for representing the solution. The decomposition of the problem or problem reduction generates AND 

arcs. One AND are may point to any number of successor nodes. All these must be solved so that the 

arc will rise to many arcs, indicating several possible solutions. Hence the graph is known as AND - 

OR instead of AND. Figure shows an AND - OR graph. 

  
 

An algorithm to find a solution in an AND - OR graph must handle AND area appropriately. A* 

algorithm can not search AND - OR graphs efficiently. This can be understand from the give figure. 

 

 

 

 

 

 



SIET AI  Notes                                                                               By- Niraj Kumar Tiwari 

 

UNIT-II Page 36 
 

 
 

 

 

In figure (a) the top node A has been expanded producing two area one leading to B and leading to C-

D . the numbers at each node represent the value of f ' at that node (cost of getting to the goal state 

from current state). For simplicity, it is assumed that every operation(i.e. applying a rule) has unit cost, 

i.e., each are with single successor will have a cost of 1 and each of its components. With the available 

information till now , it appears that C is the most promising node to expand since its f ' = 3 , the 

lowest but going through B would be better since to use C we must also use D' and the cost would be 

9(3+4+1+1). Through B it would be 6(5+1). 

 

Thus the choice of the next node to expand depends not only n a value but also on whether that node is 

part of the current best path form the initial mode. Figure (b) makes this clearer. In figure the node G 

appears to be the most promising node, with the least f ' value. But G is not on the current beat path, 

since to use G we must use GH with a cost of 9 and again this demands that arcs be used (with a cost 

of 27). The path from A through B, E-F is better with a total cost of (17+1=18). Thus we can see that 

to search an AND-OR graph, the following three things must be done. 

1. traverse the graph starting at the initial node and following the current best path, and accumulate the 

set of nodes that are on the path and have not yet been expanded. 

 

2. Pick one of these unexpanded nodes and expand it. Add its successors to the graph and computer f ' 

(cost of the remaining distance) for each of them. 

 

3. Change the f ' estimate of the newly expanded node to reflect the new information produced by its 

successors. Propagate this change backward through the graph. Decide which of the current best path. 

 

The propagation of revised cost estimation backward is in the tree is not necessary in A* algorithm. 

This is because in AO* algorithm expanded nodes are re-examined so that the current best path can be 

selected. The working of AO* algorithm is illustrated in figure as follows: 
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Referring the figure. The initial node is expanded and D is Marked initially as promising node. D is 

expanded producing an AND arc E-F. f ' value of D is updated to 10. Going backwards we can see 

that the AND arc B-C is better . it is now marked as current best path. B and C have to be expanded 

next. This process continues until a solution is found or all paths have led to dead ends, indicating that 

there is no solution. An A* algorithm the path from one node to the other is always that of the lowest 

cost and it is independent of the paths through other nodes. 

 

The algorithm for performing a heuristic search of an AND - OR graph is given below. Unlike A* 

algorithm which used two lists OPEN and CLOSED, the AO* algorithm uses a single structure G. G 

represents the part of the search graph generated so far. Each node in G points down to its immediate 

successors and up to its immediate predecessors, and also has with it the value of h' cost of a path from 

itself to a set of solution nodes. The cost of getting from the start nodes to the current node "g" is not 

stored as in the A* algorithm. This is because it is not possible to compute a single such value since 

there may be many paths to the same state. In AO* algorithm serves as the estimate of goodness of a 

node. Also a there should value called FUTILITY is used. The estimated cost of a solution is greater 

than FUTILITY then the search is abandoned as too expansive to be practical. 

For representing above graphs AO* algorithm is as follows 

 

AO* ALGORITHM: 

 

1. Let G consists only to the node representing the initial state call this node INTT. Compute  

    h' (INIT). 
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2. Until INIT is labeled SOLVED or hi (INIT) becomes greater than FUTILITY, repeat the  

    following procedure. 

 

(I)     Trace the marked arcs from INIT and select an unbounded node NODE. 

 

(II)  Generate the successors of NODE . if there are no successors then assign FUTILITY as  

        h' (NODE). This means that NODE is not solvable. If there are successors then for each one    

        called SUCCESSOR, that is not also an ancestor of NODE do the following 

 

 

            (a) add SUCCESSOR to graph G 

 

            (b) if successor is not a terminal node, mark it solved and assign zero to its h ' value. 

 

            (c) If successor is not a terminal node, compute it h' value. 

 

(III) propagate the newly discovered information up the graph by doing the following . let S be a  

        set of nodes that have been marked SOLVED. Initialize S to NODE. Until S is empty repeat  

        the following procedure; 

 

           (a) select a node from S call if CURRENT and remove it from S. 

 

          (b) compute h' of each of the arcs emerging from CURRENT , Assign minimum h' to     

               CURRENT. 

 

          (c) Mark the minimum cost path a s the best out of CURRENT. 

 

          (d) Mark CURRENT SOLVED if all of the nodes connected to it through the new marked  

               are have been labeled SOLVED. 

 

          (e) If CURRENT has been marked SOLVED or its h ' has just changed, its new status must  

               be propagate backwards up the graph . hence all the ancestors of CURRENT are added  

               to S. 

 

AO*  Search Procedure. 
 

1. Place the start node on open. 

 

2. Using the search tree, compute the most promising solution tree TP . 

 

3. Select node n that is both on open and a part of tp, remove n from open and place it no closed. 

 

4. If n is a goal node, label n as solved. If the start node is solved, exit with success where tp is the 

solution tree, remove all nodes from open with a solved ancestor. 

 

5. If n is not solvable node, label n as unsolvable. If the start node is labeled as unsolvable, exit with 

failure. Remove all nodes from open ,with unsolvable ancestors. 

 

6. Otherwise, expand node n generating all of its successor compute the cost of for each newly 

generated node and place all such nodes on open. 
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7. Go back to step(2) 

 

Adversarial Search 

Games  

• Multi agent environments : any given agent will need to consider the actions of other agents and how 

they affect its own welfare.  

• The unpredictability of these other agents can introduce many possible contingencies 

 • There could be competitive or cooperative environments  

• Competitive environments, in which the agent’s goals are in conflict require adversarial search – 

these problems are called as games 

In game theory (economics), any multi agent environment (either cooperative or competitive) is a 

game provided that the impact of each agent on the other is significant  

• AI games are a specialized kind - deterministic, turn taking, two-player, zero sum games of perfect 

information 

 • In our terminology – deterministic, fully observable environments with two agents whose actions 

alternate and the utility values at the end of the game are always equal and opposite (+1 and –1) 

Games – history of chess playing 

   1949 – Shannon paper – originated the ideas 

 • 1951 – Turing paper – hand simulation  

• 1958 – Bernstein program  

• 1955-1960 – Simon-Newell program 

 • 1961 – Soviet program  

• 1966 – 1967 – MacHack 6 – defeated a good player 

 • 1970s – NW chess 4.5 • 1980s – Cray Bitz  

• 1990s – Belle, Hitech, Deep Thought, 

 • 1997 - Deep Blue - defeated Garry Kasparov 

Game Tree search  

Optimal strategies 

• In a normal search problem, the optimal solution would be a sequence of moves leading to a goal 

state - a terminal state that is a win  
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• In a game, MIN has something to say about it and therefore MAX must find a contingent strategy, 

which specifies – MAX’s move in the initial state, – then MAX’s moves in the states resulting from 

every possible response by MIN, – then MAX’s moves in the states resulting from every possible 

response by MIN to those moves  

• An optimal strategy leads to outcomes at least as good as any other strategy when one is playing an 

infallible opponent  

Minimax Perfect play for deterministic games • Idea: choose move to position with highest minimax 

value = best achievable payoff against best play  E.g., 2-ply game: 

 

 

 

 

 

 

 

Minimax value 

• Given a game tree, the optimal strategy can be determined by examining the minimax value of 

each node (MINIMAX-VALUE(n))  

 

• The minimax value of a node is the utility of being in the corresponding state, assuming that 

both players play optimally from there to the end of the game  

 

• Given a choice, MAX prefer to move to a state of maximum value, whereas MIN prefers a 

state of minimum value  
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Minimax algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

Alpha - Beta Pruning 

A technique that improves upon the minimax algorithm by ignoring branches on the game tree that do 

not contribute further to the outcome. 

The basic idea behind this modification to the minimax search algorithm is the following. During the 

process of searching for the next move, not every move (i.e. every node in the search tree) needs to 

considered in order to reach a correct decision. In other words, if the move being considered results in 

a worse outcome than our current best possible choice, then the first move that the opposition could 

make which is less then our best move will be the last move that we need to look at. As the opposition 

will at least choose that move 

The Algorithm: 

Now that we have gained a basic understanding of how Alpha-Beta Pruning works we can 

examine the actual algorithm in more detail. First I'm going to introduce you to some 

definitions used by the algorithm. Then we will see some Pseudo Code for the algorithm and 

finally we will step through a generalized walk through of the algorithm. 

Alpha ( œ ) minimal score that player MAX is guaranteed to attain. 

       Beta ( ß ) maximum score that player MAX can hope to obtain against a sensible   opponent. 
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An Alternative Definition: 

Let Alpha be the value of the best choice so far at any choice along the path for MAX. 

Let Beta be the value of the best (i.e. lowest value) so far at any choice point along the path 

for MIN. 

It is important to note that we now have a Max-Value Function and a Min-

Value Function as opposed to the minimax function given previously to handle 

the minimax problem. They both return the minimax value of the node except 

for nodes that are to be pruned which are simply ignored. Refer below for the 

actual algorithm. 

Pseudo Code: 

function Max-Value(state, game, œ, ß) returns the mimimax value of state 

inputs: 
state, current state in the game 

game, game description 

œ, the best score for MAX along the path to state 

ß, the best score for MIN along the path to state 

if CUTOFF-TEST(state) then return EVAL(state) 

for each s in SUCCESSORS(state) do 

œ <-- MAX(œ,MIN-VALUE(s,game,œ,ß)) if œ >= ß then return ß 

end 

return œ 

function Min-Value(state, game, œ, ß) returns the mimimax value of state 

if CUTOFF-TEST(state) then return EVAL(state) 

for each s in SUCCESSORS(state) do 

ß <-- MIN(ß,MAX-VALUE(s,game,œ,ß)) if ß <= œ then return œ 

end 

return ß 

Alpha-Beta Search: A Brief Walk through: 

Here we are going to go through a generalized run through of the algorithm. It may help your 

understanding to use a diagram for reference such as Figure 1 shown early in the document. 

For each node visited we will assign storage for the path taken to backtrack to that node, a value 

called Alpha and a value called Beta, as well as the current score for that node. 

Set the value of Alpha at the initial node to -Limit and Beta to +Limit. Because initially these are the 

max values that Alpha or Beta could possibly obtain. 

1. Search down the tree to the given depth. 

http://www.cs.northwestern.edu/~agupta/_projects/ai_connect4/Connect4/Related/search.html#figure 1
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2. Once reaching the bottom, calculate the evaluation for this node.(i.e. it's utility) 

3.   Backtrack, propagating values and paths according to the following: 

 If the move being backtracked would be made by the opponent: 

o If the current score is less than the score stored at the parent, replace the score at the parent with 

this and store the path from the bottom and the value of Beta in the parent. If the score at the 

parent is now less than Alpha stored at that parent, ignore any further children of this parent and 

backtrack the parent's value of Alpha and Beta up the tree. 

o If the score at the parent is greater than Alpha, set the Alpha value of the parent to this score and 

proceed with the next child, sending Alpha and Beta down. If no children exist, 

propagate Alpha and Beta up the tree and propagate the value of Alpha up as the min score. 

 If the move being backtracked would be made by the computer: 

 If the current score is more than the score stored at the parent, replace the score at the parent 

with this and store the path from the bottom and the value of Alpha in the parent. 

 If the score at the parent is now more than Beta stored at that parent, ignore any further 

children of this parent and backtrack the parent's value of Alpha and Beta up the tree. 

 If the score at the parent is less than Beta, set the Beta value of the parent to this score and 

proceed with the next child, sending Alpha and Beta down.  

 If no children exist, propagate Alpha and Beta up the tree and propagate the value of Beta up 

as the max score. 

 When the search is complete, the Alpha value at the top node gives the minimum score that 

the player is guaranteed to attain if using the path stored at the top node. 

An Example using Alpha-Beta Pruning: Tic-Tac-Toe 

This is a two player game where each opponent picks a symbol to represent themselves and places 

them on a 3 by 3 board. The first player to make a complete line wins. This example uses 

a shockwave animation to show the steps that would be performed if the computer player was using 

Alpha-Beta search to make it's decisions. 

The Players: 

The player MAX is the computer player in these examples is 0 

The opposition player MIN is the human player in these examples is X 

Rules: 

1. If two collinear board places and a third space in the line is empty, award the player 200    

points. 

2. If the player has two nearly complete lines then award the player 300 points. 

3. If the player has a complete line award the player 600 points. 

4. Award the player one addition point for each line that could be completed from his/her current 

position. 

http://www.shockwave.com/
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How the Evaluation Function calculates the utility of a move. 

The Evaluation Function calculates the next move by assuming that the opposition will take the best 

possible move in it's current situation. The utility or worth of a position is calculated by taking the 

difference between the players score and the opponents score. 

|---|---|---| 

| O | O |   | 

|---|---|---| 

|   | O | X | 

|---|---|---| 

|   |   | X | 

|---|---|---| 

 

For example using the following board above in it's current state the following value of the utility 

of this game state is 302 for 0 and 201 for X. 

So the following the aforementioned rules the utility of this game state is 302 - 201 = 101. 

End State 

When all possible decisions have been evaluated and the best move has been selected. 

Horizon effect  

Horizon effect In computer game playing or other search processes, a large search tree has to be 

explored. It is usual to set a maximum depth limit (D) beyond which it is considered uneconomic to 

search further. The horizon effect refers to the fact that interesting results will always exist beyond 

any depth D and therefore in any given search will not be discovered. Variable evaluation 

functions and dynamic search-depth controls have been used in attempts to deal with this problem. 

For example, in chess, assume a situation where the computer only searches the game tree to 

six plies, and from the current position, it determines that the queen is lost in the sixth ply, and 

suppose there is a move in the search depth where it may sacrifice a rook, and the loss of the queen 

is pushed to the eighth ply. This is, of course, a worse move than sacrificing the queen, because it 

leads to losing both a queen and a rook. However, because the loss of the queen was pushed over 

the horizon of search, it is not discovered and evaluated by the search. Losing the rook seems to be 

better than losing the queen, so the sacrifice is returned as the best option, while delaying the 

sacrifice of the queen has in fact additionally weakened the computer's position. 

Horizon effect the tendency of a search procedure, such as a game-playing program, to make 

innocuous moves that have the effect of postponing bad news so that it lies beyond the horizon 

formed by the depth bound of the search. This is called the horizon effect: a good (or bad) move 

may be just over the horizon. The Singular Extension Heuristic: Search should continue as long as 

one moves static value stands out from the rest. If we don't use this heuristic, we risk harm from 

the Horizon Effect. The purpose of the quiescence search is to prevent horizon effects, where a 

bad move hides an even worse threat because the threat is pushed beyond the search horizon. This 

http://www.cs.northwestern.edu/~agupta/_projects/ai_connect4/Connect4/Related/search.html#board
http://www.encyclopedia.com/doc/1O11-evaluationfunction.html
http://www.encyclopedia.com/doc/1O11-evaluationfunction.html
https://en.wikipedia.org/wiki/Chess
https://en.wikipedia.org/wiki/Ply_(game_theory)
https://en.wikipedia.org/wiki/Sacrifice_(chess)
http://en.mimi.hu/artificial_intelligence/depth_bound.html#maintitle
http://en.mimi.hu/artificial_intelligence/quiescence_search.html#maintitle
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is done by making sure that evaluations are done at stable positions, i.e. positions where there are 

no direct threats. 
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