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Machine Learning : 

The goal of machine learning is to design and develop algorithms that allow systems to use 

empirical data, experience, and training to evolve and adapt to changes that occur in their 

environment. A major focus of machine learning research is to automatically induce models, 

such as rules and patterns, from the training data it analyzes. As shown in Figure 1, machine 

learning combines techniques and approaches from various areas, including probability and 

statistics, psychology, information theory, and artificial intelligence. 
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Figure 1: Machine learning is a broad discipline, combining approaches from many different areas. 

 

Wireless sensor network (WSN) applications operate in very challenging conditions, where they 

constantly have to accommodate environmental changes, hardware degradation, and inaccurate 

sensor readings. Therefore, in order to maintain sufficient operational correctness, a WSN 
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application often needs to learn and adapt to the changes in its running environment. Machine 

learning has been used to help address these issues. A number of machine learning algorithms 

have been employed in a wide range of sensor network applications, including activity 

recognition, healthcare, education, and improving the efficiency of heating, ventilating, and air 

conditioning (HVAC) system. 

 

The abundance of machine learning algorithms can be divided into two main classes, supervised 

and unsupervised learning, based on whether the training data instances are labeled. In 

supervised learning the learner is supplied with labeled training instances, where both the input 

and the correct output are given. In unsupervised learning the correct output is not provided with 

the input. Instead, the learning program must rely on other sources of feedback to determine 

whether or not it is learning correctly. A third class of machine learning techniques, called semi-

supervised learning, uses a combination of both labeled and unlabeled data for training. Figure 2 

shows the relationship between these three machine learning classes. 
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Figure 2: Machine learning algorithms are divided into supervised learning, which used labeled training data, 
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and unsupervised learning, where labeled training data is not available. A third class of machine learning 

technique, semi-supervised learning, makes use of both labeled and unlabeled training data. 

In this chapter we have surveyed machine learning algorithms in sensor networks from the 

perspective of what types of applications they have been used for. We give examples from all 

three machine learning classes and discuss how they have been applied in a number of sensor 

network applications. We present the most frequently used machine learning algorithms, 

including clustering, Bayes probabilistic models, Markov models, and decision trees. We also 

analyze the challenges, advantages, and drawbacks of using different machine learning 

algorithms. Figure 3 shows the machine learning algorithms introduced in this chapter.  
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Figure 3: Classification of the machine learning algorithms most widely used in WSN applications. 

Supervised Learning: 

In supervised learning the learner is provided with labeled input data. This data contains a 

sequence of input/output pairs of the form ‹ xi, yi ›, where xi is a possible input, and yi is the 

correctly labeled output associated with it.  The aim of the learner in supervised learning is to 

learn the mapping from inputs to outputs. The learning program is expected to learn a function f 

that accounts for the input/output pairs seen so far, f(xi) = yi for all i. This function f is called a 

classifier if the output is discrete and a regression function if the output is continuous. The job of 
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the classifier/regression function is to correctly predict the outputs of inputs it has not seen 

before. For example, the inputs can be a set of sensor firings and the outputs can be the activities 

that have caused those sensor nodes to fire.  

 

The execution of a supervised learning algorithm can be divided into 5 main steps (Figure 4).  

 

Step 1 is to determine what training data is needed and collect that data. Here we need to answer 

two questions ―What data is necessary?‖ and ―How much of it?‖. The designers have to decide 

what training data can best represent real world scenarios for the specific application. They also 

need to determine how much training data should be collected. Although the more training data 

we have, the better we can train the learning algorithm, collecting training data and providing 

correct labels can often be expensive and laborious. Therefore, an application designer always 

strives to maintain the size of the training data large enough to provide sufficient training but 

also small enough to avoid any unnecessary costs associated with data collection and labeling. 
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Figure 4: The stages of supervised machine learning. 

 

Step 2 is to identify the feature set, also called feature vector, to be used to represent the input. 

Each feature in the feature set represents a characteristic of the objects/events that are being 

classified. There is a trade-off between the size of the feature vector and the classification 

accuracy of the machine learning algorithm. A large feature vector significantly increases the 

complexity of the classification. However, using a small feature vector, which does not contain 

sufficient description of the objects/events, could lead to poor classification accuracy. Therefore, 

the feature vector should be sufficiently large to represent the important features of the 

object/event and small enough to avoid excessive complexity. 
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Step 3 is to select a suitable learning algorithm. A number of factors have to be considered when 

choosing a learning algorithm for a particular task, including the content and size of the training 

dataset, noise in the system, accuracy of the labeling, and the heterogeneity and redundancy of 

the input data. We also have to evaluate the requirements and characteristics of the sensor 

network application itself. For example, for an activity recognition application the duration of 

sensor use plays a significant role in determining the activity being executed. Therefore, to 

achieve high activity recognition accuracy, we would prefer to use machine learning algorithms 

that can explicitly model state duration. 

 

The most frequently used supervised machine learning algorithms include support vector 

machines, naïve Bayes classifiers, decision trees, hidden Markov models, conditional random 

field, and k-nearest neighbor algorithms. There are also a number of approaches that have been 

applied to improve the performance of the chosen classifiers, such as bagging, boosting, and 

using classifier ensembles. Each of the algorithms has its advantages and disadvantages, which 

make it suitable for some types of applications but inappropriate for others. 

 

Step 4 is to train the chosen learning algorithm using the collected training data. In this step the 

algorithm learns the function that best matches the input / output training instances. 

 

Step 5 is evaluation of the algorithm‘s accuracy. We assess the accuracy of the learned function 

with the help of testing dataset, where the testing dataset is different from the training dataset. In 
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this step we evaluate how accurately the machine learning algorithm classifies entries from the 

testing set based on the function is has learned though the training dataset. 

 

Different supervised learning algorithms have been used and evaluated experimentally in a 

variety of sensor network applications. In the rest of this section we describe some of the 

algorithms that are most frequently used in WSN applications. 

Decision trees: 

Decision trees are characterized by fast execution time, ease in the interpretation of the rules, and 

scalability for large multi-dimensional datasets (Cabena, et al. 1998), (Han 2005). The goal of 

decision tree learning is to create a model that predicts the value of the output variable based on 

the input variables in the feature vector. Each node corresponds to one of the feature vector 

variables. From every node there are edges to children, where there is an edge per each of the 

possible values (or range of values) of the input variable associated with the node. Each leaf 

represents a possible value for the output variable. The output variable is determined by 

following a path that starts at the root and is guided by the values of the input variables. 

 

Figure 5 shows an example decision tree for a sensor network activity detection application. In 

this scenario we assume that there are only two events of interest in the kitchen: cooking and 

getting a drink.  The decision tree uses sensor node firings to distinguish between those two 

activities. For example, if there is movement in the kitchen and the stove is being used, the 
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algorithm determines that the residents must be cooking. However, if there is movement in the 

kitchen, the stove is not being used, and somebody opens the cups cupboard, the algorithm 

decides that the activity being performed at the moment is getting a drink. This is a simple 

example illustrating how decision trees can be applied to sensor network applications. In reality, 

the decision trees that are learned by real applications are much more complex. 

Kitchen motion sensor 
active

No

No kitchen activity
Stove use

Yes

Yes

Cooking

No

Cups cupboard use

Yes

Getting a drink Unrecognized kitchen activity

No

 

Figure 5: Example decision tree for an activity detection application. In this scenario we are only interested in 

two of the kitchen activities: cooking and getting a drink. The decision tree is used to determine which one of 

these activities is currently occurring based on the sensor nodes that are firing in the kitchen. 

 

The C4.5 algorithms is one of the well-known, top-down, greedy search algorithms for building 

decision trees (Quinlan, C4.5: programs for machine learning 1993). The algorithm uses entropy 

and information gain metrics to induce a decision tree. The C4.5 algorithm has been used for 



SIET | Artificial Intelligence Notes                                                By- Niraj Kumar Tiwari  

 

         [UNIT -4]                                                                                                   [ECS-801]  

 

activity recognition in the PlaceLab project at MIT (Logan, et al. 2007). The authors of the 

project monitored a home deployed with over 900 sensors, including wired reed switched, 

current and water flow inputs, object and person motion detectors, and RFID tags. They collected 

data for 43 typical house activities and C4.5 was one of the classifiers used by their their activity 

recognition approach.  

 

C4.5 was used for target recognition in an underwater wireless sensor surveillance system 

(Cayirci, et al. 2006). Each node in the network was equipped with multiple microsensors of 

various types, including acoustic, magnetic, radiation, and mechanical sensors. The readings 

from these sensors were used by the decision tree recognition algorithms to classify submarines, 

small delivery vehicles, mines, and divers. 

 

C4.5 was also used as part of an algorithm to automatically recognize physical activities and 

their intensities  (Tapia, et al. 2007). The algorithm monitors the readings of triaxal wireless 

accelerometers and wireless heart rate monitos. The approach was evaluated using datasets 

consisting of 10 physical gymnasium activities collected from a total of 21 people. 

 

Bayesian network classifiers: 

Bayesian probability interprets the concept of probability as degree of belief. A Bayesian 

classifier analyzes the feature vector describing a particular input instance and assigns the 
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instance to the most likely class. A Bayesian classifier is based on applying Bayes‘ theorem to 

evaluate the likelihood of particular events. Bayes‘ theorem gives the relationship between the 

prior and posterior beliefs for two events. In Bayes‘ theorem, P(A) is the prior initial belief in A. 

P(A|B) is the posterior belief in A, after B has been encountered, i.e. the conditional probability 

of A given B. Similarly for B, P(B) is the prior initial belief in A, and P(B|A) is the posterior 

belief in B given A. Assuming that P(B) ≠ 0, Bayes‘ theorem states that 

 

 

The Bayesian network is a probabilistic model that represents a set of random variables and their 

conditional dependencies via a direct acyclic graph (DAG). For example, a Bayesian network 

could represent the probabilistic relationships between activities and sensor readings. Given a set 

of sensor readings, the Bayesian network can be used to evaluate the probabilities that various 

activities are being performed. 

 

Bayesian networks have a number of advantages. Since a Bayes network only relates nodes that 

are probabilistically related by a causal dependency, an enormous saving of computation can 

result. Therefore, there is no need to store all possible configurations of states. Instead, all that 

needs to be stored is the combinations of states between sets of related parent-child nodes. Also, 

Bayes networks are extremely adaptable. They can be started off small, with limited knowledge 

about the domain, and grow as they acquire new knowledge. 

)(

)()|(
)|(

BP

APABP
BAP






SIET | Artificial Intelligence Notes                                                By- Niraj Kumar Tiwari  

 

         [UNIT -4]                                                                                                   [ECS-801]  

 

 

Bayes networks have been applied to a variety of sensor fusion problems, where data from 

various sources must be integrated in order to build a complete picture of the current situation. 

They have also been used in monitoring and alerting applications where the application should 

recognize whether specific events have occurred and decide if an alert or a notification should be 

sent. Further, they have been applied to a number of activity recognition applications and 

evaluated using numerous single and multiple-resident home deployments. 

 

Bayesian networks can be divided into two groups, static and dynamic, based on whether they 

are able to model temporal aspects of the events / activities of interest. We introduce an example 

classifier for each of these two classes: static naïve Bayes classifier and dynamic naïve Bayes 

classifier. 

Static Bayesian network classifiers: 

A very commonly used representative of the static Bayesian networks is the static naïve Bayes 

classifier. Learning Bayesian classifiers can be significantly simplified by making the naïve 

assumption that the features describing a class are independent. The classifier makes the 

assumption that the presence or absence of a feature of a class is unrelated to the presence or 

absence of any of the other features in the feature vector. The naïve Bayes classifier is one of the 

most practical learning methods and it has been widely used in many sensor network 

applications, including activity recognition in residence for elders (van Kasteren and Krӧse, 

Bayesian activity recognition in residence for elders 2007), activity recognition in the PlaceLab 



SIET | Artificial Intelligence Notes                                                By- Niraj Kumar Tiwari  

 

         [UNIT -4]                                                                                                   [ECS-801]  

 

project at MIT (Logan, et al. 2007), outlier detection (Janakiram, AdiMallikarjuna Reddy and 

Phani Kumar 2006), and body sensor networks  (Maurer, et al. 2006).  

Rt
1 Rt

2 Rt
N. . . 

activityt

 

Figure 6: Static Bayesian network: activityt denotes the activity being detected at time t, and Rt
i
 represents 

the data from sensor i at time t. 

 

Figure 6 shows a naïve Bayesian model for the recognition of an activity. In this scenario the 

activity at time t, activityt, is independent of any previous activities. It is also assumed that the 

sensor data Rt is only dependent on the activity
t
.   

 

Naïve Bayes classifiers have a number of advantages: 

1. They can be trained very efficiently. 

2. They are very well suited for categorical features. 

3. In spite of their naïve design and the independence assumptions, naïve Bayes classifiers 

have performed very well in many complex real-world situations. They can work with 

more than 1000 features. 
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4. They are good for combining multiple models and can be used in an iterative way. 

 

A disadvantage of naïve Bayes classifiers is that, if conditional independence is not true, i.e. 

there is dependence between the features of the analyzed classes, they may not be a good model. 

Also naïve Bayes classifiers assume that all attributes that influence a classification decision are 

observable and represented. Despite these drawbacks, experiments have demonstrated that naïve 

Bayes classifiers are very accurate classifiers in a number of problem domains. Simple naïve 

Bayes networks have even been proved comparable to more complex algorithms, such as 

decision trees (E. Tapia 2004). 

 

Dynamic Bayesian network classifiers 

Another disadvantage of static Bayesian networks is that they cannot model the temporal aspect 

of sensor network events. Dynamic Bayesian networks, however, are capable of representing a 

sequence of variables, where the sequence can be consecutive readings from a sensor node. 

Therefore, dynamic Bayesian networks, although more complex, might be better suited for 

modeling events and activities in sensor network applications. 

 

Figure 7 shows a naïve dynamic Bayesian model, where the activityt+1 variable is directly 

influenced only by the previous variable, activityt. The assumption with these models is that an 

event can cause another event in the future, but not vise-versa. Therefore, directed arcs between 

events/activities should flow forward in time and cycles are not allowed. 
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Figure 7: An example of a naïve dynamic Bayesian network. 

 

Dynamic models have been used in activity recognition applications. A naïve dynamic Bayes 

classifier is compared to a naïve static Bayes classifier using two publicly available datasets (van 

Kasteren and Krӧse, Bayesian activity recognition in residence for elders 2007). The dynamic 

Bayes classifier is shown to achieve higher activity recognition accuracy than the static model. A 

dynamic Bayesian filter was successfully applied to the simultaneous tracking and activity 

recognition (STAR) problem, which exploits the synergy between location and activity to 

provide the information necessary for automatic health monitoring  (Wilson and Atkenson 2005). 

 

Markov models: 

A process is considered to be Markov if it exhibits the Markov property, which is the lack of 

memory, i.e. the conditional probability distribution of future states of the process depends only 

on the present state, and not on the events that preceded it. We discuss two types of Markov 

models: hidden Markov model and hidden semi-Markov model. 
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1. Hidden Markov model 

A hidden Markov model (HMM) can be viewed as a simple dynamic Bayesian network. When 

using an HMM, the system is assumed to be a Markov process with unobserved (hidden) states. 

Even though the sequence of states is hidden, the output which is dependent on the state is 

visible. Therefore, at each time step there is a hidden variable and an observable output variable. 

In sensor network applications the hidden variable could be the event or activity performed, and 

the observable output variable is the vector of sensor readings.  

Yt-1

Xt+1Xt

Yt+1Yt

Xt-1

. . . . . . 

 

Figure 8: Hidden Markov model example. The states of the system Yi are hidden, but their corresponding 

outputs Xi are visible. 

 

Figure 8 shows an example HMM where the states of the system Y are hidden, but the output 

variables X are visible. There are two dependency assumptions that define this model, 

represented by the directed arrows in the figure: 

1. Markov assumption: The hidden variable at time t, namely Yt, depends only on the 
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previous hidden variable Yt-1,  (Rabiner 1989); 

2. The observable output variable at time t, namely Xt, depends only on the hidden variable 

Yt. 

 

With these assumptions we can specify an HMM using three probability distributions: 

1. Initial state distribution: the distribution over initial states p(Y1); 

2. Transition distribution: the distribution p(Yt | Yt+1), which represents the probability of 

going from one state to the next; 

3. Observation distribution: the distribution p(Xt | Yt), which indicates the probability that 

the hidden state Yt would generate observation Xt.  

Learning the parameters of these distributions corresponds to maximizing the joint probability 

distribution p(X, Y) of the paired observation and label sequences in the training data. Modeling 

the joint probability distribution p(X, Y) makes HMMs a generative model.  

 

HMMs have been extensively used in many sensor network applications. Most of the earlier 

work on activity recognition used HMMs to recognize the activities from sensor data (Wilson 

and Atkenson 2005) (Patterson, et al. 2005) (van Kasteren, Noulas, et al. 2008). An HMM is also 

used in the smart thermostat project (Lu, et al. 2010). The smart thermostat technology 

automatically senses the occupancy and sleep patterns in a home, and uses these patterns to 

automatically operate the heating, ventilation, and cooling (HVAC) system in the home. The 

authors employ an HMM to estimate the probability of the home being in each of three states: 
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unoccupied, occupied and the residents are active, and occupied with the residents sleeping. 

HMMs were also applied in a biometric identification application for multi-resident homes 

(Srinivasan, Stankovic and Whitehouse, Using Height Sensors for Biometric Identification in 

Multi-resident Homes 2010). In this project height sensors were mounted above the doorways in 

a home and an HMM was used to identify the location of each of the residents. 

 

A weakness of conventional HMMs is their lack of flexibility in modeling state durations. With 

HMMs, there is a constant probability of changing state, given that the system is in its current 

state of the model. This, however, limits the modeling capability. For example, the activity 

preparing dinner typically spans at least several minutes. To prepare dinner in less than a couple 

of minutes is not very usual. The geometric distribution used by HMMs to represent time 

duration cannot be used to represent event distributions where shorter durations are less possible. 

 

Hidden Semi-Markov Models: 

A hidden semi-Markov model (HSMM) differs from a hidden Markov model in that HSMMs 

explicitly model the duration of hidden states. This means that the probability of there being a 

change in the hidden state depends on the amount of time that has elapsed since entry into the 

current state. 



SIET | Artificial Intelligence Notes                                                By- Niraj Kumar Tiwari  

 

         [UNIT -4]                                                                                                   [ECS-801]  

 

Y1 Y2

Xs1

. . . . . . 

s1

d1

Xs1 + d1

s2

d2

Xs2 Xs2 + d2

 

Figure 9: Hidden semi-Markov model. Each hidden state yi is characterized by start position si and a duration 

di. This means that the system is in state yi from time si to time si + di. 

A number of projects have used HSMMs to learn and recognize human activities of daily 

living  (Duong, et al. 2009)  (Zhang, et al. 2008) (van Kasteren, Englebienne and Krӧse, Activity 

recognition using semi-Markov models on real world smart home datasets. 2010). HSMMs were 

also applied to behavior understanding from video streams in a nursing center (Chung and Liu 

2008). The proposed approach infers elderly behaviors through three contexts: spatial, activities, 

and temporal. HSMM were also used in a mobility tracking application for cellular networks  

(Mark and Zaidi 2002). 

 

The activity recognition accuracy achieved by HSMM is compared to that of HMM (van 

Kasteren, Englebienne and Krӧse, Activity recognition using semi-Markov models on real world 

smart home datasets. 2010). The authors evaluate the recognition performance of these models 

using two fully annotated real world datasets consisting of several weeks of data. The first 
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dataset was collected in a 3-room single-resident apartment and the second dataset was from a 6-

room single-resident house. The results show that HSMM consistently outperforms HMM. This 

indicates that accurate duration modelling is important in real world activity recognition 

applications as it can lead to significantly better performance. The use of duration in the 

classification process helps especially in scenarios where the sensor data does not provide 

sufficient information to distinguish between activities.  

 

Conditional random fields 

Conditional random fields (CRF) are often considered an alternative to hidden Markov models. 

The CRF is a statistical modeling method, which is a type of an undirected probabilistic 

graphical model that defines a single log-linear distribution over label sequences given a 

particular observation sequence. It is used to encode known relationships between observations 

and construct consistent interpretations. 

Yt-1

Xt+1Xt

Yt+1Yt

Xt-1

. . . . . . 

 

Figure 10: A linear-chain conditional random field (CRF) model. Similarly to an HMM, the states of the 

system Yi are hidden, but their corresponding outputs Xi are visible. Unlike the HMM model, however, the 

graph represented by the CRF model is undirected. 
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The CRF model that most closely resembles an HMM is the linear-chain CRF. As figure 10 

shows, the model of a linear-chain CRF is very similar to that of an HMM (Figure 8). The model 

still contains hidden variables and corresponding observable variables at each time step. 

However, unlike the HMM, the CRF model is undirected. This means that two connected nodes 

no longer represent a conditional distribution. Instead we can talk about potential between two 

connected nodes. In comparison to HMM, the two conditional probabilities, observation 

probability p(Xt | Yt) and transition probability p(Yt | Yt+1), have been replaces by the 

corresponding potentials. The essential difference lies in the way we learn the model parameters. 

In the case of HMMs the parameters are learned by maximizing the joint probability distribution 

p(X, Y). CRFs are discriminative models. The parameters of a CRF are learned by maximizing 

the conditional probability distribution p(Y | X), which belongs to the family of exponential 

distributions (Sutton and McCailum 2006). 

 

CRF models have been applied to activity recognition in home from video streams, in which 

primitive actions, such as ‗go-from-A- to-B’ are recognized in a lab-like dining room and kitchen 

setup (Truyen, Bui and Venkatesh, Human Activity Learning and Segmentation using Partially 

Hidden Discriminative Models 2005). The results from these experiments show that CRFs 

perform significantly better than the equivalent generative HMMs even when a large portion of 

the data labels are missing. CRFs were also used for modeling concurrent and interleaving 

activities (Hu, et al. 2008). The authors perform experiments using one of the MIT PlaceLab 
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datasets (Logan, et al. 2007), PLA1, which consists of four hours of sensor data. 

 

T. van Kasteren et al. use four different datasets, two bathroom datasets and two kitchen datasets, 

to compare the performance of HMM to that of CRF (van Kasteren, Englebienne and Krӧse, 

Activity recognition using semi-Markov models on real world smart home datasets. 2010). The 

experiments show that, when applied to activity recognition tasks, CRF models achieve higher 

accuracy than HMM models. The authors contribute the results to the flexibility of 

discriminative models, such as CRF, in dealing with violations of the modeling assumptions. 

However, the higher accuracy achieved by CRF models comes at a price: 

1. Discriminative models take much longer to train than their generative counterpart. 

2. Discriminative models are more prone to overfitting. Overfitting occurs when a model 

describes random noise instead of the underlying relationship. This happens when the 

model is trained to maximize its performance on the training data. However, a model‘s 

efficiency is determined not by how well it performs on the training data but by its 

generality and how it performs on unseen data.   

Whether the improved recognition performance of CRFs is worth the extra computational cost 

depends on the application. The data can be modeled mode accurately using an HSMM, which 

allows both speedy learning and good performance, and is less prone to overfitting. However, it 

does result in slower inference and depends on correct modeling assumptions for the durations. 
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Semi-Markov conditional random fields 

Similarly to HMMs, which have their semi-Markov variant, conditional random fields also have 

a semi-Markov variant: semi-Markov conditional random fields (SMCRF). An example SMCRF 

model is shown in Figure 11. The SMCRF inherits features from both semi-Markov models and 

CRFs: 

1. It models the duration of states explicitly (like HSMM). 

2. Each of the hidden states is characterized by a start position and duration (like HSMM). 

3. The graph of the model is undirected (like CRF). 

 

Hierarchical SMCRF were used in an activity recognition application on a small laboratory 

dataset from the domain of video surveillance (Truyen, Phung, et al. 2008). The task was to 

recognize indoor trajectories and activities of a person from his noisy positions extracted from 

the video. The data had 90 sequences, each of which corresponded to one of three possible 

activities: preparing a short meal, preparing a normal meal, and having a snack.  The hierarchical 

SMCRF outperformed both a conventional CRF and a dynamic CRF. 
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Figure 11: An example semi-Markov conditional random field (CRF). Similarly to an HSMM model, each of 

the hidden states yi is characterized by start position si and a duration di. However, unlike an HSMM, the 

HMCRF graph is undirected. 

 

SMCRFs were also used for activity recognition by van Kasteren et al. (van Kasteren, 

Englebienne and Krӧse, Activity recognition using semi-Markov models on real world smart 

home datasets. 2010). The results show that unlike the big improvement achieved by using 

HSMMs over HMMs, SMCRFs only slightly outperform CRFs. The authors attribute this result 

to the fact that CRFs are more robust in dealing with violations to the modeling assumptions. 

Therefore, allowing to explicitly model duration distributions might not have the same 

significant benefits as seen with HSMM 

Support vector machines 

A support vector machine (SVM) is a non-probabilistic binary linear classifier. The output 

prediction of an SVM is one of two possible classes. Given a set of training instances, each 

marked as belonging to one of two classes, an SVM algorithm builds an N-dimensional 
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hyperplane model that assigns future instances into one of the two possible output classes. 

As shown in Figure 12, an SVM model is a representation of the input instances as points in 

space, mapped so that the instances of the separate classes are divided by a clear gap. New 

examples are then mapped into that same space and predicted to belong to a class based on which 

side of the gap they fall on. In other words, the goal of the SVM analysis is to find a line that 

separates the instances based on their class. There are an infinite number of possible lines and 

one of the challenges with SVM models is finding the optimal line. 

margin

misclassified
instances

 

Figure 12: A two-dimensional support vector machine (SVM) model. The instances of the two possible classes 

are divided by a clear gap. 

 

SVMs have been applied to a large number of sensor network applications. Sathik et al. use 

SVMs in an early forest fire detection applications (Mohamed Sathik, Syed Mohamed and 

Balasubramanian 2010). SVMs were also applied to target classification applications for 
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distributed sensor networks (Li, et al. 2001). The experiments were performed on real seismic 

and acoustic data. SVMs are compared to a k-nearest neighbor algorithm and a maximum 

likelihood algorithm and are shown to achieve the highest target classification accuracy. Tran et 

al. use SVMs to achieve accurate geographic location estimations for nodes in a WSN, where 

the majority of nodes do not have effective self-positioning functionality (Tran and Nguyen 

2008). SVMs were also applied to investigating the possibility of recognizing visual memory 

recall (Bulling and Roggen 2011). The project aims to find if people react differently to images 

they have already seen as opposed to images they are seeing for the first time. 

 

B. K-nearest neighbor algorithms 

The k-nearest neighbor (k-NN) algorithm is among the simplest of machine learning algorithms, 

yet it has proven to be very accurate in a number of scenarios. The training examples are vectors 

in a multidimensional feature space, each with a class label. The training phase of the algorithm 

consists only of storing the feature vectors and class labels of the training samples. A new 

instance is classified by a majority vote of its neighbors, with the instance being assigned the 

class that is most common among its k nearest neighbors.  
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Figure 13: Example of k-nearest algorithm classification. The question mark is the test sample and it should 

be classified as either a star or a triangle. If k = 3, the test sample is assigned to the class of triangles because 

there are 2 triangles and 1 star inside the inner circle.  If k = 7, the test sample is assigned to the class of stars 

since there are 4 stars and 3 triangles in the outer circle. 

The best choice of k depends upon the data. k must be a positive integer and it is typically small. 

If k = 1, the new instance is simply assigned to the class of its nearest neighbor. Larger values of 

k reduce the effect of noise on the classification but make boundaries between classes less 

distinct. A good k can be selected by various heuristic techniques, for example cross-validation. 

 

Although the k-NN algorithm is quite accurate, the time required to classify an instance could be 

high since the algorithm has to compute the distances (or similarity) of that instance to all the 

instances in the training set. Therefore, the classification time of k-NN is proportional to the 

number of features and the number of training instances. 

k-NN algorithms have been applied to a wide variety of sensor network applications. Ganesan et 
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al. propose the use of k-NN for spatial data interpolation in sensor networks (Ganesan, et al. 

2004). Due to its simplicity, k-NN allows the sampling to be done in a distributed and 

inexpensive manner. A disadvantage with this approach, however, is that k-NN interpolation 

techniques might perform poorly in highly irregular settings. Winter et al. also analyze the 

application of k-NN queries for spatial data queries in sensor networks (Winter, Xu and Lee 

2005). They design two algorithms based on k-NN, which are used to intelligently prune off 

irrelevant nodes during query propagation, thus reducing the energy consumption while 

maintaining high query accuracy. Duarte et al. evaluate the accuracy of k-NN in the context of 

vehicle classification (Duarte and Hu 2004). The authors collect a real-world dataset and 

analyze both the acoustic and the seismic modality. The results show that in this application 

scenario k-NN algorithms achieve comparable accuracy to that of SVMs. 

Unsupervised Learning: 

Collecting labeled data is resource and time consuming and accurate labeling is often hard to 

achieve. For example, obtaining sufficient training data for activity recognition in a home might 

require three or four weeks of collecting and labeling data. Further, labeling is difficult not only 

for remote areas which are not easily accessible, but also for home and commercial building 

deployments. For any of those deployments someone has to perform the data labeling. In a home 

deployment, the labeling can be done by the residents themselves, in which case they have to 

keep a log of what they are doing and at what time. Previous experience has shown that these 

logs are often incomplete and inaccurate. An alternative solution is to install cameras throughout 
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the house and monitor the activities of the residents. However, this approach is considered to be 

privacy-invasive and therefore not suitable. 

 

In unsupervised learning the learner is provided with input data, which has not been labeled. The 

aim of the learner is to find the inherent patterns in the data that can be used to determine the 

correct output value for new data instances. The assumption here is that there is a structure to the 

input space, such that certain patterns occur more often than others, and we want to see what 

generally happens and what does not. In statistics, this is called density estimation.  

 

Unsupervised learning algorithms are very useful for sensor network applications for a number 

of reasons: 

 Collecting labeled data is resource and time consuming; 

 Accurate labeling is hard to achieve; 

 Sensor networks applications are often deployed in unpredictable and constantly 

changing environments. Therefore, the applications need to evolve and learn without any 

guidance, by using unlabeled patterns. 

A variety of unsupervised learning algorithms have been used in sensor network applications, 

including different clustering algorithms, such as k-means and mixture models; self-organizing 

maps (SOM); and adaptive resonance theory (ART). In the rest of this section we describe some 

of the most commonly used unsupervised learning algorithms. 
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Clustering 

Clustering, also called cluster analysis, is one form of unsupervised learning. It is often 

employed in pattern recognition tasks and activity detection applications. A clustering algorithm 

partitions the input instances into a fixed number of subsets, called clusters, so that the instances 

in the same cluster are similar to one another with respect to some set of metrics. 

 

Figure 14: A clustering algorithm divides the set of input data instances into groups, called clusters. The 

instances in the same group are more similar to each other than to those in other clusters. 

 

Cluster analysis itself is not one specific algorithm, but the general task to be solved. The 

clustering can be achieved by a number of algorithms, which differ significantly in their notion 

of what constitutes a cluster and how to efficiently find them. The choice of an appropriate 

clustering algorithms and parameter settings, including values, such as the distance function to 

use, a density threshold, or the number of expected clusters, depends on the individual dataset 
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and intended use of the results.  

 

The notion of a cluster varies between algorithms and the clusters found by different algorithms 

vary significantly in their properties. Typical cluster models include: 

 Connectivity models: An example of a connectivity model algorithm is hierarchical 

clustering which builds models based on distance connectivity. 

 Centroid models: A representative of this set of algorithms is the k-means algorithm. 

With this algorithm each cluster is represented by a single mean vector. 

 Distribution models: clusters are modeled using statistics distributions. 

 Density models: an example of density model clustering is DBSCAN. In this type of 

clustering, clusters are identified as areas with higher density than non-clusters.  

 Group models: These clustering algorithms are not able to provide a refined model for the 

results. Instead, they can only generate the group information. 

We discuss in more detail two of the most common clustering algorithms used in sensor network 

applications: k-means clustering, and DBSCAN clustering. 

K-means clustering 

The goal of k-means clustering is to partition the input instances into k clusters, where each 

instance belongs to the cluster with the nearest mean. Since the problem is NP-hard, the common 

approach is to only search for approximate solutions. There are a number of efficient heuristic 

algorithms that can quickly converge to a local optimum, such as the Lloyd‘s algorithm (Lioyd 

1982). Since the algorithms only find local optimums, they are usually run multiple times with 
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different random initializations.  

 

An advantage of the k-means algorithm is that it is simple and converges quickly when the 

number of dimensions of the data is small. However, k-means clustering also has a number of 

drawbacks. First, k must be specified in advance. Also, the algorithms prefer clusters of 

approximately similar sizes. This often leads to incorrectly cut borders in between clusters, 

which is not surprising since, being centroid a model algorithm, k-means optimizes for cluster 

center rather than cluster borders.  

 

Figure 15 shows a clustering example where k=2 and k-means is not able to accurately define the 

borders between the two clusters. There are two density clusters in that figure. One of them is 

much larger and contains circles. The other one is smaller and consists of triangles. Since k-

means optimizes for cluster center and tends to produce clusters with similar sizes, it incorrectly 

splits the data instances into a green and a red cluster. These two clusters, however, do not 

overlap with the original density clusters of the input data.  
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Figure 15: K-means clustering might incorrectly cut the bothers between density-based clusters. 

 

K-means clustering has been used in a number of WSN applications. A k-means algorithm is 

used in the fingerprint and timing-based snooping (FATS) security attack to cluster together 

sensors that are temporally correlated (Srinivasan, Stankovic and Whitehouse, Protecting your 

Daily In-Home Activity Information from a Wireless Snooping Attack 2008). This allows the 

attack to identify sensors that fire together, and hence identify sensors that are located in the 

same room. K-means clustering has also been used to address the multiple sink location 

problem in large-scale WSNs (Oyman and Ersoy 2004). In large scale-networks with a large 

number of sensor nodes, multiple sink nodes should be deployed not only to increase the 

manageability of the network but also to prolong the lifetime of the network by reducing the 

energy dissipation of each node. Al-Karaki et al. apply k-means clustering to data aggregation, 
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and more specifically to finding the minimum number of aggregation points in order to 

maximize the network lifetime (Al-Karaki, Ul-Mustafa and Kamal 2004). The results from their 

experiments show that, compared to a number of other algorithms, such as a genetic algorithm 

and a simple greedy algorithm, k-means clustering achieves the highest network lifetime 

extension. 

 

DBSCAN clustering 

The density-based spatial clustering for applications with noise (DBSCAN) is the most popular 

density-based clustering algorithm. In density-based clustering, clusters are defined as areas of 

higher density than the remainder of the dataset. DBSCAN requires two parameters: distance 

threshold (Eps-neighborhood of a point) and minimum number of points required to form a 

cluster (MinPts) (Ester, et al. 1996). DBSCAN is based on connecting points within a certain 

distance of each other, i.e. points which are in the same Eps-neighborhood. However, in order to 

make a cluster, DBSCAN requires that for each point in the cluster there are at least MinPts 

number of points in the Eps-neighborhood. Figure 16 shows an example of DBSCAN clustering. 

The dataset is the same as that in Figure 15 but since a density-based clustering algorithm has 

been used, the data is clustered correctly. 
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Figure 16: An example density-based clustering with DBSCAN. 

An advantage of DBSCAN is that, unlike many other clustering algorithms, it can form clusters 

of any arbitrary shape. Another useful property of the algorithm is that its complexity is fairly 

low and it will discover essentially the same clusters in each run. Therefore, in contrast to k-

means clustering, DBSCAN can be run only once rather than multiple times. The main drawback 

of DBSCAN is that it expects sufficiently significant density drop in order to detect cluster 

borders. If the cluster densities decrease continuously, DBSCAN might often produce clusters 

whose borders look arbitrary. 

 

In sensor network applications, DBSCAN has been used as part of the FATS security attack to 

identify the function of each room, such as bathroom, kitchen, or bedroom (Srinivasan, 

Stankovic and Whitehouse, Protecting your Daily In-Home Activity Information from a Wireless 
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Snooping Attack 2008). DBSCAN generates temporal activity clusters, each of which forms a 

continuous temporal block with a relatively high density of sensor firings. Experiments show that 

DBSCAN performs very well because it automatically leaves out outliers and computes high-

density clusters. However, when DBSCAN is applied to the step of identifying which sensors are 

in the same room, k-means clustering performs much better. This is especially true for scenarios 

where all devices are highly correlated temporally and there is no significant density drop on the 

boundary of clusters.  

 

Apiletti et al. also apply DBSCAN to detecting sensor correlation (Apiletti, Baralis and 

Carquitelli 2011). The authors perform experiments using data collected from a sensor network 

deployed in university labs. The results show that DBSCAN is able to identify different numbers 

of clusters based on which day of the week it is analyzing. This allows it to construct more 

accurate models for the sensor use parrerns in the labs. DBSCAN also successfully detects noisy 

sensors. 

Self-organizing map (SOM) 

Self-organizing maps (SOM) provide a way of representing multidimensional data in much 

lower dimensional spaces – typically one or two dimensions. The process of reducing the 

dimensionality of the feature vectors is a data compression technique known as vector 

quantisation. SOMs, as indicated by their name, produce a representation of the compressed 

feature space, called a map. An extremely valuable property of these maps is that the information 

is stored in such a way that any topological relationships within the training set are maintained.  
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An SOM contains components called nodes. Each node is associated with 1) a position in the 

map space and 2) a vector of weights, where the dimension of this vector is the same as that of 

the input data instances. The nodes are regularly spaced in the map, which is typically a 

rectangular or a hexagonal grid. A typical example of SOMs is a color map (Figure 17). Each 

color is represented by a 3-dimensional vector containing values for red, green, and blue. 

However, the color SOM represents the colors in a 2-dimensional space. 

 

Figure 17: An example SOM representation for colors. 

The procedure of placing an input data instance onto the map is the following: 

1. Initialize the weights of the nodes on the map. 

2. Choose an input training instance.  

3. Find the node with the closest vector to that of the input instance. This node is called the 

best matching unit (BMU). 

4. Calculate the radius of the BMU‘s neighborhood. This value is often set to the radius of 

the whole map, but it decreases at each time step. Any node found within this radius is 
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considered to be inside the BMU‘s neighborhood. 

5. Once the BMU is located, it is assigned the values from the vector of the input instance. 

In addition, the weights of the nodes close to the BMU are also adjusted towards the input 

vector. The closer a neighbor node is to the BMU, the more its weight is altered. 

 

In sensor networks, SOMs have been applied to anomaly detection caused by faulty sensors and 

unusual phenomenon, such as harsh environmental conditions (Siripanadorn, Hattagam and 

Teaumroong 2010). Paladina et al. have also used SOMs for node localization (Paladina, et al. 

2007). Their localization technique is based on a simple SOM implemented on each of the sensor 

nodes.  The main advantages of this approach are the limited storage and computing cost. 

However, the processing time required by the SOMs increases with the size of the input data. 

Giorgetti et al. have also applied SOMs to addressing node localization (Giorgetti, Gupta and 

Manes 2007). Their SOM-based algorithm computes virtual coordinates that are used in 

location-aided routing. If the location information for a few anchor nodes is available, the 

algorithm is also able to compute the absolute positions of the nodes. The results from the 

experiments further show that the SOM-based algorithm performs especially well for networks 

with low connectivity, which tend to be harder to localize, and in the presence of irregular radio 

patterns or anisotropic deployment. A variation of an SOM, called a growing self-organized map 

(GSOM) is employed to achieve accurate detection of human activities of daily living within 

smart home environments (Zheng, Wang and Black 2008). 
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Adaptive resonance theory (ART) 

Most existing learning algorithms are either stable (they preserve previously learned 

information) or plastic (they retain the potential to adapt to new input instances indefinitely). 

Typically, algorithms that are stable cannot easily learn new information, and algorithms that are 

plastic tend to forget the old information they have learned. This conflict between stability and 

plasticity is called the stability-plasticity dilemma (Carpenter and Grossberg 1987).  

 

The adaptive resonance theory (ART) architectures attempt to provide a solution to the stability-

plasticity dilemma. ART is a family of different neural architectures that address the issue of 

how a learning system can preserve its previously learned knowledge while keeping its ability to 

learn new patterns. An ART model is capable of distinguishing between familiar and unfamiliar 

events, as well as between expected and unexpected events. 

 

An ART system contains two functionally complementary subsystems that allow it to process 

familiar and unfamiliar events: attentional subsystem and orienting subsystem. Familiar events 

are processed within the attentional subsystem. This goal of this subsystem is to constantly 

establish even more precise internal representations of and responses to familiar events. By itself, 

however, the attentional subsystem is unable to simultaneously maintain stable representations of 

familiar categories and to create new categories for unfamiliar events. This is where the orienting 

subsystem helps. It is used to reset the attentional subsystem when an unfamiliar event occurs. 

The orienting subsystem is essential for expressing whether a novel pattern is familiar and well 
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represented by an existing recognition code, or unfamiliar and in need of a new recognition code.  

F2: Recognition field

F1 : Comparison field
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Figure 18: The architecture of an ART system has two subsystems: attentional, responsible for processing 

familiar events, and orienting, which helps reset the attentional subsystem when an unfamiliar event occurs. 

The attentional subsystem contains a comparison field, where the input is received, and a recognition field, 

which assigns the input to a category. Both short term memory (STM) and long term memory (LTM) are 

employed. 

 

Figure 18 shows the architecture of an ART system. The attentional system has two successive 

stages, F1 and F2, which encode patterns of activation in short term memory (STM). The input 

pattern is received at F1, and the classification is performed at F2. Bottom-up and top-down 

pathways between the two stages contain adaptive long term memory (LTM) traces. The 

orienting subsystem measures the similarity between the input instance vector and the pattern 
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produced by the fields in the attentional subsystem. If the two are similar, i.e. if the attentional 

subsystem has been able to recognize the input instance, the orienting subsystem does not 

interfere. However, if the two patterns are significantly different, the orienting subsystem resets 

the output of the recognition layer. The effect of the reset is to force the output of the attentional 

system back to zero, which allows the system to search for a better match.  

 

A drawback of some of the ART architectures is that the results of the models depend 

significantly on the order in which the training instances are processed. The effect can be 

reduced to some extent by using a slower learning rate, where differential equations are used and 

the degree of training on an input depends on the time the input is available. However, even with 

slow training, the order of training still affects the system regardless of the size of the input 

dataset. 

 

ART classifiers have been applied to WSN applications to address anomaly detection problems 

in unknown environments (Li, Thomason and Parker, Detecting Time-Related Changes in 

Wireless Sensor Networks Using Symbol Compression and Probabilistic Suffix Trees 2010). A 

fuzzy ART classifier is used to label multi-dimensional sensor data into discrete classes and 

detect sensor-level anomalies. An ART classification is also employed by an intruder detection 

system that uses a WSN and mobile robots (Li and Parker, Intruder detection using a wireless 

sensor network with an intelligent mobile robot response 2008). The sensor network uses an 

unsupervised fuzzy ART classifier to learn and detect intruders in a previously unknown 
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environment. Upon the detection of an intruder, a mobile robot travels to investigate the position 

where the intruder is supposed to be. Kulakov et al. incorporate ART into a technique used for 

detection of unusual sensor events and sensor failures (Kulakov and Davcev 2005). Through 

simulation, where one of the input sensor nodes is failed on purpose, the authors show the 

improvement in data robustness achieved by their approach. 

 

Other unsupervised machine learning algorithms 

There is a wide variety of unsupervised learning algorithms, in addition to k-means clustering, 

DBSCAN, SOM, and ART, which have been often applied to WSN application. The 

SmartHouse project uses a system of sensors to monitor a person‘s activities at home (Barger, 

Brown and Alwan 2005). The goal of the project is to recognize and detect different behavioral 

patterns. The authors use mixture models to develop a probabilistic model of the behavioral 

patterns. The mixture model approach serves to cluster the observations with each cluster 

considered to be a different event type. 

A number of activity recognition projects have developed unsupervised learning algorithms that 

extract models from text corpora or the web. The Guide project uses unsupervised learning 

methods to detect activities using RFID tags placed on objects (Philipose, et al. 2003). This 

method relies on data mining techniques to extract activity models from the web in an 

unsupervised fashion. For this project the authors have mined the temporal structure of about 

fifteen thousand home activities.   

Gu et al. develop another unsupervised approach based on RFID-tagged object-use fingerprints 
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to recognize activities without human labeling (Gu, et al. 2010). The activity models they use are 

built based on object-use fingerprints, which are sets of contrast patterns describing significant 

differences in object-use between any two activity classes. This is done by first mining a set of 

object terms for each activity class from the web, and then mining contrast patterns among object 

terms based on emerging patterns to distinguish between any two activity patterns.  

 

Wyat et al. also employ generic mined models from the web (Wyatt, Philipose and Choudhury 

2005). Given an unlabeled trace of object names from a user performing their activities of daily 

living, they use the generic mined models to segment the trace into labeled instances of activities. 

After that they use the labeled instances to learn custom models of the activity from the data. For 

example, they learn details such as order of object use, duration of use, and whether additional 

object are used.  

Tapia et al. develop a similar approach where they extract relevant information on the functional 

similarity of objects automatically from WordNet, which is an online lexical reference system for 

the English language (Tapia, Choudhury and Philipose 2006). The information about the 

functional similarity between objects is represented in a hierarchical form known as ontology. 

This ontology is used to help mitigate the problem of model incompleteness, which often affects 

the techniques used to construct activity recognition models. 

 

An unsupervised approach based on detecting and analyzing the sequence of objects that are 

being used by the residents is described in (Wu, et al. 2007). The activity recognition method is 
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based on RFID object-use correlated with video streams, and information collected from how-to 

websites such as about.com. Since video streams are used, the approach provides high-grained 

activity recognition. For example, it can differentiate between making tea and making coffee. 

However, as previously mentioned, collecting video data of home activities is difficult due to 

privacy concerns. 

Dimitrov et al. develop a system that relies on unsupervised recognition to identify activities of 

daily living in a smart home environment (Dimitrov, Pauli and Naroska 2010). The system 

utilizes background domain knowledge about the user activities, which is stored in a self-

updating probabilistic knowledge base. The system aims to build the best possible explanation 

for the observed stream of sensor events. 

 

Semi-Supervised Learning 

Semi-supervised learning algorithms use both labeled and unlabeled data for training. The 

labeled data is typically a small percentage of the training dataset. The goal of semi-supervised 

learning is to 1) understand how combining labeled and unlabeled data may change the learning 

behavior, and 2) design algorithms that take advantage of such a combination. Semi-supervised 

learning is a very promising approach since it can use readily available unlabeled data to improve 

supervised learning tasks when the labeled data is scarce or expensive. 

 

There are many different semi-supervised learning algorithms. Some of the most commonly used 



SIET | Artificial Intelligence Notes                                                By- Niraj Kumar Tiwari  

 

         [UNIT -4]                                                                                                   [ECS-801]  

 

ones include: 

 

 Expectation-Maximization with generative mixture models  

Expectation-maximization (EM) is an iterative method for finding maximum likelihood 

estimates of parameters in statistical models, where the models depend on unobserved latent 

variables (Dempster, Laird and Rubin 1977). Each iteration of the algorithm consists of an 

expectation step (e-step) followed by a maximization step (m-step). EM with generative mixture 

models are suitable for applications where the classes specified by the application produce well 

clustered data. 

 

 Self-training 

Self-training can refer to a variety of schemes for using unlabeled data. Ng and Cardie 

implement self-training by bagging and majority voting (Ng and Cardie 2003). An ensemble of 

classifiers is trained on the labeled data instances and then the classifiers are used to classify the 

unlabeled examples independently. Only those examples, for which all classifiers assign the 

same label, are added to the labeled training set, and the classifier ensemble is retrained. The 

process continues until a stop condition is met.  

 

A single classifier can also be self-trained. Similarly to the ensemble of classifiers, the single 

classifier is first trained on all labeled data. Then the classifier is applied to the unlabeled 

instances. Only those instances that meet a selection criterion are added to the labeled set and 
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used for retraining. 

 

 Co-training 

Co-training requires two or more views of the data, i.e. disjoint feature sets that provide different 

complementary information about the instances (Blum and Mitchell, Combining Labeled and 

Unlabeld Data with Co-Training 1998). Ideally, the two feature sets for each instance are 

conditionally independent. Also each feature set should be sufficient to accurately assign each 

instance to its respective class. The first step in co-training is to use all labeled data and train a 

separate classifier for each view. Then, the most confident predictions of each classifier are used 

on the unlabeled data to construct additional labeled training instances. Co-training is a suitable 

algorithm to use if the features of the dataset naturally split into two sets. 

 

 Transductive support vector machines 

Transductive SVMs extend general SVMs in that they could also use partially labeled data for 

semi-supervised learning by following the principles of transduction (Gammerman, Vovk and 

Vapnik 1998). In inductive learning, the algorithm is trained on specific training instances but 

the goal is to learn general rules, which are then applied to the test cases. In contrast, transductive 

learning is reasoning from specific training cases to specific testing cases.  

 

 Graph-based methods 

These are algorithms that utilize the graph structure obtained by capturing pairwise similarities 
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between the labeled and unlabeled instances (Zhu 2007). These algorithms define a graph 

structure where the nodes are labeled and unlabeled instances and the edges, which may be 

weighted, represent the similarity of the nodes they connect.  

 

In sensor networks, semi-supervised learning has been applied to localization of mobile objects. 

Pan et al. develop a probabilistic semi-supervised learning approach to reduce the calibration 

effort and increase the tracking accuracy of their system (Pan, et al. 2007). Their method is based 

on semi-supervised CRFs, which effectively enhance the learned model from a small set of 

training data with abundant unlabeled data. To make the method more efficient, the authors 

employ a Generalized EM algorithm coupled with domain constraints. Yang et al. use a semi-

supervised manifold learning algorithm to estimate the locations of mobile nodes in a WSN 

(Yang, et al. 2010). The algorithm is used to compute a subspace mapping function between the 

signal space and the physical space by using a small amount of labeled data and a large amount 

of unlabeled data. 

 

Wang et al. develop a semi-supervised learning algorithm based on SVM (Wang, et al. 2007). 

The algorithm has been applied to target classification and the experimental results show that it 

can accurately classify targets in sensor networks. 

 

STATISTICAL LEARNING METHOD 
 

STATISTICAL LEARNING  

 Let us consider a very simple example. Our favorite Surprise candy comes in two flavors: cherry 
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(yum) and lime (ugh). The candy manufacturer has a peculiar sense of humor and wraps each 

piece of candy in the same opaque wrapper, regardless of flavor. The candy is sold in very large 

bags, of which there are known to be five kinds—again, indistinguishable from the outsid
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h1: 100% cherry 

h2: 75% cherry + 25% lime h3: 50% cherry + 50% lime h4: 25% cherry + 75% lime h5: 100% 

lime 

 

Given a new bag of candy, the random variable H (for hypothesis) denotes the type of the bag, 

with possible values h1 through h5. H is not directly observable, of course. As the pieces of candy 

are opened and inspected, data are revealed—D1, D2, : : :, DN , where each Di is a random 

variable with possible values cherry and lime. The basic task faced by the agent is to predict the 

flavor of the next piece of candy.
1
 Despite its apparent triviality, this scenario serves to introduce 

many of the major issues. The agent really does need to infer a theory of its world, albeit a very 

simple one. 

 

                    Bayesian learning simply calculates the probability of each hypothesis, given the 

data, and makes predictions on that basis. That is, the predictions are made by using all the hy-

potheses, weighted by their probabilities, rather than by using just a single ―best‖ hypothesis. In 

this way, learning is reduced to probabilistic inference. Let D represent all the data, with 

observed value d; then the probability of each hypothesis is obtained by Bayes' rule: 
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 P (hijd) =   P (djhi)P (hi) :    

 

Now, suppose we want to make a prediction about an unknown quantity X . Then we 

have  

 P(X jd) = P(X jd; hi)P(hijd) = P(X jhi)P (hijd) ;   

 i  i   

 X  X   

 

where we have assumed that each hypothesis determines a probability distribution 

over X .  

 

This equation shows that predictions are weighted averages over the predictions of 

the indi-  

 

vidual hypotheses. The hypotheses themselves are essentially ―intermediaries‖ 

between the  

 

raw data and the predictions. The key quantities in the Bayesian approach are the 

hypothesis  

 

prior, P (hi), and the likelihood of the data under each hypothesis, P (djhi). 

  

   

 For our candy example, we will assume for the time being that the prior distribution  

 

over h1; : : : ; h5  is given by h0:1; 0:2; 0:4; 0:2; 0:1i, as advertised by the 

manufacturer. The  

 likelihood of the data is calculated under the assumption that the observations are  
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i.i.d.—that 

 is, independently and identically distributed—so that   

 P (djhi) = P (dj jhi) :    

 j     

 Y     

For example, suppose the bag is really an all-lime bag (h5) and the first 10 candies are all lime; 

then P (djh3) is 0:5
10

, because half the candies in an h3 bag are lime.
2
 Figure 20.1(a) shows how 

the posterior probabilities of the five hypotheses change as the sequence of 10 lime candies is 

observed. Notice that the probabilities start out at their prior values, so h3 is initially the most 

likely choice and remains so after 1 lime candy is unwrapped. After 2 
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Number of 

samples in d     

Number of 

samples in d    

     (a)     (b)     

 Figure  

(a) Posterior probabilities P (hijd1 ; : : : ; dN ) from Equation (20.1). 

The num-  

 

ber of observations N ranges from 1 to 10, and each observation is of a lime 

candy.  (b)  

 

Bayesian prediction P (dN +1 = lime jd1 ; : : : ; dN ) from 

Equation (20.2).     
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lime candies are unwrapped, h4 is most likely; after 3 or more, h5 (the dreaded all-lime bag) is the 

most likely. After 10 in a row, we are fairly certain of our fate. Figure 20.1(b) shows the 

predicted probability that the next candy is lime, based on Equation (20.2). As we would expect, 

it increases monotonically toward 1. 

 

The example shows that the true hypothesis eventually dominates the Bayesian predic-tion. This 

is characteristic of Bayesian learning. For any fixed prior that does not rule out the true 

hypothesis, the posterior probability of any false hypothesis will eventually vanish, sim-ply 

because the probability of generating ―uncharacteristic‖ data indefinitely is vanishingly small. 

(This point is analogous to one made in the discussion of PAC learning in Chapter 18.) More 

importantly, the Bayesian prediction is optimal, whether the data set be small or large. Given the 

hypothesis prior, any other prediction will be correct less often. 

 

The optimality of Bayesian learning comes at a price, of course. For real learning problems, the 

hypothesis space is usually very large or infinite, as we saw in Chapter 18. In some cases, the 

summation in Equation (20.2) (or integration, in the continuous case) can be carried out 

tractably, but in most cases we must resort to approximate or simplified methods. 

 

A very common approximation—one that is usually adopted in science—is to make pre-dictions 

based on a single most probable hypothesis—that is, an hi that maximizes P (hijd). This is often 
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called a maximum a posteriori or MAP (pronounced ―em-ay-pee‖) hypothe-sis. Predictions 

made according to an MAP hypothesis hMAP are approximately Bayesian to the extent that P(X 

jd) P(X jhMAP). In our candy example, hMAP = h5 after three lime candies in a row, so the MAP 

learner then predicts that the fourth candy is lime with prob-ability 1.0—a much more dangerous 

prediction than the Bayesian prediction of 0.8 shown in Figure 20.1. As more data arrive, the 

MAP and Bayesian predictions become closer, be-cause the competitors to the MAP hypothesis 

become less and less probable. Although our example doesn't show it, finding MAP hypotheses 

is often much easier than Bayesian learning, because it requires solving an optimization problem 

instead of a large summation (or integration) problem. We will see examples of this later in the 

chapter. 

In both Bayesian learning and MAP learning, the hypothesis prior P (hi) plays an important role. 

We saw in Chapter 18 that over fitting can occur when the hypothesis space is too expressive, so 

that it contains many hypotheses that fit the data set well. Rather than placing an arbitrary limit 

on the hypotheses to be considered, Bayesian and MAP learning methods use the prior to 

penalize complexity. Typically, more complex hypotheses have a lower prior probability—in part 

because there are usually many more complex hypotheses than simple hypotheses. On the other 

hand, more complex hypotheses have a greater capacity to fit the data. (In the extreme case, a 

lookup table can reproduce the data exactly with probability 1.) Hence, the hypothesis prior 

embodies a trade-off between the complexity of a hypothesis and its degree of fit to the data. 

We can see the effect of this trade-off most clearly in the logical case, where H contains only 

deterministic hypotheses. In that case, P (djhi) is 1 if hi is consistent and 0 otherwise. Looking at 
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Equation (20.1), we see that hMAP will then be the simplest logical theory that is consistent with 

the data. Therefore, maximum a posteriori learning provides a natural embodiment of Ockham's 

razor.Another insight into the trade-off between complexity and degree of fit is obtained by 

taking the logarithm of Equation (20.1). Choosing hMAP to maximize P (djhi)P (hi) is equivalent 

to minimizing 

log2 P (djhi)    log2 P (hi) : 

Using the connection between information encoding and probability that we introduced in 

Chapter 18, we see that the log2 P (hi) term equals the number of bits required to specify the 

hypothesis hi. Furthermore, log2 P (djhi) is the additional number of bits required to specify the 

data, given the hypothesis. (To see this, consider that no bits are required if the hypothesis 

predicts the data exactly—as with h5 and the string of lime candies—and log2 1 = 0.) Hence, 

MAP learning is choosing the hypothesis that provides maximum com-pression of the data. The 

same task is addressed more directly by the minimum description length, or MDL, learning 

method, which attempts to minimize the size of hypothesis and data encodings rather than work 

with probabilities. 

A final simplification is provided by assuming a uniform prior over the space of hy-potheses. In 

that case, MAP learning reduces to choosing an hi that maximizes P (djHi). This is called a 

maximum-likelihood (ML) hypothesis, hML. Maximum-likelihood learning is very common in 

statistics, a discipline in which many researchers distrust the subjective nature of hypothesis 

priors. It is a reasonable approach when there is no reason to prefer one hypothesis over another 

a priori—for example, when all hypotheses are equally complex. It provides a good 
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approximation to Bayesian and MAP learning when the data set is large, because the data 

swamps the prior distribution over hypotheses, but it has problems (as we shall see) with small 

data sets. 

  

 

LEARNING WITH COMPLETE DATA  

Our development of statistical learning methods begins with the simplest task: parameter 

learning with complete data. A parameter learning task involves finding the numerical pa-

rameters for a probability model whose structure is fixed. For example, we might be interested in 

learning the conditional probabilities in a Bayesian network with a given structure. Data are 

complete when each data point contains values for every variable in the probability model being 

learned. Complete data greatly simplify the problem of learning the parameters of a complex 

model. We will also look briefly at the problem of learning structure. 

 

Maximum-likelihood parameter learning: Discrete models 

 

Suppose we buy a bag of lime and cherry candy from a new manufacturer whose lime–cherry 

proportions are completely unknown—that is, the fraction could be anywhere between 0 and 1. 

In that case, we have a continuum of hypotheses. The parameter in this case, which we call , is 

the proportion of cherry candies, and the hypothesis is h . (The proportion of limes is just 1 .) If 

we assume that all proportions are equally likely a priori, then a maximum-likelihood approach 
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is reasonable. If we model the situation with a Bayesian network, we need just one random 

variable, Flavor (the flavor of a randomly chosen candy from the bag). It has values cherry and 

lime, where the probability of cherry is (see Figure 20.2(a)). Now suppose we unwrap N 

candies, of which c are cherries and ` = N c are limes. According to Equation (20.3), the 

likelihood of this particular data set is 

 

N 

P (djh ) =  
Y
 P (dj jh ) =  

c
   (1 )

`
 : 

j = 1 

 

The maximum-likelihood hypothesis is given by the value of that maximizes this expres-     sion. 

The same value is obtained by maximizing the log likelihood, 

 

N 

X 

L(djh ) = log P (djh ) = log P (dj jh ) = c log   + ` log(1 ) : 

j = 1 

 

(By taking logarithms, we reduce the product to a sum over the data, which is usually easier to 

maximize.) To find the maximum-likelihood value of , we differentiate L with respect to and set 

the resulting expression to zero: 
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dL(djh ) 

= 

c 

 

 ̀  

= 0 

) 

= 

c 

= 

c 

: 

 

d 

 

1 

   

   c + `N   

In English, then, the maximum-likelihood hypothesis hML asserts that the actual proportion of 

cherries in the bag is equal to the observed proportion in the candies unwrapped so far! 

 

It appears that we have done a lot of work to discover the obvious. In fact, though, we have laid 

out one standard method for maximum-likelihood parameter learning: 

 

1. Write down an expression for the likelihood of the data as a function of the 

parameter(s).  

 

2. Write down the derivative of the log likelihood with respect to each parameter.  

 

3. Find the parameter values such that the derivatives are zero.  
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  (a) (b)    

           

 

                       Figure 20.2 (a) Bayesian network model for the case of candies with an unknown                                                                

proportion of cherries and limes.  

(b) Model for the case where the wrapper color depends (probabilistically) on the candy flavor.  

 

The trickiest step is usually the last. In our example, it was trivial, but we will see that in many 

cases we need to resort to iterative solution algorithms or other numerical optimization 

techniques, as described in Chapter 4. The example also illustrates a significant problem with 

maximum-likelihood learning in general: when the data set is small enough that some events 

have not yet been observed—for instance, no cherry candies—the maximum likelihood 

hypothesis assigns zero probability to those events. Various tricks are used to avoid this problem, 

such as initializing the counts for each event to 1 instead of zero. 

 

Let us look at another example. Suppose this new candy manufacturer wants to give a little hint 

to the consumer and uses candy wrappers colored red and green. The Wrapper for each candy is 

selected probabilistically, according to some unknown conditional distribution, depending on the 

flavor. The corresponding probability model is shown in Figure 20.2(b). Notice that it has three 

parameters: , 1, and 2. With these parameters, the likelihood of seeing, say, a cherry candy in a 

green wrapper can be obtained from the standard semantics for Bayesian networks (page 495): 
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P (Flavor = cherry ; Wrapper = greenjh ;  1;  2 )  

 

= P (Flavor = cherry jh ;  1;  2 )P (Wrapper = greenjFlavor = cherry ; h ;  

1;  2 )  

= (1 1) :  

 

Now, we unwrap N candies, of which c are cherries and ` are limes. The wrapper counts are as 

follows: rc of the cherries have red wrappers and gc have green, while r` of the limes have red and 

g` have green. The likelihood of the data is given by 

 

P (djh ;  1;  2 ) =  
c
(1 )

`
     1

rc
 (1 1)

gc
       2

r`
 (1     2)

g`
  : 

 

This looks pretty horrible, but taking logarithms helps: 

 

L = [c log   + ` log(1 )] + [rc log  1 + gc log(1 1)] + [r` log  2 + g` log(1     2)] : 

 

The benefit of taking logs is clear: the log likelihood is the sum of three terms, each 

of which contains a single parameter. When we take derivatives with respect to 

each parameter and set 
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them to zero, we get three independent equations, each containing just one parameter: 

 

@

L 

 

@ 

@

L 

@  

1  

@

L 

@ 

2  

 

 

=  
c
 

` 

= 0 

 

1  

= 

rc 

 

gc 

= 0 

 

1 11  

= 

r` 

 

g
` 

= 0 

 

2 12  

 

 

)   = 

 c   

c+

`     

)  1 = 

rc   

rc 

+gc   

)  2 = 

r` 

: 

 

r` 

+g`   

The solution for is the same as before. The solution for 1, the probability that a 

cherry candy has a red wrapper, is the observed fraction of cherry candies with red 

wrappers, and similarly for 2. 

 

These results are very comforting, and it is easy to see that they can be extended to 

any Bayesian network whose conditional probabilities are represented as tables. 
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The most impor-tant point is that, with complete data, the maximum-likelihood 

parameter learning problem for a Bayesian network decomposes into separate 

learning problems, one for each parame-ter.
3
 The second point is that the 

parameter values for a variable, given its parents, are just the observed frequencies 

of the variable values for each setting of the parent values. As before, we must be 

careful to avoid zeroes when the data set is small. 

 

Naive Bayes models 

 

Probably the most common Bayesian network model used in machine learning is 

the naive Bayes model. In this model, the ―class‖ variable C (which is to be 

predicted) is the root and the ―attribute‖ variables Xi are the leaves. The model is 

―naive‖ because it assumes that the attributes are conditionally independent of each 

other, given the class. (The model in Figure 20.2(b) is a naive Bayes model with 

just one attribute.) Assuming Boolean variables, the parameters are 

 

= P (C = true);  i1 = P (Xi = truejC = true);  i2 = P (Xi = truejC = false ): 

 

The maximum-likelihood parameter values are found in exactly the same way as 

for Fig-ure 20.2(b). Once the model has been trained in this way, it can be used to 



SIET | Artificial Intelligence Notes                                                By- Niraj 

Kumar Tiwari  

 

         [UNIT -4]                                                                                                   [ECS-801]  

 

classify new exam-ples for which the class variable C is unobserved. With observed 

attribute values x1; : : : ; xn, the probability of each class is given by 

Y 

P(Cjx1; : : : ; xn) =    P(C)    P(xijC) :i 

 

A deterministic prediction can be obtained by choosing the most likely class. Figure 

20.3 shows the learning curve for this method when it is applied to the restaurant 

problem from Chapter 18. The method learns fairly well but not as well as decision-

tree learning; this is presumably because the true hypothesis—which is a decision 

tree—is not representable ex-actly using a naive Bayes model. Naive Bayes 

learning turns out to do surprisingly well in a wide range of applications; the 

boosted version (Exercise 20.5) is one of the most effective general-purpose 

learning algorithms. Naive Bayes learning scales well to very large problems: with 

n Boolean attributes, there are just 2n + 1 parameters, and no search is required to 

find hML, the maximum-likelihood naive Bayes hypothesis. Finally, naive Bayes 

learning has no difficulty with noisy data and can give probabilistic predictions 

when appropriate. 
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Figure 20.3 The learning curve for naive Bayes learning applied to the restaurant problem from 

Chapter 18; the learning curve for decision-tree learning is shown for comparison. 



SIET | Artificial Intelligence Notes                                                By- Niraj Kumar Tiwari  

 

         [UNIT -4]                                                                                                   [ECS-801]  

 

 

 

Maximum-likelihood parameter learning: Continuous models 

 

Continuous probability models such as the linear-Gaussian model were introduced in Sec-tion 

14.3. Because continuous variables are ubiquitous in real-world applications, it is im-portant to 

know how to learn continuous models from data. The principles for maximum-likelihood 

learning are identical to those of the discrete case. 

 

Let us begin with a very simple case: learning the parameters of a Gaussian density function on a 

single variable. That is, the data are generated as follows: 

 

P (x) = p 

1 

e 

(x)
2
 

: 

 

2  
2
 

 

  

2 

 

The parameters of this model are the mean and the standard deviation . (Notice that the 

normalizing ―constant‖ depends on, so we cannot ignore it.) Let the observed values be x1; : : : ; 

xN . Then the log likelihood is 
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Setting the derivatives to zero as usual, we 

obtain         

@L 
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 1  N   
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(x

j )
2
   

@  + 
3
 

P
j=1(xj)  P N :   

That is, the maximum-likelihood value of the mean is the sample average and the maximum-

likelihood value of the standard deviation is the square root of the sample variance. Again, these 

are comforting results that confirm ―commonsense‖ practice. 

 

Now consider a linear Gaussian model with one continuous parent X and a continuous child Y . 

As explained on page 502, Y has a Gaussian distribution whose mean depends linearly on the 

value of X and whose standard deviation is fixed. To learn the conditional 
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     (a)        (b)       

 

 

 

 

 

 

 

 

 

 

distribution P (Y jX ), we can maximize the conditional likelihood 

 

P (yjx) = p 

1 

e 

 

(y   (  1x+  2))
2
 

: (20.5) 

 

2  
2
 

 

   

2 

 

Here, the parameters are 1, 2, and . The data are a collection of (xj ; yj ) pairs, as illustrated in 

Figure 20.4. Using the usual methods (Exercise 20.6), we can find the maximum-likelihood 

values of the parameters. Here, we want to make a different point. If we consider just the 

Figure 20.4 (a) A linear Gaussian model described as y = 1 x + 2 plus Gaussian 

noise with fixed variance. (b) A set of 50 data points generated from this model. 
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parameters 1 and 2 that define the linear relationship between x and y, it becomes clear that 

maximizing the log likelihood with respect to these parameters is the same as minimizing the 

numerator in the exponent of Equation (20.5): 

 

N 

E = 
X
 (yj     (  1xj +  2))

2
 : 

j = 1 

 

The quantity (yj ( 1xj + 2)) is the error for (xj ; yj )—that is, the difference between the actual 

value yj and the predicted value ( 1xj + 2)—so E is the well-known sum of squared errors. This 

is the quantity that is minimized by the standard linear regression procedure. Now we can 

understand why: minimizing the sum of squared errors gives the maximum-likelihood straight-

line model, provided that the data are generated with Gaussian noise of fixed variance.

 

Bayesian parameter learning 

Maximum-likelihood learning gives rise to some very simple procedures, but it has some serious 

deficiencies with small data sets. For example, after seeing one cherry candy, the maximum-

likelihood hypothesis is that the bag is 100% cherry (i.e., = 1:0). Unless one's hypothesis prior is 

that bags must be either all cherry or all lime, this is not a reasonable conclusion. The Bayesian 

approach to parameter learning places a hypothesis prior over the possible values of the 

parameters and updates this distribution as data arrive. 
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 (a) (b) 

 Figure 20.5   Examples of the beta[a; b] distribution for different values of [a; b]. 

 

 

 

The candy example in Figure 20.2(a) has one parameter,  : the probability that a ran- 

 domly selected piece of candy is cherry flavored. In the Bayesian view,   is the  

 

Value of a random variable  ; the hypothesis prior is just the prior distribution P(  ). 

Thus, 

 P (   =  ) is the prior probability that the bag has a fraction  of cherry candies. 

 If the parameter  can be any value between 0 and 1, then P(  ) must be a continuous 

 

distribution that is nonzero only between 0 and 1 and that integrates to 1. The 

uniform density 

 

P (  ) = U [0; 1](  ) is one candidate. (See Chapter 13.) It turns out that the uniform 

density is a member of the family of beta distributions. Each beta distribution is 

defined by two hyperparameters
4
 a and b such that 

 beta[a; b](  ) =
a   1

(1     )
b
   

1
 ; (20.6) 

 

for   in the range [0; 1].  The normalization constant   

depends on a and b.  (See Exercise 20.8.)  

   

  

 Figure 20.5 shows what the distribution looks like for various values of a and b. 
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The mean value of the distribution is a=(a + b), so larger values of a suggest a belief 

that 

 

is closer to 1 than to 0. Larger values of a + b make the distribution more peaked, 

suggest- 

 

ing greater certainty about the value of  . Thus, the beta family provides a useful 

range of 

 possibilities for the hypothesis prior.  

 Besides its flexibility, the beta family has another wonderful property: if   has a prior 

 

beta[a; b], then, after a data point is observed, the posterior distribution foris also a 

beta 

 

distribution. The beta family is called the conjugate prior for the family of 

distributions for 

 

a Boolean variable.
5
 Let's see how this works. Suppose we observe a cherry candy; 

then 

P (  jD1 = cherry )  = P (D1 = cherry j )P (  ) 

= 0
 beta[a; b](  ) =   

0
 
a   1

(1     )
b
   

1
  

= 0
  

a
(1 )

b
   

1
 = beta[a + 1; b](  ) :  
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They are called hyper parameters because they parameterize a distribution over  , which is itself a 

parameter. Other conjugate priors include the Dirichlet family for the parameters of a discrete 

multi-valued distribution 

and the Normal–Wish art family for the parameters of a Gaussian distribution. See Bernardo 

and Smith (1994).

Thus, after seeing a cherry candy, we simply increment the a parameter to get the posterior; 

similarly, after seeing a lime candy, we increment the b parameter. Thus, we can view the a and b 

hyperparameters as virtual counts, in the sense that a prior beta[a; b] behaves exactly as if we 

had started out with a uniform prior beta[1; 1] and seen a 1 actual cherry candies and b 1 actual 

lime candies.By examining a sequence of beta distributions for increasing values of a and b, 

keeping the proportions fixed, we can see vividly how the posterior distribution over the 

parameter changes as data arrive. For example, suppose the actual bag of candy is 75% cherry. 

Fig-ure 20.5(b) shows the sequence beta[3; 1], beta[6; 2], beta[30; 10]. Clearly, the distribution is 

converging to a narrow peak around the true value of . For large data sets, then, Bayesian 

learning (at least in this case) converges to give the same results as maximum-likelihood 

learning.The network in Figure 20.2(b) has three parameters, , 1, and 2, where 1 is the probability 

of a red wrapper on a cherry candy and 2 is the probability of a red wrapper on a lime candy. The 

Bayesian hypothesis prior must cover all three parameters—that is, we need to specify P( ; 1; 2). 

Usually, we assume parameter independence: 
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P(  ;   1;   2) = P(  )P(  1)P(  2) : 

 

With this assumption, each parameter can have its own beta distribution that is updated sep-

arately as data arrive. 

 

Once we have the idea that unknown parameters can be represented by random variables such as 

, it is natural to incorporate them into the Bayesian network itself. To do this, we also need to 

make copies of the variables describing each instance. For example, if we have observed three 

candies then we need Flavor 1, Flavor 2, Flavor 3 and Wrapper 1, Wrapper 2, Wrapper 3. The 

parameter variable determines the probability of each Flavor i variable: 

 

P (Flavor i = cherry j  =  ) =   : 

 

Similarly, the wrapper probabilities depend on  1 and  2, For example, 

 

P (Wrapper i = red jFlavor i = cherry;   1 =  1) =  1 : 

 

Now, the entire Bayesian learning process can be formulated as an inference problem in a 

suitably constructed Bayes net, as shown in Figure 20.6. Prediction for a new instance is done 

simply by adding new instance variables to the network, some of which are queried. This 

formulation of learning and prediction makes it clear that Bayesian learning requires no extra 
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―principles of learning.‖ Furthermore, there is, in essence, just one learning algorithm, i.e., the 

inference algorithm for Bayesian networks. 

 

Learning Bayes net structures 

 

So far, we have assumed that the structure of the Bayes net is given and we are just trying to 

learn the parameters. The structure of the network represents basic causal knowledge about the 

domain that is often easy for an expert, or even a naive user, to supply. In some cases, however, 

the causal model may be unavailable or subject to dispute—for example, certain corporations 

have long claimed that smoking does not cause cancer—so it is important to 
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Wrapper1 Wrapper2 Wrapper3 

 

 

 

1 2 

 

Figure A Bayesian network that corresponds to a Bayesian learning process. Poste-rior 

distributions for the parameter variables, 1, and 2 can be inferred from their prior distributions 

and the evidence in the Flavor i and Wrapper i variables. 

 

understand how the structure of a Bayes net can be learned from data. At present, structural 

learning algorithms are in their infancy, so we will give only a brief sketch of the main ideas. 

 

The most obvious approach is to search for a good model. We can start with a model containing 

no links and begin adding parents for each node, fitting the parameters with the methods we have 

just covered and measuring the accuracy of the resulting model. Alternatively, we can start with 

an initial guess at the structure and use hill-climbing or simulated annealing search to make 

modifications, retuning the parameters after each change in the structure. Modifications can 

include reversing, adding, or deleting arcs. We must not introduce cycles in the process, so many 
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algorithms assume that an ordering is given for the variables, and that a node can have parents 

only among those nodes that come earlier in the ordering (just as in the construction process 

Chapter 14). For full generality, we also need to search over possible orderings. 

 

There are two alternative methods for deciding when a good structure has been found. The first 

is to test whether the conditional independence assertions implicit in the structure are actually 

satisfied in the data. For example, the use of a naive Bayes model for the restaurant problem 

assumes that 

 

P(Fri =Sat ; Bar jWillWait ) = P(Fri =Sat jWillWait )P(Bar jWillWait ) 

 

and we can check in the data that the same equation holds between the corresponding condi-

tional frequencies. Now, even if the structure describes the true causal nature of the domain, 

statistical fluctuations in the data set mean that the equation will never be satisfied exactly, so we 

need to perform a suitable statistical test to see if there is sufficient evidence that the 

independence hypothesis is violated. The complexity of the resulting network will depend 
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on the threshold used for this test—the stricter the independence test, the more links will be 

added and the greater the danger of over fitting. 

 

An approach more consistent with the ideas in this chapter is to the degree to which the proposed 

model explains the data (in a probabilistic sense). We must be careful how we measure this, 

however. If we just try to find the maximum-likelihood hypothesis, we will end up with a fully 

connected network, because adding more parents to a node cannot decrease the likelihood 

(Exercise 20.9). We are forced to penalize model complexity in some way. The MAP (or MDL) 

approach simply subtracts a penalty from the likelihood of each structure (after parameter 

tuning) before comparing different structures. The Bayesian approach places a joint prior over 

structures and parameters. There are usually far too many structures to sum over (super 

exponential in the number of variables), so most practitioners use MCMC to sample over 

structures. 

 

Penalizing complexity (whether by MAP or Bayesian methods) introduces an important 

connection between the optimal structure and the nature of the representation for the conditionals 

distributions in the network. With tabular distributions, the complexity penalty for a node's 

distribution grows exponentially with the number of parents, but with, say, noisy-OR 

distributions, it grows only linearly. This means that learning with noisy-OR (or other com-

pactly parameterized) models tends to produce learned structures with more parents than does 
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learning with tabular distributions. 

 

LEARNING WITH HIDDEN VARIABLES: THE EM ALGORITHM  

 

 

The preceding section dealt with the fully observable case. Many real-world problems have 

LATENT VARIABLES       hidden variables (sometimes called latent variables) which are not 

observable in the data that are available for learning.  For example, medical records often include 

the observed symptoms, the treatment applied, and perhaps the outcome of the treatment, but 

they seldom contain a direct observation of the disease itself!
6
  One might ask, ―If the disease is 

not observed, why not construct a model without it?‖ The answer appears in Figure 20.7, which 

shows a small, fictitious diagnostic model for heart disease. There are three observable 

predisposing factors and three observable symptoms (which are too depressing to name). 

Assume that each variable has three possible values (e.g., none, moderate, and severe). Re-

moving the hidden variable from the network in (a) yields the network in (b); the total number of 

parameters increases from 78 to 708. Thus, latent variables can dramatically reduce the number 

of parameters required to specify a Bayesian network. This, in turn, can dramatically reduce the 

amount of data needed to learn the parameters. 

Hidden variables are important, but they do complicate the learning problem. In Figure 20.7(a), 

for example, it is not obvious how to learn the conditional distribution for Heart Disease, given 

its parents, because we do not know the value of Heart Disease in each case; the same problem 
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arises in learning the distributions for the symptoms. This section Learning with Hidden 

Variables: The EM Algorithm  
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6 6 6 54 162 486 

Symptom

1 

Symptom

2 Symptom3 Symptom1 Symptom2 

Symptom

3 

 (a)   (b)  

 

Figure (a) A simple diagnostic network for heart disease, which is assumed to be a hidden 

variable. Each variable has three possible values and is labeled with the number of independent 

parameters in its conditional distribution; the total number is 78. (b) The equivalent network with 

Heart Disease removed. Note that the symptom variables are no longer conditionally 

independent given their parents. This network requires 708 parameters describes an algorithm 

called expectation–maximization, or EM, that solves this problem in a very general way. We 

will show three examples and then provide a general description. The algorithm seems like 

magic at first, but once the intuition has been developed, one can find applications for EM in a 

huge range of learning problems. 
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Unsupervised clustering: Learning mixtures of Gaussians 

Unsupervised clustering is the problem of discerning multiple categories in a 

collection of objects. The problem is unsupervised because the category labels are 

not given. For example, suppose we record the spectra of a hundred thousand stars; 

are there different types of stars revealed by the spectra, and, if so, how many and 

what are their characteristics? We are all familiar with terms such as ―red giant‖ 

and ―white dwarf,‖ but the stars do not carry these labels on their hats—

astronomers had to perform unsupervised clustering to identify these categories. 

Other examples include the identification of species, genera, orders, and so on in 

the Linnæan taxonomy of organisms and the creation of natural kinds to categorize 

ordinary objects  

 

Unsupervised clustering begins with data. Figure (a) shows 500 data points, each of 

which specifies the values of two continuous attributes. The data points might 

correspond to stars, and the attributes might correspond to spectral intensities at two 

particular frequencies. Next, we need to understand what kind of probability 

distribution might have generated the data. Clustering presumes that the data are 

generated from a mixture distribution, P . Such a distribution has k components, 

each of which is a distribution in its own right. A data point is generated by first 

choosing a component and then generating a sample from that component. Let the 

random variable C denote the component, with values 1; : : : ; k; then the mixture 
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Figure 20.8 (a) 500 data points in two dimensions, suggesting the presence of three clus-ters. (b) 

A Gaussian mixture model with three components; the weights (left-to-right) are 0.2, 0.3, and 

0.5. The data in (a) were generated from this model. (c) The model reconstructed by EM from the 

data in (b). 
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distribution is given by k 

X 

P (x) = P (C = i) P (xjC = i) ; 

 

i = 1 

 

where x refers to the values of the attributes for a data point. For continuous data, a natural 

choice for the component distributions is the multivariate Gaussian, which gives the so-called 

mixture of Gaussians family of distributions. The parameters of a mixture of Gaussians are wi = 

P (C = i) (the weight of each component), i (the mean of each component), and i (the covariance 

of each component). Figure 20.8(b) shows a mixture of three Gaussians; this mixture is in fact 

the source of the data in (a). 

 

The unsupervised clustering problem, then, is to recover a mixture model like the one in Figure 

20.8(b) from raw data would be easy to recover the component Gaussians: we could just select 

all the data points a given component and then apply (a multivariate version of) Equation (20.4) 

for fitting the parameters of a Gaussian to a set of data. On the other hand, if we knew the 

parameters of each component, then we could, at least in a probabilistic sense, assign each data 

point to a component. The problem is that we know neither the assignments nor the parameters. 

 

The basic idea of EM in this context is to pretend that we know the the parameters of the model 
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and then to infer the probability that each data point belongs to each component. After that, we 

refit the components to the data, where each component is fitted to the entire data set with each 

point weighted by the probability that it belongs to that component. The process iterates until 

convergence. Essentially, we are ―completing‖ the data by inferring probability distributions over 

the hidden variables—which component each data point belongs to—based on the current model. 

For the mixture of Gaussians, we initialize the mixture model parame-ters arbitrarily and then 

iterate the following two steps: 
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1. E-step: Compute the probabilities pij = P (C = ijxj ), the probability that datum 

xj was generated by component i. By Bayes' rule, we have pij = P (xj jC = i)P (C = i). The 

term P (xj jC = i) is just the probability at xj of the ith Gaussian, and the term P (C = i) is 

just the weight parameter for the ith Gaussian. Define pi = 
P

j pij .  

 

2. M-step: Compute the new mean, covariance, and component weights as 

follows:  

i pij xj =pi 

 j 

 X 

i 
X
 pij xj xj

>
=pi 

 j 

wi pi : 

The E-step, or expectation step, can be viewed as computing the expected values pij  of the 

INDICATOR VARIABLE     hidden indicator variables Zij , where Zij  is 1 if datum xj  was 

generated by the i
th

 component and 0 otherwise. The M-step, or maximization step, finds the new 

values of the parameters that maximize the log likelihood of the data, given the expected values 

of the hidden indicator variables. 

The final model that EM learns when it is applied to the data in Figure 20.8(a) is shown in Figure 

20.8(c); it is virtually indistinguishable from the original model from which the data were 

generated. Figure 20.9(a) plots the log likelihood of the data according to the current model as 
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EM progresses. There are two points to notice. First, the log likelihood for the final learned 

model slightly exceeds that of the original model, from which the data were generated. This 

might seem surprising, but it simply reflects the fact that the data were generated randomly and 

might not provide an exact reflection of the underlying model. The second point is that EM 

increases the log likelihood of the data at every iteration. This fact can be proved in general. 

Furthermore, under certain conditions, EM can be proven to reach a local maximum in 

likelihood. (In rare cases, it could reach a saddle point or even a local minimum.) In this sense, 

EM resembles a gradient-based hill-climbing algorithm, but notice that it has no ―step size‖ 

parameter!. 

 

Things do not always go as well as Figure 20.9(a) might suggest. It can happen, for example, that 

one Gaussian component shrinks so that it covers just a single data point. Then its variance will 

go to zero and its likelihood will go to infinity! Another problem is that two components can 

―merge,‖ acquiring identical means and variances and sharing their data points. These kinds of 

degenerate local maxima are serious problems, especially in high dimensions. One solution is to 

place priors on the model parameters and to apply the MAP version of EM. Another is to restart 

a component with new random parameters if it gets too small or too close to another component. 

It also helps to initialize the parameters with reasonable values. 
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Learning Bayesian networks with hidden variables 

To learn a Bayesian network with hidden variables, we apply the same insights that worked for 

mixtures of Gaussians. Figure 20.10 represents a situation in which there are two bags of candies 

that have been mixed together. Candies are described by three features: in addition to the Flavor 

and the Wrapper, some candies have a Hole in the middle and some do not.
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Figure 20.9 Graphs showing the log-likelihood of the data, L, as a function of the EM iteration. 

The horizontal line shows the log-likelihood according to the true model. (a) Graph for the 

Gaussian mixture model in Figure 20.8. (b) Graph for the Bayesian network in Figure 20.10(a). 
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Bag P(F=cherry | B) 

1 F1 

2 F2 

 

 

Flavor Wrapper Holes X 

 (a)  (b) 

 

Figure 20.10 (a) A mixture model for candy. The proportions of different flavors, wrap-pers, and 

numbers of holes depend on the bag, which is not observed. (b) Bayesian network for a Gaussian 

mixture. The mean and covariance of the observable variables X depend on the component C. 

 

 

The distribution of candies in each bag is described by a naive Bayes model: the features are 

independent, given the bag, but the conditional probability distribution for each feature depends 

on the bag. The parameters are as follows: is the prior probability that a candy comes from Bag 

1; F 1 and F 2 are the probabilities that the flavor is cherry, given that the candy comes from Bag 1 

and Bag 2 respectively; W 1 and W 2 give the probabilities that the wrapper is red; and H 1 and H 2 

give the probabilities that the candy has a hole. Notice that 
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the overall model is a mixture model. (In fact, we can also model the mixture of Gaussians as a 

Bayesian network, as shown in Figure 20.10(b).) In the figure, the bag is is a hidden variable 

because, once the candies have been mixed together, we no longer know which bag each candy 

came from. In such a case, can we recover the descriptions of the two bags by observing candies 

from the mixture? 

 

Let us work through an iteration of EM for this problem. First, let's look at the data. We 

generated 1000 samples from a model whose true parameters are 

 

= 0:5;   F 1 =  W 1 =  H 1 = 0:8;  F 2 =  W 2 =  H 2 = 0:3 : (20.7) 

 

That is, the candies are equally likely to come from either bag; the first is mostly cherries with 

red wrappers and holes; the second is mostly limes with green wrappers and no holes. The counts 

for the eight possible kinds of candy are as follows: 

 

    W = red  W = green   

          

    H = 1 H = 0 H = 1 H = 0   
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  F = cherry 273  93  104  90   

            

  F = lime 79  100  94  167   

        

We start by initializing the parameters. For numerical simplicity, we will 

choose
7
  

(0) = 0:6;   
(0)

 =  (0) =  
(0)

 = 0:6;  
(0)

 =  (0) =  (0) = 0:4 :  (20.8) 

F 1  W 1 H 1 F 2 W 2 H 2     

 

First, let us work on the parameter. In the fully observable case, we would estimate this directly 

from the observed counts of candies from bags 1 and 2. Because the bag is a hidden 

variable, we calculate the expected counts instead. The expected count  
^
 is the 

N (Bag = 1) 

 

sum, over all candies, of the probability that the candy came from bag 1: 

 

N 

(1) ^  

= N (Bag = 1)=N = P (Bag = 1j avor j ; wrapper j ; holes j )=N :
X
  

j = 1 
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These probabilities can be computed by any inference algorithm for Bayesian networks. For a 

naive Bayes model such as the one in our example, we can do the inference ―by hand,‖ using 

Bayes' rule and applying conditional independence: 

 

 

 1 

N P (  avor j jBag = 1)P (wrapper j jBag = 1)P (holes j jBag = 

1)P (Bag = 1) 

  

(1) = 

 

: 

 

N j = 1 

i P (  avor j jBag = i)P (wrapper j jBag = i)P (holes j jBag = 

i)P (Bag = i)  

   X 

P 

  

      

(Notice that the normalizing constant also depends on the parameters.) Applying this formula to, 

say, the 273 red-wrapped cherry candies with holes, we get a contribution of 

273  (0)  (0)   (0) (0)   

 

 

F 1  W 1  H 1   

0:22797 : 

 

100

0 

F
(0)

1  W
(0)

1  H
(0)

1  (0) +  F
(0)

2  W
(0)

2  

H
(0)

2(1(0))  

Continuing with the other seven kinds of candy in the table of counts, we obtain  
(1)

 = 0:6124. 

 

7
 It is better in practice to choose them randomly, to avoid 

local maxima due to symmetry. 
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Figure 20.11 An unrolled dynamic Bayesian network that represents a hidden Markov model 

(repeat of Figure 15.14). 

 

 

 

 

Now let us consider the other parameters, such as F 1. In the fully observable case, we would 

estimate this directly from the observed counts of cherry and lime candies from bag 1. The 

expected count of cherry candies from bag 1 is given by 

 

X 

P (Bag = 1jFlavor j = cherry ; wrapper j ; holes j ) : 

j:Flavor j = cherry 

 

Again, these probabilities can be calculated by any Bayes net algorithm. 

process, we obtain the new values of all the parameters: 

 

(1)
 = 0:6124; F

(1)
1 = 0:6684; W

(1)
1 = 0:6483; H

(1)
1 = 0:6558; F

(1)
2 = 0:3887; W

(1)
2 = 

0:3817; H
(1)

2 = 0:3827 : 
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Completing this 

(20.9)

The log likelihood of the data increases from about 2044 initially to about 2021 after the first 

iteration, as shown in Figure 20.9(b). That is, the update improves the likelihood itself by a factor 

of about e
23

 10
10

. By the tenth iteration, the learned model is a better fit than the original model (L 

= 1982:214). Thereafter, progress becomes very slow. This is not uncommon with EM, and many 

practical systems combine EM with a gradient-based algorithm such as Newton–Raphson (see 

Chapter 4) for the last phase of learning. 

 

The general lesson from this example is that the parameter updates for Bayesian net-work 

learning with hidden variables are directly available from the results of inference on each 

example. Moreover, only local posterior probabilities are needed for each parameter. 

For the general case in which we are learning the conditional probability parameters for each 

variable Xi, given its parents —that is, ijk = P (Xi = xij jPa i = pa ik )—the update is given by the 

normalized expected counts as follows: 

^ ^ 

ijk N (Xi = xij ; Pa i = paik )=N (Pa i = paik ) : 
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The expected counts are obtained by summing over the examples, computing the probabilities P 

(Xi = xij ; Pa i = pa ik ) for each by using any Bayes net inference algorithm. For the exact 

algorithms—including variable elimination—all these probabilities are obtainable directly as a 

by-product of standard inference, with no need for extra computations specific to learning. 

Moreover, the information needed for learning is available locally for each parameter. 
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Learning hidden Markov models 

Our final application of EM involves learning the transition probabilities in hidden Markov 

models (HMMs). Recall from Chapter 15 that a hidden Markov model can be represented by a 

dynamic Bayes net with a single discrete state variable, as illustrated in Figure 20.11. Each data 

point consists of an observation sequence of finite length, so the problem is to learn the transition 

probabilities from a set of observation sequences (or possibly from just one long sequence). 

 

We have already worked out how to learn Bayes nets, but there is one complication: in Bayes 

nets, each parameter is distinct; in a hidden Markov model, on the other hand, the individual 

transition probabilities from state i to state j at time t, ijt = P (Xt+1 = jjXt = i), are repeated across 

time—that is, ijt = ij for all t. To estimate the transition probability from state i to state j, we 

simply calculate the expected proportion of times that the system undergoes a transition to state j 

when in state i: 

X  ^ 

ij N (Xt+1 

t 

 

 ^ 

= j; Xt = i)=N (Xt = i) : 

t  

X  

Again, the expected counts are computed by any HMM inference algorithm. The 

forward– backward algorithm shown in Figure 15.4 can be modified very easily 

to compute the neces-sary probabilities. One important point is that the probabilities 
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required are those obtained by smoothing rather than filtering; that is, we need to 

pay attention to subsequent evidence in estimating the probability that a particular 

transition occurred. As we said in Chapter 15, the evidence in a murder case is 

usually obtained after the crime (i.e., the transition from state i to state j) occurs. 

 

The general form of the EM algorithm 

 

We have seen several instances of the EM algorithm. Each involves computing 

expected values of hidden variables for each example and then recomputing the 

parameters, using the expected values as if they were observed values. Let x be all 

the observed values in all the examples, let Z denote all the hidden variables for all 

the examples, and let be all the parameters for the probability model. Then the EM 

algorithm is 

(i+1)
 = argmax 

X
 P (Z = zjx;  

(i)
)L(x; Z = zj ) : 

z  

 

This equation is the EM algorithm in a nutshell. The E-step is the computation of 

the sum-mation, which is the expectation of the log likelihood of the ―completed‖ 

data with respect to the distribution P (Z = zjx; 
(i)

), which is the posterior over the 

hidden variables, given the data. The M-step is the maximization of this expected 

log likelihood with respect to the parameters. For mixtures of Gaussians, the hidden 
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variables are the Zij s, where Zij is 1 if example j was generated by component i. For 

Bayes nets, the hidden variables are the values of the unobserved variables for each 

example. For HMMs, the hidden variables are the i ! j transitions. Starting from the 

general form, it is possible to derive an EM algorithm for a specific application 

once the appropriate hidden variables have been identified. 

 

As soon as we understand the general idea of EM, it becomes easy to derive all 

sorts of variants and improvements. For example, in many cases the E-step—the 

computation of 
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posteriors over the hidden variables—is intractable, as in large Bayes nets. It turns out that one 

can use an approximate E-step and still obtain an effective learning algorithm. With a sampling 

algorithm such as MCMC (see Section 14.5), the learning process is very intuitive: each state 

(configuration of hidden and observed variables) visited by MCMC is treated ex-actly as if it 

were a complete observation. Thus, the parameters can be updated directly after each MCMC 

transition. Other forms of approximate inference, such as variational and loopy methods, have 

also proven effective for learning very large networks. 

 

Learning Bayes net structures with hidden variables 

 

In Section 20.2, we discussed the problem of learning Bayes net structures with complete data. 

When hidden variables are taken into consideration, things get more difficult. In the simplest 

case, the hidden variables are listed along with the observed variables; although their values are 

not observed, the learning algorithm is told that they exist and must find a place for them in the 

network structure. For example, an algorithm might try to learn the structure shown in Figure 

20.7(a), given the information that HeartDisease (a three-valued variable) should be included in 

the model. If the learning algorithm is not told this information, then there are two choices: either 

pretend that the data is really complete—which forces the algorithm to learn the parameter-

intensive model in Figure 20.7(b)—or invent new hidden variables in order to simplify the 

model. The latter approach can be implemented by including new modification choices in the 
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structure search: in addition to modifying links, the algorithm can add or delete a hidden variable 

or change its arity. Of course, the algorithm will not know that the new variable it has invented is 

called HeartDisease; nor will it have meaningful names for the values. Fortunately, newly 

invented hidden variables will usually be connected to pre-existing variables, so a human expert 

can often inspect the local conditional distributions involving the new variable and ascertain its 

meaning. 

 

As in the complete-data case, pure maximum-likelihood structure learning will result in a 

completely connected network (moreover, one with no hidden variables), so some form of 

complexity penalty is required. We can also apply MCMC to approximate Bayesian learning. 

For example, we can learn mixtures of Gaussians with an unknown number of components by 

sampling over the number; the approximate posterior distribution for the number of Gaussians is 

given by the sampling frequencies of the MCMC process. 

 

So far, the process we have discussed has an outer loop that is a structural search pro-cess and an 

inner loop that is a parametric optimization process. For the complete-data case, the inner loop is 

very fast—just a matter of extracting conditional frequencies from the data set. When there are 

hidden variables, the inner loop may involve many iterations of EM or a gradient-based 

algorithm, and each iteration involves the calculation of posteriors in a Bayes net, which is itself 

an NP-hard problem. To date, this approach has proved impractical for learning complex models. 

One possible improvement is the so-called structural EM algo-rithm, which operates in much 
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the same way as ordinary (parametric) EM except that the algorithm can update the structure as 

well as the parameters. Just as ordinary EM uses the current parameters to compute the expected 

counts in the E-step and then applies those counts in the M-step to choose new parameters, 

structural EM uses the current structure to compute expected counts and then applies those 

counts in the M-step to evaluate the likelihood for potential new structures. (This contrasts with 

the outer-loop/inner-loop method, which com-putes new expected counts for each potential 

structure.) In this way, structural EM may make several structural alterations to the network 

without once recomputing the expected counts, and is capable of learning nontrivial Bayes net 

structures. Nonetheless, much work remains to be done before we can say that the structure 

learning problem is solved. 

 

INSTANCE-BASED LEARNING  
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So far, our discussion of statistical learning has focused primarily on fitting the parameters of a 

restricted family of probability models to an unrestricted data set. For example, unsupervised 

clustering using mixtures of Gaussians assumes that the data are explained by the sum a fixed 

number of Gaussian distributions. We call such methods parametric learning. Para-metric 

learning methods are often simple and effective, but assuming a particular restricted family of 

models often oversimplifies what's happening in the real world, from where the data come. Now, 

it is true when we have very little data, we cannot hope to learn a complex and detailed model, 

but it seems silly to keep the hypothesis complexity fixed even when the data set grows very 

large! 

 

In contrast to parametric learning, nonparametric learning methods allow the hypoth-esis 

complexity to grow with the data. The more data we have, the wigglier the hypothesis can be. 

We will look at two very simple families of nonparametric instance-based learning (or 

memory-based learning) methods, so called because they construct hypotheses directly from 

the training instances themselves. 
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Nearest-neighbor models 

                       The key idea of nearest-neighbor models is that the properties of 

any particular input point x are likely to be similar to those of points in the 

neighborhood of x. For example, if we want to do density estimation—that is, 

estimate the value of an unknown probability density at x— then we can simply 

measure the density with which points are scattered in the neighborhood of x. This 

sounds very simple, until we realize that we need to specify exactly what we mean 

by ―neighborhood.‖ If the neighborhood is too small, it won't contain any data 

points; too large, and it may include all the data points, resulting in a density 

estimate that is the same everywhere. One solution is to define the neighborhood to 

be just big enough to include k points, where k is large enough to ensure a 

meaningful estimate. For fixed k, the size of the neighborhood varies—where data 

are sparse, the neighborhood is large, but where data are dense, the neighborhood is 

small. Figure 20.12(a) shows an example for data scattered in two dimensions. 

Figure 20.13 shows the results of k-nearest-neighbor density estimation from these 

data with k = 3, 10, and 40 respectively. For k = 3, the density estimate at any point 

is based on only 3 neighboring points and is highly variable. For k = 40, the 

estimate provides a good reconstruction of the true density shown in Figure 

20.12(b). For k = 40, the neighborhood becomes too large and structure of the data 

is altogether lost. In practice, using 
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Figure 20.12 (a) A 128-point subsample of the data shown in Figure 20.8(a), together with two 

query points and their 10-nearest-neighborhoods. (b) A 3-D plot of the mixture of Gaussians 

from which the data were generated. 
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Figure 20.13 Density estimation using k-nearest-neighbors, applied to the data in Fig-ure 

20.12(a), for k = 3, 10, and 40 respectively. 

 

a value of k somewhere between 5 and 10 gives good results for most low-dimensional data sets. 

A good value of k can also be chosen by using cross-validation. 

 

To identify the nearest neighbors of a query point, we need a distance metric, D(x1; x2). The two-

dimensional example in Figure 20.12 uses Euclidean distance. This is inappropriate when each 

dimension of the space is measuring something different—for example, height and weight—

because changing the scale of one dimension would change the set of nearest neighbors. One 

solution is to standardize the scale for each dimension. To do this, we measure the standard 

deviation of each feature over the whole data set and express feature values as multiples of the 
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standard deviation for that feature. (This is a special case of the Mahalanobis distance, which 

takes into account the covariance of the features as well.) Finally, for discrete features we can 

use the Hamming distance, which defines D(x1; x2) to be the number of features on which x1 

and x2 differ. 

Density estimates like those shown in Figure 20.13 define joint distributions over the input 

space. Unlike a Bayesian network, however, an instance-based representation cannot contain 

hidden variables, which means that we cannot perform unsupervised clustering as we did with 

the mixture-of-Gaussians model. We can still use the density estimate to predict a target value y 

given input feature values x by calculating P (yjx) = P (y; x)=P (x), provided that the training 

data include values for the target feature. 

 

It is also possible to use the nearest-neighbor idea for direct supervised learning. Given a test 

example with input x, the output y = h(x) is obtained from the y-values of the k nearest neighbors 

of x. In the discrete case, we can obtain a single prediction by majority vote. In the continuous 

case, we can average the k values or do local linear regression, fitting a hyper plane to the k 

points and predicting the value at x according to the hyper plane. 

 

The k-nearest-neighbor learning algorithm is very simple to implement, requires little in the way 

of tuning, and often performs quite well. It is a good thing to try first on a new learning problem. 

For large data sets, however, we require an efficient mechanism for finding the nearest neighbors 

of a query point x—simply calculating the distance to every point would take far too long. A 
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variety of ingenious methods have been proposed to make this step efficient by preprocessing the 

training data. Unfortunately, most of these methods do not scale well with the dimension of the 

space (i.e., the number of features). 

 

High-dimensional spaces pose an additional problem, namely that nearest neighbors in such 

spaces are usually a long way away! Consider a data set of size N in the d-dimensional unit 

hypercube, and assume hypercubic neighborhoods of side b and volume b
d
. (The same argument 

works with hyper spheres, but the formula for the volume of a hyper sphere is more 

complicated.) To contain k points, the average neighborhood must occupy a fraction k=N of the 

entire volume, which is 1. Hence, b
d
 = k=N , or b = (k=N )

1=d
. So far, so good. Now let the 

number of features d be 100 and let k be 10 and N be 1,000,000. Then we have b 0:89—that is, 

the neighborhood has to span almost the entire input space! This suggests that nearest-neighbor 

methods cannot be trusted for high-dimensional data. In low dimensions there is no problem; 

with d = 2 we have b = 0:003. 

 

Kernel models 

 In a kernel model, we view each training instance as generating a little density function—a 

kernel function—of its own. The density estimate as a whole is just the normalized sum of all 

 the little kernel functions. A training instance at xi will generate a kernel function K(x; xi) 

    that assigns a probability to each point x in the space. Thus, the density estimate is 
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Figure 20.14 Kernel density estimation for the data in Figure 20.12(a), using Gaussian kernels 

with w = 0:02, 0:07, and 0:20 respectively. 

 

The kernel function normally depends only on the distance D(x; xi) from x to the instance xi. The 

most popular kernel function is (of course) the Gaussian. For simplicity, we will assume 

spherical Gaussians with standard deviation w along each axis, i.e., 
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e
; 

 

 

 

 

 

    

where d is the number of dimensions in x. We still have the problem of choosing a suitable value 

for w; as before, making the neighborhood too small gives a very spiky estimate—see Figure 

20.14(a). In (b), a medium value of w gives a very good reconstruction. In (c), too large a 
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neighborhood results in losing the structure altogether. A good value of w can be chosen by using 

cross-validation. Supervised learning with kernels is done by taking a weighted combination of 

all the predictions from the training instances. (Compare this with k-nearest-neighbor prediction, 

which takes an unweighted combination of the nearest k instances.) The weight of the ith 

instance for a query point x is given by the value of the kernel K(x; xi). For a discrete prediction, 

we can take a weighted vote; for a continuous prediction, we can take weighted average or a 

weighted linear regression. Notice that making predictions with kernels requires looking at every 

training instance. It is possible to combine kernels with nearest-neighbor indexing schemes to 

make weighted predictions from just the nearby instances. 

 

 NEURAL NETWORKS  

A neuron is a cell in the brain whose principal function is the collection, processing, and 

dissemination of electrical signals. Figure showed a schematic diagram of a typical neuron. The 

brain's information-processing capacity is thought to emerge primarily from networks of such 

neurons.  


