
SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

ECS-801: Artificial Intelligence (AI)

Unit-IV

Machine Learning : Supervised and unsupervised learning, Decision

trees, Statistical learningmodels, Learning with complete data - Naive

Bayes models, Learning with hidden data - EMalgorithm,Reinforcement

learning

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

Machine Learning :

The goal of machine learning is to design and develop algorithms that allow systems to use

empirical data, experience, and training to evolve and adapt to changes that occur in their

environment. A major focus of machine learning research is to automatically induce models,

such as rules and patterns, from the training data it analyzes. As shown in Figure 1, machine

learning combines techniques and approaches from various areas, including probability and

statistics, psychology, information theory, and artificial intelligence.

Control theory

Probability

and

Statistics

Artificial

intelligence

Information

theory

Philosophy

Psychology

Computational

complexity
theory

Neurobiology

Machine

learning

Figure 1: Machine learning is a broad discipline, combining approaches from many different areas.

Wireless sensor network (WSN) applications operate in very challenging conditions, where they

constantly have to accommodate environmental changes, hardware degradation, and inaccurate

sensor readings. Therefore, in order to maintain sufficient operational correctness, a WSN

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

application often needs to learn and adapt to the changes in its running environment. Machine

learning has been used to help address these issues. A number of machine learning algorithms

have been employed in a wide range of sensor network applications, including activity

recognition, healthcare, education, and improving the efficiency of heating, ventilating, and air

conditioning (HVAC) system.

The abundance of machine learning algorithms can be divided into two main classes, supervised

and unsupervised learning, based on whether the training data instances are labeled. In

supervised learning the learner is supplied with labeled training instances, where both the input

and the correct output are given. In unsupervised learning the correct output is not provided with

the input. Instead, the learning program must rely on other sources of feedback to determine

whether or not it is learning correctly. A third class of machine learning techniques, called semi-

supervised learning, uses a combination of both labeled and unlabeled data for training. Figure 2

shows the relationship between these three machine learning classes.

Labeled

data

Unlabeled

data

Supervised
Learning

Unsupervised
Learning

Semi-supervised
Learning

Figure 2: Machine learning algorithms are divided into supervised learning, which used labeled training data,

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

and unsupervised learning, where labeled training data is not available. A third class of machine learning

technique, semi-supervised learning, makes use of both labeled and unlabeled training data.

In this chapter we have surveyed machine learning algorithms in sensor networks from the

perspective of what types of applications they have been used for. We give examples from all

three machine learning classes and discuss how they have been applied in a number of sensor

network applications. We present the most frequently used machine learning algorithms,

including clustering, Bayes probabilistic models, Markov models, and decision trees. We also

analyze the challenges, advantages, and drawbacks of using different machine learning

algorithms. Figure 3 shows the machine learning algorithms introduced in this chapter.

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

M
ac

h
in

e
le

ar
n

in
g

al
go

ri
th

m
s

Supervised
Learning

Decision trees

Bayesian networks

Static Bayes networks

Dynamic Bayes
Networks

Markov models

Hidden Markov model

Hidden semi-Markov
modelConditional random

fields

Support vector
machines

K-nearest neighbor

Semi-supervised
learning

Unsupervised
learning

Clustering
K-means

DBSCAN
Self-organizing map

(SOM)

Adaptive resonance
theory (ART)

Figure 3: Classification of the machine learning algorithms most widely used in WSN applications.

Supervised Learning:

In supervised learning the learner is provided with labeled input data. This data contains a

sequence of input/output pairs of the form ‹ xi, yi ›, where xi is a possible input, and yi is the

correctly labeled output associated with it. The aim of the learner in supervised learning is to

learn the mapping from inputs to outputs. The learning program is expected to learn a function f

that accounts for the input/output pairs seen so far, f(xi) = yi for all i. This function f is called a

classifier if the output is discrete and a regression function if the output is continuous. The job of

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

the classifier/regression function is to correctly predict the outputs of inputs it has not seen

before. For example, the inputs can be a set of sensor firings and the outputs can be the activities

that have caused those sensor nodes to fire.

The execution of a supervised learning algorithm can be divided into 5 main steps (Figure 4).

Step 1 is to determine what training data is needed and collect that data. Here we need to answer

two questions ―What data is necessary?‖ and ―How much of it?‖. The designers have to decide

what training data can best represent real world scenarios for the specific application. They also

need to determine how much training data should be collected. Although the more training data

we have, the better we can train the learning algorithm, collecting training data and providing

correct labels can often be expensive and laborious. Therefore, an application designer always

strives to maintain the size of the training data large enough to provide sufficient training but

also small enough to avoid any unnecessary costs associated with data collection and labeling.

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

Determine the type of training examples

Collect the training data set

Determine the feature representation of the input

Choose a learning algorithm

Train the algorithm

Evaluate the algorithm’s accuracy using a test data set

Step 0

Step 1

Step 2

Step 3

Step 4

Step 5

Figure 4: The stages of supervised machine learning.

Step 2 is to identify the feature set, also called feature vector, to be used to represent the input.

Each feature in the feature set represents a characteristic of the objects/events that are being

classified. There is a trade-off between the size of the feature vector and the classification

accuracy of the machine learning algorithm. A large feature vector significantly increases the

complexity of the classification. However, using a small feature vector, which does not contain

sufficient description of the objects/events, could lead to poor classification accuracy. Therefore,

the feature vector should be sufficiently large to represent the important features of the

object/event and small enough to avoid excessive complexity.

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

Step 3 is to select a suitable learning algorithm. A number of factors have to be considered when

choosing a learning algorithm for a particular task, including the content and size of the training

dataset, noise in the system, accuracy of the labeling, and the heterogeneity and redundancy of

the input data. We also have to evaluate the requirements and characteristics of the sensor

network application itself. For example, for an activity recognition application the duration of

sensor use plays a significant role in determining the activity being executed. Therefore, to

achieve high activity recognition accuracy, we would prefer to use machine learning algorithms

that can explicitly model state duration.

The most frequently used supervised machine learning algorithms include support vector

machines, naïve Bayes classifiers, decision trees, hidden Markov models, conditional random

field, and k-nearest neighbor algorithms. There are also a number of approaches that have been

applied to improve the performance of the chosen classifiers, such as bagging, boosting, and

using classifier ensembles. Each of the algorithms has its advantages and disadvantages, which

make it suitable for some types of applications but inappropriate for others.

Step 4 is to train the chosen learning algorithm using the collected training data. In this step the

algorithm learns the function that best matches the input / output training instances.

Step 5 is evaluation of the algorithm‘s accuracy. We assess the accuracy of the learned function

with the help of testing dataset, where the testing dataset is different from the training dataset. In

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

this step we evaluate how accurately the machine learning algorithm classifies entries from the

testing set based on the function is has learned though the training dataset.

Different supervised learning algorithms have been used and evaluated experimentally in a

variety of sensor network applications. In the rest of this section we describe some of the

algorithms that are most frequently used in WSN applications.

Decision trees:

Decision trees are characterized by fast execution time, ease in the interpretation of the rules, and

scalability for large multi-dimensional datasets (Cabena, et al. 1998), (Han 2005). The goal of

decision tree learning is to create a model that predicts the value of the output variable based on

the input variables in the feature vector. Each node corresponds to one of the feature vector

variables. From every node there are edges to children, where there is an edge per each of the

possible values (or range of values) of the input variable associated with the node. Each leaf

represents a possible value for the output variable. The output variable is determined by

following a path that starts at the root and is guided by the values of the input variables.

Figure 5 shows an example decision tree for a sensor network activity detection application. In

this scenario we assume that there are only two events of interest in the kitchen: cooking and

getting a drink. The decision tree uses sensor node firings to distinguish between those two

activities. For example, if there is movement in the kitchen and the stove is being used, the

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

algorithm determines that the residents must be cooking. However, if there is movement in the

kitchen, the stove is not being used, and somebody opens the cups cupboard, the algorithm

decides that the activity being performed at the moment is getting a drink. This is a simple

example illustrating how decision trees can be applied to sensor network applications. In reality,

the decision trees that are learned by real applications are much more complex.

Kitchen motion sensor
active

No

No kitchen activity
Stove use

Yes

Yes

Cooking

No

Cups cupboard use

Yes

Getting a drink Unrecognized kitchen activity

No

Figure 5: Example decision tree for an activity detection application. In this scenario we are only interested in

two of the kitchen activities: cooking and getting a drink. The decision tree is used to determine which one of

these activities is currently occurring based on the sensor nodes that are firing in the kitchen.

The C4.5 algorithms is one of the well-known, top-down, greedy search algorithms for building

decision trees (Quinlan, C4.5: programs for machine learning 1993). The algorithm uses entropy

and information gain metrics to induce a decision tree. The C4.5 algorithm has been used for

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

activity recognition in the PlaceLab project at MIT (Logan, et al. 2007). The authors of the

project monitored a home deployed with over 900 sensors, including wired reed switched,

current and water flow inputs, object and person motion detectors, and RFID tags. They collected

data for 43 typical house activities and C4.5 was one of the classifiers used by their their activity

recognition approach.

C4.5 was used for target recognition in an underwater wireless sensor surveillance system

(Cayirci, et al. 2006). Each node in the network was equipped with multiple microsensors of

various types, including acoustic, magnetic, radiation, and mechanical sensors. The readings

from these sensors were used by the decision tree recognition algorithms to classify submarines,

small delivery vehicles, mines, and divers.

C4.5 was also used as part of an algorithm to automatically recognize physical activities and

their intensities (Tapia, et al. 2007). The algorithm monitors the readings of triaxal wireless

accelerometers and wireless heart rate monitos. The approach was evaluated using datasets

consisting of 10 physical gymnasium activities collected from a total of 21 people.

Bayesian network classifiers:

Bayesian probability interprets the concept of probability as degree of belief. A Bayesian

classifier analyzes the feature vector describing a particular input instance and assigns the

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

instance to the most likely class. A Bayesian classifier is based on applying Bayes‘ theorem to

evaluate the likelihood of particular events. Bayes‘ theorem gives the relationship between the

prior and posterior beliefs for two events. In Bayes‘ theorem, P(A) is the prior initial belief in A.

P(A|B) is the posterior belief in A, after B has been encountered, i.e. the conditional probability

of A given B. Similarly for B, P(B) is the prior initial belief in A, and P(B|A) is the posterior

belief in B given A. Assuming that P(B) ≠ 0, Bayes‘ theorem states that

The Bayesian network is a probabilistic model that represents a set of random variables and their

conditional dependencies via a direct acyclic graph (DAG). For example, a Bayesian network

could represent the probabilistic relationships between activities and sensor readings. Given a set

of sensor readings, the Bayesian network can be used to evaluate the probabilities that various

activities are being performed.

Bayesian networks have a number of advantages. Since a Bayes network only relates nodes that

are probabilistically related by a causal dependency, an enormous saving of computation can

result. Therefore, there is no need to store all possible configurations of states. Instead, all that

needs to be stored is the combinations of states between sets of related parent-child nodes. Also,

Bayes networks are extremely adaptable. They can be started off small, with limited knowledge

about the domain, and grow as they acquire new knowledge.

)(

)()|(
)|(

BP

APABP
BAP

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

Bayes networks have been applied to a variety of sensor fusion problems, where data from

various sources must be integrated in order to build a complete picture of the current situation.

They have also been used in monitoring and alerting applications where the application should

recognize whether specific events have occurred and decide if an alert or a notification should be

sent. Further, they have been applied to a number of activity recognition applications and

evaluated using numerous single and multiple-resident home deployments.

Bayesian networks can be divided into two groups, static and dynamic, based on whether they

are able to model temporal aspects of the events / activities of interest. We introduce an example

classifier for each of these two classes: static naïve Bayes classifier and dynamic naïve Bayes

classifier.

Static Bayesian network classifiers:

A very commonly used representative of the static Bayesian networks is the static naïve Bayes

classifier. Learning Bayesian classifiers can be significantly simplified by making the naïve

assumption that the features describing a class are independent. The classifier makes the

assumption that the presence or absence of a feature of a class is unrelated to the presence or

absence of any of the other features in the feature vector. The naïve Bayes classifier is one of the

most practical learning methods and it has been widely used in many sensor network

applications, including activity recognition in residence for elders (van Kasteren and Krӧse,

Bayesian activity recognition in residence for elders 2007), activity recognition in the PlaceLab

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

project at MIT (Logan, et al. 2007), outlier detection (Janakiram, AdiMallikarjuna Reddy and

Phani Kumar 2006), and body sensor networks (Maurer, et al. 2006).

Rt
1 Rt

2 Rt
N. . .

activityt

Figure 6: Static Bayesian network: activityt denotes the activity being detected at time t, and Rt
i
 represents

the data from sensor i at time t.

Figure 6 shows a naïve Bayesian model for the recognition of an activity. In this scenario the

activity at time t, activityt, is independent of any previous activities. It is also assumed that the

sensor data Rt is only dependent on the activity
t
.

Naïve Bayes classifiers have a number of advantages:

1. They can be trained very efficiently.

2. They are very well suited for categorical features.

3. In spite of their naïve design and the independence assumptions, naïve Bayes classifiers

have performed very well in many complex real-world situations. They can work with

more than 1000 features.

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

4. They are good for combining multiple models and can be used in an iterative way.

A disadvantage of naïve Bayes classifiers is that, if conditional independence is not true, i.e.

there is dependence between the features of the analyzed classes, they may not be a good model.

Also naïve Bayes classifiers assume that all attributes that influence a classification decision are

observable and represented. Despite these drawbacks, experiments have demonstrated that naïve

Bayes classifiers are very accurate classifiers in a number of problem domains. Simple naïve

Bayes networks have even been proved comparable to more complex algorithms, such as

decision trees (E. Tapia 2004).

Dynamic Bayesian network classifiers

Another disadvantage of static Bayesian networks is that they cannot model the temporal aspect

of sensor network events. Dynamic Bayesian networks, however, are capable of representing a

sequence of variables, where the sequence can be consecutive readings from a sensor node.

Therefore, dynamic Bayesian networks, although more complex, might be better suited for

modeling events and activities in sensor network applications.

Figure 7 shows a naïve dynamic Bayesian model, where the activityt+1 variable is directly

influenced only by the previous variable, activityt. The assumption with these models is that an

event can cause another event in the future, but not vise-versa. Therefore, directed arcs between

events/activities should flow forward in time and cycles are not allowed.

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

Rt
1 Rt

2 Rt
N. . .

activityt

Rt+1
1 Rt+1

2 Rt+1
N. . .

activityt+1

Figure 7: An example of a naïve dynamic Bayesian network.

Dynamic models have been used in activity recognition applications. A naïve dynamic Bayes

classifier is compared to a naïve static Bayes classifier using two publicly available datasets (van

Kasteren and Krӧse, Bayesian activity recognition in residence for elders 2007). The dynamic

Bayes classifier is shown to achieve higher activity recognition accuracy than the static model. A

dynamic Bayesian filter was successfully applied to the simultaneous tracking and activity

recognition (STAR) problem, which exploits the synergy between location and activity to

provide the information necessary for automatic health monitoring (Wilson and Atkenson 2005).

Markov models:

A process is considered to be Markov if it exhibits the Markov property, which is the lack of

memory, i.e. the conditional probability distribution of future states of the process depends only

on the present state, and not on the events that preceded it. We discuss two types of Markov

models: hidden Markov model and hidden semi-Markov model.

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

1. Hidden Markov model

A hidden Markov model (HMM) can be viewed as a simple dynamic Bayesian network. When

using an HMM, the system is assumed to be a Markov process with unobserved (hidden) states.

Even though the sequence of states is hidden, the output which is dependent on the state is

visible. Therefore, at each time step there is a hidden variable and an observable output variable.

In sensor network applications the hidden variable could be the event or activity performed, and

the observable output variable is the vector of sensor readings.

Yt-1

Xt+1Xt

Yt+1Yt

Xt-1

.

Figure 8: Hidden Markov model example. The states of the system Yi are hidden, but their corresponding

outputs Xi are visible.

Figure 8 shows an example HMM where the states of the system Y are hidden, but the output

variables X are visible. There are two dependency assumptions that define this model,

represented by the directed arrows in the figure:

1. Markov assumption: The hidden variable at time t, namely Yt, depends only on the

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

previous hidden variable Yt-1, (Rabiner 1989);

2. The observable output variable at time t, namely Xt, depends only on the hidden variable

Yt.

With these assumptions we can specify an HMM using three probability distributions:

1. Initial state distribution: the distribution over initial states p(Y1);

2. Transition distribution: the distribution p(Yt | Yt+1), which represents the probability of

going from one state to the next;

3. Observation distribution: the distribution p(Xt | Yt), which indicates the probability that

the hidden state Yt would generate observation Xt.

Learning the parameters of these distributions corresponds to maximizing the joint probability

distribution p(X, Y) of the paired observation and label sequences in the training data. Modeling

the joint probability distribution p(X, Y) makes HMMs a generative model.

HMMs have been extensively used in many sensor network applications. Most of the earlier

work on activity recognition used HMMs to recognize the activities from sensor data (Wilson

and Atkenson 2005) (Patterson, et al. 2005) (van Kasteren, Noulas, et al. 2008). An HMM is also

used in the smart thermostat project (Lu, et al. 2010). The smart thermostat technology

automatically senses the occupancy and sleep patterns in a home, and uses these patterns to

automatically operate the heating, ventilation, and cooling (HVAC) system in the home. The

authors employ an HMM to estimate the probability of the home being in each of three states:

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

unoccupied, occupied and the residents are active, and occupied with the residents sleeping.

HMMs were also applied in a biometric identification application for multi-resident homes

(Srinivasan, Stankovic and Whitehouse, Using Height Sensors for Biometric Identification in

Multi-resident Homes 2010). In this project height sensors were mounted above the doorways in

a home and an HMM was used to identify the location of each of the residents.

A weakness of conventional HMMs is their lack of flexibility in modeling state durations. With

HMMs, there is a constant probability of changing state, given that the system is in its current

state of the model. This, however, limits the modeling capability. For example, the activity

preparing dinner typically spans at least several minutes. To prepare dinner in less than a couple

of minutes is not very usual. The geometric distribution used by HMMs to represent time

duration cannot be used to represent event distributions where shorter durations are less possible.

Hidden Semi-Markov Models:

A hidden semi-Markov model (HSMM) differs from a hidden Markov model in that HSMMs

explicitly model the duration of hidden states. This means that the probability of there being a

change in the hidden state depends on the amount of time that has elapsed since entry into the

current state.

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

Y1 Y2

Xs1

.

s1

d1

Xs1 + d1

s2

d2

Xs2 Xs2 + d2

Figure 9: Hidden semi-Markov model. Each hidden state yi is characterized by start position si and a duration

di. This means that the system is in state yi from time si to time si + di.

A number of projects have used HSMMs to learn and recognize human activities of daily

living (Duong, et al. 2009) (Zhang, et al. 2008) (van Kasteren, Englebienne and Krӧse, Activity

recognition using semi-Markov models on real world smart home datasets. 2010). HSMMs were

also applied to behavior understanding from video streams in a nursing center (Chung and Liu

2008). The proposed approach infers elderly behaviors through three contexts: spatial, activities,

and temporal. HSMM were also used in a mobility tracking application for cellular networks

(Mark and Zaidi 2002).

The activity recognition accuracy achieved by HSMM is compared to that of HMM (van

Kasteren, Englebienne and Krӧse, Activity recognition using semi-Markov models on real world

smart home datasets. 2010). The authors evaluate the recognition performance of these models

using two fully annotated real world datasets consisting of several weeks of data. The first

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

dataset was collected in a 3-room single-resident apartment and the second dataset was from a 6-

room single-resident house. The results show that HSMM consistently outperforms HMM. This

indicates that accurate duration modelling is important in real world activity recognition

applications as it can lead to significantly better performance. The use of duration in the

classification process helps especially in scenarios where the sensor data does not provide

sufficient information to distinguish between activities.

Conditional random fields

Conditional random fields (CRF) are often considered an alternative to hidden Markov models.

The CRF is a statistical modeling method, which is a type of an undirected probabilistic

graphical model that defines a single log-linear distribution over label sequences given a

particular observation sequence. It is used to encode known relationships between observations

and construct consistent interpretations.

Yt-1

Xt+1Xt

Yt+1Yt

Xt-1

.

Figure 10: A linear-chain conditional random field (CRF) model. Similarly to an HMM, the states of the

system Yi are hidden, but their corresponding outputs Xi are visible. Unlike the HMM model, however, the

graph represented by the CRF model is undirected.

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

The CRF model that most closely resembles an HMM is the linear-chain CRF. As figure 10

shows, the model of a linear-chain CRF is very similar to that of an HMM (Figure 8). The model

still contains hidden variables and corresponding observable variables at each time step.

However, unlike the HMM, the CRF model is undirected. This means that two connected nodes

no longer represent a conditional distribution. Instead we can talk about potential between two

connected nodes. In comparison to HMM, the two conditional probabilities, observation

probability p(Xt | Yt) and transition probability p(Yt | Yt+1), have been replaces by the

corresponding potentials. The essential difference lies in the way we learn the model parameters.

In the case of HMMs the parameters are learned by maximizing the joint probability distribution

p(X, Y). CRFs are discriminative models. The parameters of a CRF are learned by maximizing

the conditional probability distribution p(Y | X), which belongs to the family of exponential

distributions (Sutton and McCailum 2006).

CRF models have been applied to activity recognition in home from video streams, in which

primitive actions, such as ‗go-from-A- to-B’ are recognized in a lab-like dining room and kitchen

setup (Truyen, Bui and Venkatesh, Human Activity Learning and Segmentation using Partially

Hidden Discriminative Models 2005). The results from these experiments show that CRFs

perform significantly better than the equivalent generative HMMs even when a large portion of

the data labels are missing. CRFs were also used for modeling concurrent and interleaving

activities (Hu, et al. 2008). The authors perform experiments using one of the MIT PlaceLab

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

datasets (Logan, et al. 2007), PLA1, which consists of four hours of sensor data.

T. van Kasteren et al. use four different datasets, two bathroom datasets and two kitchen datasets,

to compare the performance of HMM to that of CRF (van Kasteren, Englebienne and Krӧse,

Activity recognition using semi-Markov models on real world smart home datasets. 2010). The

experiments show that, when applied to activity recognition tasks, CRF models achieve higher

accuracy than HMM models. The authors contribute the results to the flexibility of

discriminative models, such as CRF, in dealing with violations of the modeling assumptions.

However, the higher accuracy achieved by CRF models comes at a price:

1. Discriminative models take much longer to train than their generative counterpart.

2. Discriminative models are more prone to overfitting. Overfitting occurs when a model

describes random noise instead of the underlying relationship. This happens when the

model is trained to maximize its performance on the training data. However, a model‘s

efficiency is determined not by how well it performs on the training data but by its

generality and how it performs on unseen data.

Whether the improved recognition performance of CRFs is worth the extra computational cost

depends on the application. The data can be modeled mode accurately using an HSMM, which

allows both speedy learning and good performance, and is less prone to overfitting. However, it

does result in slower inference and depends on correct modeling assumptions for the durations.

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

Semi-Markov conditional random fields

Similarly to HMMs, which have their semi-Markov variant, conditional random fields also have

a semi-Markov variant: semi-Markov conditional random fields (SMCRF). An example SMCRF

model is shown in Figure 11. The SMCRF inherits features from both semi-Markov models and

CRFs:

1. It models the duration of states explicitly (like HSMM).

2. Each of the hidden states is characterized by a start position and duration (like HSMM).

3. The graph of the model is undirected (like CRF).

Hierarchical SMCRF were used in an activity recognition application on a small laboratory

dataset from the domain of video surveillance (Truyen, Phung, et al. 2008). The task was to

recognize indoor trajectories and activities of a person from his noisy positions extracted from

the video. The data had 90 sequences, each of which corresponded to one of three possible

activities: preparing a short meal, preparing a normal meal, and having a snack. The hierarchical

SMCRF outperformed both a conventional CRF and a dynamic CRF.

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

Y1 Y2

Xs1

.

s1

d1

Xs1 + d1

s2

d2

Xs2 Xs2 + d2

Figure 11: An example semi-Markov conditional random field (CRF). Similarly to an HSMM model, each of

the hidden states yi is characterized by start position si and a duration di. However, unlike an HSMM, the

HMCRF graph is undirected.

SMCRFs were also used for activity recognition by van Kasteren et al. (van Kasteren,

Englebienne and Krӧse, Activity recognition using semi-Markov models on real world smart

home datasets. 2010). The results show that unlike the big improvement achieved by using

HSMMs over HMMs, SMCRFs only slightly outperform CRFs. The authors attribute this result

to the fact that CRFs are more robust in dealing with violations to the modeling assumptions.

Therefore, allowing to explicitly model duration distributions might not have the same

significant benefits as seen with HSMM

Support vector machines

A support vector machine (SVM) is a non-probabilistic binary linear classifier. The output

prediction of an SVM is one of two possible classes. Given a set of training instances, each

marked as belonging to one of two classes, an SVM algorithm builds an N-dimensional

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

hyperplane model that assigns future instances into one of the two possible output classes.

As shown in Figure 12, an SVM model is a representation of the input instances as points in

space, mapped so that the instances of the separate classes are divided by a clear gap. New

examples are then mapped into that same space and predicted to belong to a class based on which

side of the gap they fall on. In other words, the goal of the SVM analysis is to find a line that

separates the instances based on their class. There are an infinite number of possible lines and

one of the challenges with SVM models is finding the optimal line.

margin

misclassified
instances

Figure 12: A two-dimensional support vector machine (SVM) model. The instances of the two possible classes

are divided by a clear gap.

SVMs have been applied to a large number of sensor network applications. Sathik et al. use

SVMs in an early forest fire detection applications (Mohamed Sathik, Syed Mohamed and

Balasubramanian 2010). SVMs were also applied to target classification applications for

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

distributed sensor networks (Li, et al. 2001). The experiments were performed on real seismic

and acoustic data. SVMs are compared to a k-nearest neighbor algorithm and a maximum

likelihood algorithm and are shown to achieve the highest target classification accuracy. Tran et

al. use SVMs to achieve accurate geographic location estimations for nodes in a WSN, where

the majority of nodes do not have effective self-positioning functionality (Tran and Nguyen

2008). SVMs were also applied to investigating the possibility of recognizing visual memory

recall (Bulling and Roggen 2011). The project aims to find if people react differently to images

they have already seen as opposed to images they are seeing for the first time.

B. K-nearest neighbor algorithms

The k-nearest neighbor (k-NN) algorithm is among the simplest of machine learning algorithms,

yet it has proven to be very accurate in a number of scenarios. The training examples are vectors

in a multidimensional feature space, each with a class label. The training phase of the algorithm

consists only of storing the feature vectors and class labels of the training samples. A new

instance is classified by a majority vote of its neighbors, with the instance being assigned the

class that is most common among its k nearest neighbors.

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

Figure 13: Example of k-nearest algorithm classification. The question mark is the test sample and it should

be classified as either a star or a triangle. If k = 3, the test sample is assigned to the class of triangles because

there are 2 triangles and 1 star inside the inner circle. If k = 7, the test sample is assigned to the class of stars

since there are 4 stars and 3 triangles in the outer circle.

The best choice of k depends upon the data. k must be a positive integer and it is typically small.

If k = 1, the new instance is simply assigned to the class of its nearest neighbor. Larger values of

k reduce the effect of noise on the classification but make boundaries between classes less

distinct. A good k can be selected by various heuristic techniques, for example cross-validation.

Although the k-NN algorithm is quite accurate, the time required to classify an instance could be

high since the algorithm has to compute the distances (or similarity) of that instance to all the

instances in the training set. Therefore, the classification time of k-NN is proportional to the

number of features and the number of training instances.

k-NN algorithms have been applied to a wide variety of sensor network applications. Ganesan et

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

al. propose the use of k-NN for spatial data interpolation in sensor networks (Ganesan, et al.

2004). Due to its simplicity, k-NN allows the sampling to be done in a distributed and

inexpensive manner. A disadvantage with this approach, however, is that k-NN interpolation

techniques might perform poorly in highly irregular settings. Winter et al. also analyze the

application of k-NN queries for spatial data queries in sensor networks (Winter, Xu and Lee

2005). They design two algorithms based on k-NN, which are used to intelligently prune off

irrelevant nodes during query propagation, thus reducing the energy consumption while

maintaining high query accuracy. Duarte et al. evaluate the accuracy of k-NN in the context of

vehicle classification (Duarte and Hu 2004). The authors collect a real-world dataset and

analyze both the acoustic and the seismic modality. The results show that in this application

scenario k-NN algorithms achieve comparable accuracy to that of SVMs.

Unsupervised Learning:

Collecting labeled data is resource and time consuming and accurate labeling is often hard to

achieve. For example, obtaining sufficient training data for activity recognition in a home might

require three or four weeks of collecting and labeling data. Further, labeling is difficult not only

for remote areas which are not easily accessible, but also for home and commercial building

deployments. For any of those deployments someone has to perform the data labeling. In a home

deployment, the labeling can be done by the residents themselves, in which case they have to

keep a log of what they are doing and at what time. Previous experience has shown that these

logs are often incomplete and inaccurate. An alternative solution is to install cameras throughout

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

the house and monitor the activities of the residents. However, this approach is considered to be

privacy-invasive and therefore not suitable.

In unsupervised learning the learner is provided with input data, which has not been labeled. The

aim of the learner is to find the inherent patterns in the data that can be used to determine the

correct output value for new data instances. The assumption here is that there is a structure to the

input space, such that certain patterns occur more often than others, and we want to see what

generally happens and what does not. In statistics, this is called density estimation.

Unsupervised learning algorithms are very useful for sensor network applications for a number

of reasons:

 Collecting labeled data is resource and time consuming;

 Accurate labeling is hard to achieve;

 Sensor networks applications are often deployed in unpredictable and constantly

changing environments. Therefore, the applications need to evolve and learn without any

guidance, by using unlabeled patterns.

A variety of unsupervised learning algorithms have been used in sensor network applications,

including different clustering algorithms, such as k-means and mixture models; self-organizing

maps (SOM); and adaptive resonance theory (ART). In the rest of this section we describe some

of the most commonly used unsupervised learning algorithms.

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

Clustering

Clustering, also called cluster analysis, is one form of unsupervised learning. It is often

employed in pattern recognition tasks and activity detection applications. A clustering algorithm

partitions the input instances into a fixed number of subsets, called clusters, so that the instances

in the same cluster are similar to one another with respect to some set of metrics.

Figure 14: A clustering algorithm divides the set of input data instances into groups, called clusters. The

instances in the same group are more similar to each other than to those in other clusters.

Cluster analysis itself is not one specific algorithm, but the general task to be solved. The

clustering can be achieved by a number of algorithms, which differ significantly in their notion

of what constitutes a cluster and how to efficiently find them. The choice of an appropriate

clustering algorithms and parameter settings, including values, such as the distance function to

use, a density threshold, or the number of expected clusters, depends on the individual dataset

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

and intended use of the results.

The notion of a cluster varies between algorithms and the clusters found by different algorithms

vary significantly in their properties. Typical cluster models include:

 Connectivity models: An example of a connectivity model algorithm is hierarchical

clustering which builds models based on distance connectivity.

 Centroid models: A representative of this set of algorithms is the k-means algorithm.

With this algorithm each cluster is represented by a single mean vector.

 Distribution models: clusters are modeled using statistics distributions.

 Density models: an example of density model clustering is DBSCAN. In this type of

clustering, clusters are identified as areas with higher density than non-clusters.

 Group models: These clustering algorithms are not able to provide a refined model for the

results. Instead, they can only generate the group information.

We discuss in more detail two of the most common clustering algorithms used in sensor network

applications: k-means clustering, and DBSCAN clustering.

K-means clustering

The goal of k-means clustering is to partition the input instances into k clusters, where each

instance belongs to the cluster with the nearest mean. Since the problem is NP-hard, the common

approach is to only search for approximate solutions. There are a number of efficient heuristic

algorithms that can quickly converge to a local optimum, such as the Lloyd‘s algorithm (Lioyd

1982). Since the algorithms only find local optimums, they are usually run multiple times with

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

different random initializations.

An advantage of the k-means algorithm is that it is simple and converges quickly when the

number of dimensions of the data is small. However, k-means clustering also has a number of

drawbacks. First, k must be specified in advance. Also, the algorithms prefer clusters of

approximately similar sizes. This often leads to incorrectly cut borders in between clusters,

which is not surprising since, being centroid a model algorithm, k-means optimizes for cluster

center rather than cluster borders.

Figure 15 shows a clustering example where k=2 and k-means is not able to accurately define the

borders between the two clusters. There are two density clusters in that figure. One of them is

much larger and contains circles. The other one is smaller and consists of triangles. Since k-

means optimizes for cluster center and tends to produce clusters with similar sizes, it incorrectly

splits the data instances into a green and a red cluster. These two clusters, however, do not

overlap with the original density clusters of the input data.

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

Figure 15: K-means clustering might incorrectly cut the bothers between density-based clusters.

K-means clustering has been used in a number of WSN applications. A k-means algorithm is

used in the fingerprint and timing-based snooping (FATS) security attack to cluster together

sensors that are temporally correlated (Srinivasan, Stankovic and Whitehouse, Protecting your

Daily In-Home Activity Information from a Wireless Snooping Attack 2008). This allows the

attack to identify sensors that fire together, and hence identify sensors that are located in the

same room. K-means clustering has also been used to address the multiple sink location

problem in large-scale WSNs (Oyman and Ersoy 2004). In large scale-networks with a large

number of sensor nodes, multiple sink nodes should be deployed not only to increase the

manageability of the network but also to prolong the lifetime of the network by reducing the

energy dissipation of each node. Al-Karaki et al. apply k-means clustering to data aggregation,

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

and more specifically to finding the minimum number of aggregation points in order to

maximize the network lifetime (Al-Karaki, Ul-Mustafa and Kamal 2004). The results from their

experiments show that, compared to a number of other algorithms, such as a genetic algorithm

and a simple greedy algorithm, k-means clustering achieves the highest network lifetime

extension.

DBSCAN clustering

The density-based spatial clustering for applications with noise (DBSCAN) is the most popular

density-based clustering algorithm. In density-based clustering, clusters are defined as areas of

higher density than the remainder of the dataset. DBSCAN requires two parameters: distance

threshold (Eps-neighborhood of a point) and minimum number of points required to form a

cluster (MinPts) (Ester, et al. 1996). DBSCAN is based on connecting points within a certain

distance of each other, i.e. points which are in the same Eps-neighborhood. However, in order to

make a cluster, DBSCAN requires that for each point in the cluster there are at least MinPts

number of points in the Eps-neighborhood. Figure 16 shows an example of DBSCAN clustering.

The dataset is the same as that in Figure 15 but since a density-based clustering algorithm has

been used, the data is clustered correctly.

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

Figure 16: An example density-based clustering with DBSCAN.

An advantage of DBSCAN is that, unlike many other clustering algorithms, it can form clusters

of any arbitrary shape. Another useful property of the algorithm is that its complexity is fairly

low and it will discover essentially the same clusters in each run. Therefore, in contrast to k-

means clustering, DBSCAN can be run only once rather than multiple times. The main drawback

of DBSCAN is that it expects sufficiently significant density drop in order to detect cluster

borders. If the cluster densities decrease continuously, DBSCAN might often produce clusters

whose borders look arbitrary.

In sensor network applications, DBSCAN has been used as part of the FATS security attack to

identify the function of each room, such as bathroom, kitchen, or bedroom (Srinivasan,

Stankovic and Whitehouse, Protecting your Daily In-Home Activity Information from a Wireless

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

Snooping Attack 2008). DBSCAN generates temporal activity clusters, each of which forms a

continuous temporal block with a relatively high density of sensor firings. Experiments show that

DBSCAN performs very well because it automatically leaves out outliers and computes high-

density clusters. However, when DBSCAN is applied to the step of identifying which sensors are

in the same room, k-means clustering performs much better. This is especially true for scenarios

where all devices are highly correlated temporally and there is no significant density drop on the

boundary of clusters.

Apiletti et al. also apply DBSCAN to detecting sensor correlation (Apiletti, Baralis and

Carquitelli 2011). The authors perform experiments using data collected from a sensor network

deployed in university labs. The results show that DBSCAN is able to identify different numbers

of clusters based on which day of the week it is analyzing. This allows it to construct more

accurate models for the sensor use parrerns in the labs. DBSCAN also successfully detects noisy

sensors.

Self-organizing map (SOM)

Self-organizing maps (SOM) provide a way of representing multidimensional data in much

lower dimensional spaces – typically one or two dimensions. The process of reducing the

dimensionality of the feature vectors is a data compression technique known as vector

quantisation. SOMs, as indicated by their name, produce a representation of the compressed

feature space, called a map. An extremely valuable property of these maps is that the information

is stored in such a way that any topological relationships within the training set are maintained.

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

An SOM contains components called nodes. Each node is associated with 1) a position in the

map space and 2) a vector of weights, where the dimension of this vector is the same as that of

the input data instances. The nodes are regularly spaced in the map, which is typically a

rectangular or a hexagonal grid. A typical example of SOMs is a color map (Figure 17). Each

color is represented by a 3-dimensional vector containing values for red, green, and blue.

However, the color SOM represents the colors in a 2-dimensional space.

Figure 17: An example SOM representation for colors.

The procedure of placing an input data instance onto the map is the following:

1. Initialize the weights of the nodes on the map.

2. Choose an input training instance.

3. Find the node with the closest vector to that of the input instance. This node is called the

best matching unit (BMU).

4. Calculate the radius of the BMU‘s neighborhood. This value is often set to the radius of

the whole map, but it decreases at each time step. Any node found within this radius is

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

considered to be inside the BMU‘s neighborhood.

5. Once the BMU is located, it is assigned the values from the vector of the input instance.

In addition, the weights of the nodes close to the BMU are also adjusted towards the input

vector. The closer a neighbor node is to the BMU, the more its weight is altered.

In sensor networks, SOMs have been applied to anomaly detection caused by faulty sensors and

unusual phenomenon, such as harsh environmental conditions (Siripanadorn, Hattagam and

Teaumroong 2010). Paladina et al. have also used SOMs for node localization (Paladina, et al.

2007). Their localization technique is based on a simple SOM implemented on each of the sensor

nodes. The main advantages of this approach are the limited storage and computing cost.

However, the processing time required by the SOMs increases with the size of the input data.

Giorgetti et al. have also applied SOMs to addressing node localization (Giorgetti, Gupta and

Manes 2007). Their SOM-based algorithm computes virtual coordinates that are used in

location-aided routing. If the location information for a few anchor nodes is available, the

algorithm is also able to compute the absolute positions of the nodes. The results from the

experiments further show that the SOM-based algorithm performs especially well for networks

with low connectivity, which tend to be harder to localize, and in the presence of irregular radio

patterns or anisotropic deployment. A variation of an SOM, called a growing self-organized map

(GSOM) is employed to achieve accurate detection of human activities of daily living within

smart home environments (Zheng, Wang and Black 2008).

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

Adaptive resonance theory (ART)

Most existing learning algorithms are either stable (they preserve previously learned

information) or plastic (they retain the potential to adapt to new input instances indefinitely).

Typically, algorithms that are stable cannot easily learn new information, and algorithms that are

plastic tend to forget the old information they have learned. This conflict between stability and

plasticity is called the stability-plasticity dilemma (Carpenter and Grossberg 1987).

The adaptive resonance theory (ART) architectures attempt to provide a solution to the stability-

plasticity dilemma. ART is a family of different neural architectures that address the issue of

how a learning system can preserve its previously learned knowledge while keeping its ability to

learn new patterns. An ART model is capable of distinguishing between familiar and unfamiliar

events, as well as between expected and unexpected events.

An ART system contains two functionally complementary subsystems that allow it to process

familiar and unfamiliar events: attentional subsystem and orienting subsystem. Familiar events

are processed within the attentional subsystem. This goal of this subsystem is to constantly

establish even more precise internal representations of and responses to familiar events. By itself,

however, the attentional subsystem is unable to simultaneously maintain stable representations of

familiar categories and to create new categories for unfamiliar events. This is where the orienting

subsystem helps. It is used to reset the attentional subsystem when an unfamiliar event occurs.

The orienting subsystem is essential for expressing whether a novel pattern is familiar and well

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

represented by an existing recognition code, or unfamiliar and in need of a new recognition code.

F2: Recognition field

F1 : Comparison field

LTMLTM
STM activity pattern

STM activity pattern

Input pattern

ATTENTIONAL

SUBSYSTEM

ORIENTING

SUBSYSTEM

STM
reset

Figure 18: The architecture of an ART system has two subsystems: attentional, responsible for processing

familiar events, and orienting, which helps reset the attentional subsystem when an unfamiliar event occurs.

The attentional subsystem contains a comparison field, where the input is received, and a recognition field,

which assigns the input to a category. Both short term memory (STM) and long term memory (LTM) are

employed.

Figure 18 shows the architecture of an ART system. The attentional system has two successive

stages, F1 and F2, which encode patterns of activation in short term memory (STM). The input

pattern is received at F1, and the classification is performed at F2. Bottom-up and top-down

pathways between the two stages contain adaptive long term memory (LTM) traces. The

orienting subsystem measures the similarity between the input instance vector and the pattern

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

produced by the fields in the attentional subsystem. If the two are similar, i.e. if the attentional

subsystem has been able to recognize the input instance, the orienting subsystem does not

interfere. However, if the two patterns are significantly different, the orienting subsystem resets

the output of the recognition layer. The effect of the reset is to force the output of the attentional

system back to zero, which allows the system to search for a better match.

A drawback of some of the ART architectures is that the results of the models depend

significantly on the order in which the training instances are processed. The effect can be

reduced to some extent by using a slower learning rate, where differential equations are used and

the degree of training on an input depends on the time the input is available. However, even with

slow training, the order of training still affects the system regardless of the size of the input

dataset.

ART classifiers have been applied to WSN applications to address anomaly detection problems

in unknown environments (Li, Thomason and Parker, Detecting Time-Related Changes in

Wireless Sensor Networks Using Symbol Compression and Probabilistic Suffix Trees 2010). A

fuzzy ART classifier is used to label multi-dimensional sensor data into discrete classes and

detect sensor-level anomalies. An ART classification is also employed by an intruder detection

system that uses a WSN and mobile robots (Li and Parker, Intruder detection using a wireless

sensor network with an intelligent mobile robot response 2008). The sensor network uses an

unsupervised fuzzy ART classifier to learn and detect intruders in a previously unknown

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

environment. Upon the detection of an intruder, a mobile robot travels to investigate the position

where the intruder is supposed to be. Kulakov et al. incorporate ART into a technique used for

detection of unusual sensor events and sensor failures (Kulakov and Davcev 2005). Through

simulation, where one of the input sensor nodes is failed on purpose, the authors show the

improvement in data robustness achieved by their approach.

Other unsupervised machine learning algorithms

There is a wide variety of unsupervised learning algorithms, in addition to k-means clustering,

DBSCAN, SOM, and ART, which have been often applied to WSN application. The

SmartHouse project uses a system of sensors to monitor a person‘s activities at home (Barger,

Brown and Alwan 2005). The goal of the project is to recognize and detect different behavioral

patterns. The authors use mixture models to develop a probabilistic model of the behavioral

patterns. The mixture model approach serves to cluster the observations with each cluster

considered to be a different event type.

A number of activity recognition projects have developed unsupervised learning algorithms that

extract models from text corpora or the web. The Guide project uses unsupervised learning

methods to detect activities using RFID tags placed on objects (Philipose, et al. 2003). This

method relies on data mining techniques to extract activity models from the web in an

unsupervised fashion. For this project the authors have mined the temporal structure of about

fifteen thousand home activities.

Gu et al. develop another unsupervised approach based on RFID-tagged object-use fingerprints

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

to recognize activities without human labeling (Gu, et al. 2010). The activity models they use are

built based on object-use fingerprints, which are sets of contrast patterns describing significant

differences in object-use between any two activity classes. This is done by first mining a set of

object terms for each activity class from the web, and then mining contrast patterns among object

terms based on emerging patterns to distinguish between any two activity patterns.

Wyat et al. also employ generic mined models from the web (Wyatt, Philipose and Choudhury

2005). Given an unlabeled trace of object names from a user performing their activities of daily

living, they use the generic mined models to segment the trace into labeled instances of activities.

After that they use the labeled instances to learn custom models of the activity from the data. For

example, they learn details such as order of object use, duration of use, and whether additional

object are used.

Tapia et al. develop a similar approach where they extract relevant information on the functional

similarity of objects automatically from WordNet, which is an online lexical reference system for

the English language (Tapia, Choudhury and Philipose 2006). The information about the

functional similarity between objects is represented in a hierarchical form known as ontology.

This ontology is used to help mitigate the problem of model incompleteness, which often affects

the techniques used to construct activity recognition models.

An unsupervised approach based on detecting and analyzing the sequence of objects that are

being used by the residents is described in (Wu, et al. 2007). The activity recognition method is

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

based on RFID object-use correlated with video streams, and information collected from how-to

websites such as about.com. Since video streams are used, the approach provides high-grained

activity recognition. For example, it can differentiate between making tea and making coffee.

However, as previously mentioned, collecting video data of home activities is difficult due to

privacy concerns.

Dimitrov et al. develop a system that relies on unsupervised recognition to identify activities of

daily living in a smart home environment (Dimitrov, Pauli and Naroska 2010). The system

utilizes background domain knowledge about the user activities, which is stored in a self-

updating probabilistic knowledge base. The system aims to build the best possible explanation

for the observed stream of sensor events.

Semi-Supervised Learning

Semi-supervised learning algorithms use both labeled and unlabeled data for training. The

labeled data is typically a small percentage of the training dataset. The goal of semi-supervised

learning is to 1) understand how combining labeled and unlabeled data may change the learning

behavior, and 2) design algorithms that take advantage of such a combination. Semi-supervised

learning is a very promising approach since it can use readily available unlabeled data to improve

supervised learning tasks when the labeled data is scarce or expensive.

There are many different semi-supervised learning algorithms. Some of the most commonly used

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

ones include:

 Expectation-Maximization with generative mixture models

Expectation-maximization (EM) is an iterative method for finding maximum likelihood

estimates of parameters in statistical models, where the models depend on unobserved latent

variables (Dempster, Laird and Rubin 1977). Each iteration of the algorithm consists of an

expectation step (e-step) followed by a maximization step (m-step). EM with generative mixture

models are suitable for applications where the classes specified by the application produce well

clustered data.

 Self-training

Self-training can refer to a variety of schemes for using unlabeled data. Ng and Cardie

implement self-training by bagging and majority voting (Ng and Cardie 2003). An ensemble of

classifiers is trained on the labeled data instances and then the classifiers are used to classify the

unlabeled examples independently. Only those examples, for which all classifiers assign the

same label, are added to the labeled training set, and the classifier ensemble is retrained. The

process continues until a stop condition is met.

A single classifier can also be self-trained. Similarly to the ensemble of classifiers, the single

classifier is first trained on all labeled data. Then the classifier is applied to the unlabeled

instances. Only those instances that meet a selection criterion are added to the labeled set and

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

used for retraining.

 Co-training

Co-training requires two or more views of the data, i.e. disjoint feature sets that provide different

complementary information about the instances (Blum and Mitchell, Combining Labeled and

Unlabeld Data with Co-Training 1998). Ideally, the two feature sets for each instance are

conditionally independent. Also each feature set should be sufficient to accurately assign each

instance to its respective class. The first step in co-training is to use all labeled data and train a

separate classifier for each view. Then, the most confident predictions of each classifier are used

on the unlabeled data to construct additional labeled training instances. Co-training is a suitable

algorithm to use if the features of the dataset naturally split into two sets.

 Transductive support vector machines

Transductive SVMs extend general SVMs in that they could also use partially labeled data for

semi-supervised learning by following the principles of transduction (Gammerman, Vovk and

Vapnik 1998). In inductive learning, the algorithm is trained on specific training instances but

the goal is to learn general rules, which are then applied to the test cases. In contrast, transductive

learning is reasoning from specific training cases to specific testing cases.

 Graph-based methods

These are algorithms that utilize the graph structure obtained by capturing pairwise similarities

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

between the labeled and unlabeled instances (Zhu 2007). These algorithms define a graph

structure where the nodes are labeled and unlabeled instances and the edges, which may be

weighted, represent the similarity of the nodes they connect.

In sensor networks, semi-supervised learning has been applied to localization of mobile objects.

Pan et al. develop a probabilistic semi-supervised learning approach to reduce the calibration

effort and increase the tracking accuracy of their system (Pan, et al. 2007). Their method is based

on semi-supervised CRFs, which effectively enhance the learned model from a small set of

training data with abundant unlabeled data. To make the method more efficient, the authors

employ a Generalized EM algorithm coupled with domain constraints. Yang et al. use a semi-

supervised manifold learning algorithm to estimate the locations of mobile nodes in a WSN

(Yang, et al. 2010). The algorithm is used to compute a subspace mapping function between the

signal space and the physical space by using a small amount of labeled data and a large amount

of unlabeled data.

Wang et al. develop a semi-supervised learning algorithm based on SVM (Wang, et al. 2007).

The algorithm has been applied to target classification and the experimental results show that it

can accurately classify targets in sensor networks.

STATISTICAL LEARNING METHOD

STATISTICAL LEARNING

 Let us consider a very simple example. Our favorite Surprise candy comes in two flavors: cherry

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

(yum) and lime (ugh). The candy manufacturer has a peculiar sense of humor and wraps each

piece of candy in the same opaque wrapper, regardless of flavor. The candy is sold in very large

bags, of which there are known to be five kinds—again, indistinguishable from the outsid

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

h1: 100% cherry

h2: 75% cherry + 25% lime h3: 50% cherry + 50% lime h4: 25% cherry + 75% lime h5: 100%

lime

Given a new bag of candy, the random variable H (for hypothesis) denotes the type of the bag,

with possible values h1 through h5. H is not directly observable, of course. As the pieces of candy

are opened and inspected, data are revealed—D1, D2, : : :, DN , where each Di is a random

variable with possible values cherry and lime. The basic task faced by the agent is to predict the

flavor of the next piece of candy.
1
 Despite its apparent triviality, this scenario serves to introduce

many of the major issues. The agent really does need to infer a theory of its world, albeit a very

simple one.

 Bayesian learning simply calculates the probability of each hypothesis, given the

data, and makes predictions on that basis. That is, the predictions are made by using all the hy-

potheses, weighted by their probabilities, rather than by using just a single ―best‖ hypothesis. In

this way, learning is reduced to probabilistic inference. Let D represent all the data, with

observed value d; then the probability of each hypothesis is obtained by Bayes' rule:

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

 P (hijd) = P (djhi)P (hi) :

Now, suppose we want to make a prediction about an unknown quantity X . Then we

have

 P(X jd) = P(X jd; hi)P(hijd) = P(X jhi)P (hijd) ;

 i i

 X X

where we have assumed that each hypothesis determines a probability distribution

over X .

This equation shows that predictions are weighted averages over the predictions of

the indi-

vidual hypotheses. The hypotheses themselves are essentially ―intermediaries‖

between the

raw data and the predictions. The key quantities in the Bayesian approach are the

hypothesis

prior, P (hi), and the likelihood of the data under each hypothesis, P (djhi).

 For our candy example, we will assume for the time being that the prior distribution

over h1; : : : ; h5 is given by h0:1; 0:2; 0:4; 0:2; 0:1i, as advertised by the

manufacturer. The

 likelihood of the data is calculated under the assumption that the observations are

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

i.i.d.—that

 is, independently and identically distributed—so that

 P (djhi) = P (dj jhi) :

 j

 Y

For example, suppose the bag is really an all-lime bag (h5) and the first 10 candies are all lime;

then P (djh3) is 0:5
10

, because half the candies in an h3 bag are lime.
2
 Figure 20.1(a) shows how

the posterior probabilities of the five hypotheses change as the sequence of 10 lime candies is

observed. Notice that the probabilities start out at their prior values, so h3 is initially the most

likely choice and remains so after 1 lime candy is unwrapped. After 2

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

o
f

h
y
p
o
th

es
is

1 P(h1 |

d)

ca
n
d
y
 i

s
li

m
e

1

P(h2 |

d)

0.9

0.8

P(h3 |

d)

P(h4 |

d)

0.6

P(h5 |

d) 0.8

P
o
st

er
io

r
p
ro

b
ab

il
it

y

P
ro

b
ab

il
it

y
 t

h
at

 n
ex

t

 0.7

0.4

0.6

0.2

0.5

0

0.4

 0 2 4 6 8 10 0 2 4 6 8 10

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

Number of

samples in d

Number of

samples in d

 (a) (b)

 Figure

(a) Posterior probabilities P (hijd1 ; : : : ; dN) from Equation (20.1).

The num-

ber of observations N ranges from 1 to 10, and each observation is of a lime

candy. (b)

Bayesian prediction P (dN +1 = lime jd1 ; : : : ; dN) from

Equation (20.2).

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

lime candies are unwrapped, h4 is most likely; after 3 or more, h5 (the dreaded all-lime bag) is the

most likely. After 10 in a row, we are fairly certain of our fate. Figure 20.1(b) shows the

predicted probability that the next candy is lime, based on Equation (20.2). As we would expect,

it increases monotonically toward 1.

The example shows that the true hypothesis eventually dominates the Bayesian predic-tion. This

is characteristic of Bayesian learning. For any fixed prior that does not rule out the true

hypothesis, the posterior probability of any false hypothesis will eventually vanish, sim-ply

because the probability of generating ―uncharacteristic‖ data indefinitely is vanishingly small.

(This point is analogous to one made in the discussion of PAC learning in Chapter 18.) More

importantly, the Bayesian prediction is optimal, whether the data set be small or large. Given the

hypothesis prior, any other prediction will be correct less often.

The optimality of Bayesian learning comes at a price, of course. For real learning problems, the

hypothesis space is usually very large or infinite, as we saw in Chapter 18. In some cases, the

summation in Equation (20.2) (or integration, in the continuous case) can be carried out

tractably, but in most cases we must resort to approximate or simplified methods.

A very common approximation—one that is usually adopted in science—is to make pre-dictions

based on a single most probable hypothesis—that is, an hi that maximizes P (hijd). This is often

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

called a maximum a posteriori or MAP (pronounced ―em-ay-pee‖) hypothe-sis. Predictions

made according to an MAP hypothesis hMAP are approximately Bayesian to the extent that P(X

jd) P(X jhMAP). In our candy example, hMAP = h5 after three lime candies in a row, so the MAP

learner then predicts that the fourth candy is lime with prob-ability 1.0—a much more dangerous

prediction than the Bayesian prediction of 0.8 shown in Figure 20.1. As more data arrive, the

MAP and Bayesian predictions become closer, be-cause the competitors to the MAP hypothesis

become less and less probable. Although our example doesn't show it, finding MAP hypotheses

is often much easier than Bayesian learning, because it requires solving an optimization problem

instead of a large summation (or integration) problem. We will see examples of this later in the

chapter.

In both Bayesian learning and MAP learning, the hypothesis prior P (hi) plays an important role.

We saw in Chapter 18 that over fitting can occur when the hypothesis space is too expressive, so

that it contains many hypotheses that fit the data set well. Rather than placing an arbitrary limit

on the hypotheses to be considered, Bayesian and MAP learning methods use the prior to

penalize complexity. Typically, more complex hypotheses have a lower prior probability—in part

because there are usually many more complex hypotheses than simple hypotheses. On the other

hand, more complex hypotheses have a greater capacity to fit the data. (In the extreme case, a

lookup table can reproduce the data exactly with probability 1.) Hence, the hypothesis prior

embodies a trade-off between the complexity of a hypothesis and its degree of fit to the data.

We can see the effect of this trade-off most clearly in the logical case, where H contains only

deterministic hypotheses. In that case, P (djhi) is 1 if hi is consistent and 0 otherwise. Looking at

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

Equation (20.1), we see that hMAP will then be the simplest logical theory that is consistent with

the data. Therefore, maximum a posteriori learning provides a natural embodiment of Ockham's

razor.Another insight into the trade-off between complexity and degree of fit is obtained by

taking the logarithm of Equation (20.1). Choosing hMAP to maximize P (djhi)P (hi) is equivalent

to minimizing

log2 P (djhi) log2 P (hi) :

Using the connection between information encoding and probability that we introduced in

Chapter 18, we see that the log2 P (hi) term equals the number of bits required to specify the

hypothesis hi. Furthermore, log2 P (djhi) is the additional number of bits required to specify the

data, given the hypothesis. (To see this, consider that no bits are required if the hypothesis

predicts the data exactly—as with h5 and the string of lime candies—and log2 1 = 0.) Hence,

MAP learning is choosing the hypothesis that provides maximum com-pression of the data. The

same task is addressed more directly by the minimum description length, or MDL, learning

method, which attempts to minimize the size of hypothesis and data encodings rather than work

with probabilities.

A final simplification is provided by assuming a uniform prior over the space of hy-potheses. In

that case, MAP learning reduces to choosing an hi that maximizes P (djHi). This is called a

maximum-likelihood (ML) hypothesis, hML. Maximum-likelihood learning is very common in

statistics, a discipline in which many researchers distrust the subjective nature of hypothesis

priors. It is a reasonable approach when there is no reason to prefer one hypothesis over another

a priori—for example, when all hypotheses are equally complex. It provides a good

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

approximation to Bayesian and MAP learning when the data set is large, because the data

swamps the prior distribution over hypotheses, but it has problems (as we shall see) with small

data sets.

LEARNING WITH COMPLETE DATA

Our development of statistical learning methods begins with the simplest task: parameter

learning with complete data. A parameter learning task involves finding the numerical pa-

rameters for a probability model whose structure is fixed. For example, we might be interested in

learning the conditional probabilities in a Bayesian network with a given structure. Data are

complete when each data point contains values for every variable in the probability model being

learned. Complete data greatly simplify the problem of learning the parameters of a complex

model. We will also look briefly at the problem of learning structure.

Maximum-likelihood parameter learning: Discrete models

Suppose we buy a bag of lime and cherry candy from a new manufacturer whose lime–cherry

proportions are completely unknown—that is, the fraction could be anywhere between 0 and 1.

In that case, we have a continuum of hypotheses. The parameter in this case, which we call , is

the proportion of cherry candies, and the hypothesis is h . (The proportion of limes is just 1 .) If

we assume that all proportions are equally likely a priori, then a maximum-likelihood approach

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

is reasonable. If we model the situation with a Bayesian network, we need just one random

variable, Flavor (the flavor of a randomly chosen candy from the bag). It has values cherry and

lime, where the probability of cherry is (see Figure 20.2(a)). Now suppose we unwrap N

candies, of which c are cherries and ` = N c are limes. According to Equation (20.3), the

likelihood of this particular data set is

N

P (djh) =
Y
 P (dj jh) =

c
 (1)

`
 :

j = 1

The maximum-likelihood hypothesis is given by the value of that maximizes this expres- sion.

The same value is obtained by maximizing the log likelihood,

N

X

L(djh) = log P (djh) = log P (dj jh) = c log + ` log(1) :

j = 1

(By taking logarithms, we reduce the product to a sum over the data, which is usually easier to

maximize.) To find the maximum-likelihood value of , we differentiate L with respect to and set

the resulting expression to zero:

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

dL(djh)

=

c

 ̀

= 0

)

=

c

=

c

:

d

1

 c + `N

In English, then, the maximum-likelihood hypothesis hML asserts that the actual proportion of

cherries in the bag is equal to the observed proportion in the candies unwrapped so far!

It appears that we have done a lot of work to discover the obvious. In fact, though, we have laid

out one standard method for maximum-likelihood parameter learning:

1. Write down an expression for the likelihood of the data as a function of the

parameter(s).

2. Write down the derivative of the log likelihood with respect to each parameter.

3. Find the parameter values such that the derivatives are zero.

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

P(F=che

rry)

Flavor

P(F=che

rry)

 F P(W=red | F)

 Flavor cherry 1

 lime 2

 Wrapper

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

 (a) (b)

 Figure 20.2 (a) Bayesian network model for the case of candies with an unknown

proportion of cherries and limes.

(b) Model for the case where the wrapper color depends (probabilistically) on the candy flavor.

The trickiest step is usually the last. In our example, it was trivial, but we will see that in many

cases we need to resort to iterative solution algorithms or other numerical optimization

techniques, as described in Chapter 4. The example also illustrates a significant problem with

maximum-likelihood learning in general: when the data set is small enough that some events

have not yet been observed—for instance, no cherry candies—the maximum likelihood

hypothesis assigns zero probability to those events. Various tricks are used to avoid this problem,

such as initializing the counts for each event to 1 instead of zero.

Let us look at another example. Suppose this new candy manufacturer wants to give a little hint

to the consumer and uses candy wrappers colored red and green. The Wrapper for each candy is

selected probabilistically, according to some unknown conditional distribution, depending on the

flavor. The corresponding probability model is shown in Figure 20.2(b). Notice that it has three

parameters: , 1, and 2. With these parameters, the likelihood of seeing, say, a cherry candy in a

green wrapper can be obtained from the standard semantics for Bayesian networks (page 495):

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

P (Flavor = cherry ; Wrapper = greenjh ; 1; 2)

= P (Flavor = cherry jh ; 1; 2)P (Wrapper = greenjFlavor = cherry ; h ;

1; 2)

= (1 1) :

Now, we unwrap N candies, of which c are cherries and ` are limes. The wrapper counts are as

follows: rc of the cherries have red wrappers and gc have green, while r` of the limes have red and

g` have green. The likelihood of the data is given by

P (djh ; 1; 2) =
c
(1)

`
 1

rc
 (1 1)

gc
 2

r`
 (1 2)

g`
 :

This looks pretty horrible, but taking logarithms helps:

L = [c log + ` log(1)] + [rc log 1 + gc log(1 1)] + [r` log 2 + g` log(1 2)] :

The benefit of taking logs is clear: the log likelihood is the sum of three terms, each

of which contains a single parameter. When we take derivatives with respect to

each parameter and set

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

them to zero, we get three independent equations, each containing just one parameter:

@

L

@

@

L

@

1

@

L

@

2

=
c

`

= 0

1

=

rc

gc

= 0

1 11

=

r`

g
`

= 0

2 12

) =

 c

c+

`

) 1 =

rc

rc

+gc

) 2 =

r`

:

r`

+g`

The solution for is the same as before. The solution for 1, the probability that a

cherry candy has a red wrapper, is the observed fraction of cherry candies with red

wrappers, and similarly for 2.

These results are very comforting, and it is easy to see that they can be extended to

any Bayesian network whose conditional probabilities are represented as tables.

SIET | Artificial Intelligence Notes By- Niraj

Kumar Tiwari

 [UNIT -4] [ECS-801]

The most impor-tant point is that, with complete data, the maximum-likelihood

parameter learning problem for a Bayesian network decomposes into separate

learning problems, one for each parame-ter.
3
 The second point is that the

parameter values for a variable, given its parents, are just the observed frequencies

of the variable values for each setting of the parent values. As before, we must be

careful to avoid zeroes when the data set is small.

Naive Bayes models

Probably the most common Bayesian network model used in machine learning is

the naive Bayes model. In this model, the ―class‖ variable C (which is to be

predicted) is the root and the ―attribute‖ variables Xi are the leaves. The model is

―naive‖ because it assumes that the attributes are conditionally independent of each

other, given the class. (The model in Figure 20.2(b) is a naive Bayes model with

just one attribute.) Assuming Boolean variables, the parameters are

= P (C = true); i1 = P (Xi = truejC = true); i2 = P (Xi = truejC = false):

The maximum-likelihood parameter values are found in exactly the same way as

for Fig-ure 20.2(b). Once the model has been trained in this way, it can be used to

SIET | Artificial Intelligence Notes By- Niraj

Kumar Tiwari

 [UNIT -4] [ECS-801]

classify new exam-ples for which the class variable C is unobserved. With observed

attribute values x1; : : : ; xn, the probability of each class is given by

Y

P(Cjx1; : : : ; xn) = P(C) P(xijC) :i

A deterministic prediction can be obtained by choosing the most likely class. Figure

20.3 shows the learning curve for this method when it is applied to the restaurant

problem from Chapter 18. The method learns fairly well but not as well as decision-

tree learning; this is presumably because the true hypothesis—which is a decision

tree—is not representable ex-actly using a naive Bayes model. Naive Bayes

learning turns out to do surprisingly well in a wide range of applications; the

boosted version (Exercise 20.5) is one of the most effective general-purpose

learning algorithms. Naive Bayes learning scales well to very large problems: with

n Boolean attributes, there are just 2n + 1 parameters, and no search is required to

find hML, the maximum-likelihood naive Bayes hypothesis. Finally, naive Bayes

learning has no difficulty with noisy data and can give probabilistic predictions

when appropriate.

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

 Learning with Complete Data

 1

se
t

0.9

o
n
 t

es
t

0.8
co

rr
ec

t

0.7

P
ro

p
o
rt

io
n

0.6

Decision

tree

0.5

Naive

Bayes

 0.4

 0 20 40 60 80 100

Training set size

Figure 20.3 The learning curve for naive Bayes learning applied to the restaurant problem from

Chapter 18; the learning curve for decision-tree learning is shown for comparison.

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

Maximum-likelihood parameter learning: Continuous models

Continuous probability models such as the linear-Gaussian model were introduced in Sec-tion

14.3. Because continuous variables are ubiquitous in real-world applications, it is im-portant to

know how to learn continuous models from data. The principles for maximum-likelihood

learning are identical to those of the discrete case.

Let us begin with a very simple case: learning the parameters of a Gaussian density function on a

single variable. That is, the data are generated as follows:

P (x) = p

1

e

(x)
2

:

2
2

2

The parameters of this model are the mean and the standard deviation . (Notice that the

normalizing ―constant‖ depends on, so we cannot ignore it.) Let the observed values be x1; : : : ;

xN . Then the log likelihood is

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

 N

1 e

(xj)
2

p
2

 N

(xj)

2

L = log 2
2
= N (

log

log)

 :

 j = 1
p
2

j =

1 2
2

 X X

Setting the derivatives to zero as usual, we

obtain

@L

=

 1 N

) = 0

=

 j
x
j

@

 2

j=1(x

j

)

N

(20.4)

P

 P

@L

=

N 1 N 2

= 0) = r

j
(x

j)
2

@ +
3

P
j=1(xj) P N :

That is, the maximum-likelihood value of the mean is the sample average and the maximum-

likelihood value of the standard deviation is the square root of the sample variance. Again, these

are comforting results that confirm ―commonsense‖ practice.

Now consider a linear Gaussian model with one continuous parent X and a continuous child Y .

As explained on page 502, Y has a Gaussian distribution whose mean depends linearly on the

value of X and whose standard deviation is fixed. To learn the conditional

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

 1

 0.8

P(y |x)

4 0.6

3.5

y

3

2.5

0.4

2

1.5

1

1 0.2

0.5

00

 0.8

0.2

0.4

 0.4
0.6

y

 0.6 0.8

1

0 0.2 0

 x

0 0.1

0.

2 0.3 0.4 0.5

0.

6 0.7 0.8 0.9 1

 x

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

 (a) (b)

distribution P (Y jX), we can maximize the conditional likelihood

P (yjx) = p

1

e

(y (1x+ 2))
2

: (20.5)

2
2

2

Here, the parameters are 1, 2, and . The data are a collection of (xj ; yj) pairs, as illustrated in

Figure 20.4. Using the usual methods (Exercise 20.6), we can find the maximum-likelihood

values of the parameters. Here, we want to make a different point. If we consider just the

Figure 20.4 (a) A linear Gaussian model described as y = 1 x + 2 plus Gaussian

noise with fixed variance. (b) A set of 50 data points generated from this model.

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

parameters 1 and 2 that define the linear relationship between x and y, it becomes clear that

maximizing the log likelihood with respect to these parameters is the same as minimizing the

numerator in the exponent of Equation (20.5):

N

E =
X
 (yj (1xj + 2))

2
 :

j = 1

The quantity (yj (1xj + 2)) is the error for (xj ; yj)—that is, the difference between the actual

value yj and the predicted value (1xj + 2)—so E is the well-known sum of squared errors. This

is the quantity that is minimized by the standard linear regression procedure. Now we can

understand why: minimizing the sum of squared errors gives the maximum-likelihood straight-

line model, provided that the data are generated with Gaussian noise of fixed variance.

Bayesian parameter learning

Maximum-likelihood learning gives rise to some very simple procedures, but it has some serious

deficiencies with small data sets. For example, after seeing one cherry candy, the maximum-

likelihood hypothesis is that the bag is 100% cherry (i.e., = 1:0). Unless one's hypothesis prior is

that bags must be either all cherry or all lime, this is not a reasonable conclusion. The Bayesian

approach to parameter learning places a hypothesis prior over the possible values of the

parameters and updates this distribution as data arrive.

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

 2.5

[5,5]

 6

2

 5

) 1.5

 [2,2]

)
4

=

=

3

P

(

[1,1]

P

(

1

2

 0.5

1

 0 0

 0 0.2 0.4 0.6 0.8 1

 Parameter

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

 (a) (b)

 Figure 20.5 Examples of the beta[a; b] distribution for different values of [a; b].

The candy example in Figure 20.2(a) has one parameter, : the probability that a ran-

 domly selected piece of candy is cherry flavored. In the Bayesian view, is the

Value of a random variable ; the hypothesis prior is just the prior distribution P().

Thus,

 P (=) is the prior probability that the bag has a fraction of cherry candies.

 If the parameter can be any value between 0 and 1, then P() must be a continuous

distribution that is nonzero only between 0 and 1 and that integrates to 1. The

uniform density

P () = U [0; 1]() is one candidate. (See Chapter 13.) It turns out that the uniform

density is a member of the family of beta distributions. Each beta distribution is

defined by two hyperparameters
4
 a and b such that

 beta[a; b]() =
a 1

(1)
b

1
 ; (20.6)

for in the range [0; 1]. The normalization constant

depends on a and b. (See Exercise 20.8.)

 Figure 20.5 shows what the distribution looks like for various values of a and b.

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

The mean value of the distribution is a=(a + b), so larger values of a suggest a belief

that

is closer to 1 than to 0. Larger values of a + b make the distribution more peaked,

suggest-

ing greater certainty about the value of . Thus, the beta family provides a useful

range of

 possibilities for the hypothesis prior.

 Besides its flexibility, the beta family has another wonderful property: if has a prior

beta[a; b], then, after a data point is observed, the posterior distribution foris also a

beta

distribution. The beta family is called the conjugate prior for the family of

distributions for

a Boolean variable.
5
 Let's see how this works. Suppose we observe a cherry candy;

then

P (jD1 = cherry) = P (D1 = cherry j)P ()

= 0
 beta[a; b]() =

0

a 1

(1)
b

1

= 0

a
(1)

b

1
 = beta[a + 1; b]() :

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

They are called hyper parameters because they parameterize a distribution over , which is itself a

parameter. Other conjugate priors include the Dirichlet family for the parameters of a discrete

multi-valued distribution

and the Normal–Wish art family for the parameters of a Gaussian distribution. See Bernardo

and Smith (1994).

Thus, after seeing a cherry candy, we simply increment the a parameter to get the posterior;

similarly, after seeing a lime candy, we increment the b parameter. Thus, we can view the a and b

hyperparameters as virtual counts, in the sense that a prior beta[a; b] behaves exactly as if we

had started out with a uniform prior beta[1; 1] and seen a 1 actual cherry candies and b 1 actual

lime candies.By examining a sequence of beta distributions for increasing values of a and b,

keeping the proportions fixed, we can see vividly how the posterior distribution over the

parameter changes as data arrive. For example, suppose the actual bag of candy is 75% cherry.

Fig-ure 20.5(b) shows the sequence beta[3; 1], beta[6; 2], beta[30; 10]. Clearly, the distribution is

converging to a narrow peak around the true value of . For large data sets, then, Bayesian

learning (at least in this case) converges to give the same results as maximum-likelihood

learning.The network in Figure 20.2(b) has three parameters, , 1, and 2, where 1 is the probability

of a red wrapper on a cherry candy and 2 is the probability of a red wrapper on a lime candy. The

Bayesian hypothesis prior must cover all three parameters—that is, we need to specify P(; 1; 2).

Usually, we assume parameter independence:

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

P(; 1; 2) = P()P(1)P(2) :

With this assumption, each parameter can have its own beta distribution that is updated sep-

arately as data arrive.

Once we have the idea that unknown parameters can be represented by random variables such as

, it is natural to incorporate them into the Bayesian network itself. To do this, we also need to

make copies of the variables describing each instance. For example, if we have observed three

candies then we need Flavor 1, Flavor 2, Flavor 3 and Wrapper 1, Wrapper 2, Wrapper 3. The

parameter variable determines the probability of each Flavor i variable:

P (Flavor i = cherry j =) = :

Similarly, the wrapper probabilities depend on 1 and 2, For example,

P (Wrapper i = red jFlavor i = cherry; 1 = 1) = 1 :

Now, the entire Bayesian learning process can be formulated as an inference problem in a

suitably constructed Bayes net, as shown in Figure 20.6. Prediction for a new instance is done

simply by adding new instance variables to the network, some of which are queried. This

formulation of learning and prediction makes it clear that Bayesian learning requires no extra

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

―principles of learning.‖ Furthermore, there is, in essence, just one learning algorithm, i.e., the

inference algorithm for Bayesian networks.

Learning Bayes net structures

So far, we have assumed that the structure of the Bayes net is given and we are just trying to

learn the parameters. The structure of the network represents basic causal knowledge about the

domain that is often easy for an expert, or even a naive user, to supply. In some cases, however,

the causal model may be unavailable or subject to dispute—for example, certain corporations

have long claimed that smoking does not cause cancer—so it is important to

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

Flavor1 Flavor2 Flavor3

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

Wrapper1 Wrapper2 Wrapper3

1 2

Figure A Bayesian network that corresponds to a Bayesian learning process. Poste-rior

distributions for the parameter variables, 1, and 2 can be inferred from their prior distributions

and the evidence in the Flavor i and Wrapper i variables.

understand how the structure of a Bayes net can be learned from data. At present, structural

learning algorithms are in their infancy, so we will give only a brief sketch of the main ideas.

The most obvious approach is to search for a good model. We can start with a model containing

no links and begin adding parents for each node, fitting the parameters with the methods we have

just covered and measuring the accuracy of the resulting model. Alternatively, we can start with

an initial guess at the structure and use hill-climbing or simulated annealing search to make

modifications, retuning the parameters after each change in the structure. Modifications can

include reversing, adding, or deleting arcs. We must not introduce cycles in the process, so many

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

algorithms assume that an ordering is given for the variables, and that a node can have parents

only among those nodes that come earlier in the ordering (just as in the construction process

Chapter 14). For full generality, we also need to search over possible orderings.

There are two alternative methods for deciding when a good structure has been found. The first

is to test whether the conditional independence assertions implicit in the structure are actually

satisfied in the data. For example, the use of a naive Bayes model for the restaurant problem

assumes that

P(Fri =Sat ; Bar jWillWait) = P(Fri =Sat jWillWait)P(Bar jWillWait)

and we can check in the data that the same equation holds between the corresponding condi-

tional frequencies. Now, even if the structure describes the true causal nature of the domain,

statistical fluctuations in the data set mean that the equation will never be satisfied exactly, so we

need to perform a suitable statistical test to see if there is sufficient evidence that the

independence hypothesis is violated. The complexity of the resulting network will depend

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

on the threshold used for this test—the stricter the independence test, the more links will be

added and the greater the danger of over fitting.

An approach more consistent with the ideas in this chapter is to the degree to which the proposed

model explains the data (in a probabilistic sense). We must be careful how we measure this,

however. If we just try to find the maximum-likelihood hypothesis, we will end up with a fully

connected network, because adding more parents to a node cannot decrease the likelihood

(Exercise 20.9). We are forced to penalize model complexity in some way. The MAP (or MDL)

approach simply subtracts a penalty from the likelihood of each structure (after parameter

tuning) before comparing different structures. The Bayesian approach places a joint prior over

structures and parameters. There are usually far too many structures to sum over (super

exponential in the number of variables), so most practitioners use MCMC to sample over

structures.

Penalizing complexity (whether by MAP or Bayesian methods) introduces an important

connection between the optimal structure and the nature of the representation for the conditionals

distributions in the network. With tabular distributions, the complexity penalty for a node's

distribution grows exponentially with the number of parents, but with, say, noisy-OR

distributions, it grows only linearly. This means that learning with noisy-OR (or other com-

pactly parameterized) models tends to produce learned structures with more parents than does

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

learning with tabular distributions.

LEARNING WITH HIDDEN VARIABLES: THE EM ALGORITHM

The preceding section dealt with the fully observable case. Many real-world problems have

LATENT VARIABLES hidden variables (sometimes called latent variables) which are not

observable in the data that are available for learning. For example, medical records often include

the observed symptoms, the treatment applied, and perhaps the outcome of the treatment, but

they seldom contain a direct observation of the disease itself!
6
 One might ask, ―If the disease is

not observed, why not construct a model without it?‖ The answer appears in Figure 20.7, which

shows a small, fictitious diagnostic model for heart disease. There are three observable

predisposing factors and three observable symptoms (which are too depressing to name).

Assume that each variable has three possible values (e.g., none, moderate, and severe). Re-

moving the hidden variable from the network in (a) yields the network in (b); the total number of

parameters increases from 78 to 708. Thus, latent variables can dramatically reduce the number

of parameters required to specify a Bayesian network. This, in turn, can dramatically reduce the

amount of data needed to learn the parameters.

Hidden variables are important, but they do complicate the learning problem. In Figure 20.7(a),

for example, it is not obvious how to learn the conditional distribution for Heart Disease, given

its parents, because we do not know the value of Heart Disease in each case; the same problem

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

arises in learning the distributions for the symptoms. This section Learning with Hidden

Variables: The EM Algorithm

N

2 2 2 2 2 2

Smoking Diet Exercise Smoking Diet Exercise

54

HeartDis

ease

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

6 6 6 54 162 486

Symptom

1

Symptom

2 Symptom3 Symptom1 Symptom2

Symptom

3

 (a) (b)

Figure (a) A simple diagnostic network for heart disease, which is assumed to be a hidden

variable. Each variable has three possible values and is labeled with the number of independent

parameters in its conditional distribution; the total number is 78. (b) The equivalent network with

Heart Disease removed. Note that the symptom variables are no longer conditionally

independent given their parents. This network requires 708 parameters describes an algorithm

called expectation–maximization, or EM, that solves this problem in a very general way. We

will show three examples and then provide a general description. The algorithm seems like

magic at first, but once the intuition has been developed, one can find applications for EM in a

huge range of learning problems.

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

Unsupervised clustering: Learning mixtures of Gaussians

Unsupervised clustering is the problem of discerning multiple categories in a

collection of objects. The problem is unsupervised because the category labels are

not given. For example, suppose we record the spectra of a hundred thousand stars;

are there different types of stars revealed by the spectra, and, if so, how many and

what are their characteristics? We are all familiar with terms such as ―red giant‖

and ―white dwarf,‖ but the stars do not carry these labels on their hats—

astronomers had to perform unsupervised clustering to identify these categories.

Other examples include the identification of species, genera, orders, and so on in

the Linnæan taxonomy of organisms and the creation of natural kinds to categorize

ordinary objects

Unsupervised clustering begins with data. Figure (a) shows 500 data points, each of

which specifies the values of two continuous attributes. The data points might

correspond to stars, and the attributes might correspond to spectral intensities at two

particular frequencies. Next, we need to understand what kind of probability

distribution might have generated the data. Clustering presumes that the data are

generated from a mixture distribution, P . Such a distribution has k components,

each of which is a distribution in its own right. A data point is generated by first

choosing a component and then generating a sample from that component. Let the

random variable C denote the component, with values 1; : : : ; k; then the mixture

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

Figure 20.8 (a) 500 data points in two dimensions, suggesting the presence of three clus-ters. (b)

A Gaussian mixture model with three components; the weights (left-to-right) are 0.2, 0.3, and

0.5. The data in (a) were generated from this model. (c) The model reconstructed by EM from the

data in (b).

1 1 1

0.8 0.8 0.8

0.6 0.6 0.6

0.4 0.4 0.4

0.2 0.2 0.2

0 0 0

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 1

 (a) (b) (c)

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

distribution is given by k

X

P (x) = P (C = i) P (xjC = i) ;

i = 1

where x refers to the values of the attributes for a data point. For continuous data, a natural

choice for the component distributions is the multivariate Gaussian, which gives the so-called

mixture of Gaussians family of distributions. The parameters of a mixture of Gaussians are wi =

P (C = i) (the weight of each component), i (the mean of each component), and i (the covariance

of each component). Figure 20.8(b) shows a mixture of three Gaussians; this mixture is in fact

the source of the data in (a).

The unsupervised clustering problem, then, is to recover a mixture model like the one in Figure

20.8(b) from raw data would be easy to recover the component Gaussians: we could just select

all the data points a given component and then apply (a multivariate version of) Equation (20.4)

for fitting the parameters of a Gaussian to a set of data. On the other hand, if we knew the

parameters of each component, then we could, at least in a probabilistic sense, assign each data

point to a component. The problem is that we know neither the assignments nor the parameters.

The basic idea of EM in this context is to pretend that we know the the parameters of the model

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

and then to infer the probability that each data point belongs to each component. After that, we

refit the components to the data, where each component is fitted to the entire data set with each

point weighted by the probability that it belongs to that component. The process iterates until

convergence. Essentially, we are ―completing‖ the data by inferring probability distributions over

the hidden variables—which component each data point belongs to—based on the current model.

For the mixture of Gaussians, we initialize the mixture model parame-ters arbitrarily and then

iterate the following two steps:

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

1. E-step: Compute the probabilities pij = P (C = ijxj), the probability that datum

xj was generated by component i. By Bayes' rule, we have pij = P (xj jC = i)P (C = i). The

term P (xj jC = i) is just the probability at xj of the ith Gaussian, and the term P (C = i) is

just the weight parameter for the ith Gaussian. Define pi =
P

j pij .

2. M-step: Compute the new mean, covariance, and component weights as

follows:

i pij xj =pi

 j

 X

i
X
 pij xj xj

>
=pi

 j

wi pi :

The E-step, or expectation step, can be viewed as computing the expected values pij of the

INDICATOR VARIABLE hidden indicator variables Zij , where Zij is 1 if datum xj was

generated by the i
th

 component and 0 otherwise. The M-step, or maximization step, finds the new

values of the parameters that maximize the log likelihood of the data, given the expected values

of the hidden indicator variables.

The final model that EM learns when it is applied to the data in Figure 20.8(a) is shown in Figure

20.8(c); it is virtually indistinguishable from the original model from which the data were

generated. Figure 20.9(a) plots the log likelihood of the data according to the current model as

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

EM progresses. There are two points to notice. First, the log likelihood for the final learned

model slightly exceeds that of the original model, from which the data were generated. This

might seem surprising, but it simply reflects the fact that the data were generated randomly and

might not provide an exact reflection of the underlying model. The second point is that EM

increases the log likelihood of the data at every iteration. This fact can be proved in general.

Furthermore, under certain conditions, EM can be proven to reach a local maximum in

likelihood. (In rare cases, it could reach a saddle point or even a local minimum.) In this sense,

EM resembles a gradient-based hill-climbing algorithm, but notice that it has no ―step size‖

parameter!.

Things do not always go as well as Figure 20.9(a) might suggest. It can happen, for example, that

one Gaussian component shrinks so that it covers just a single data point. Then its variance will

go to zero and its likelihood will go to infinity! Another problem is that two components can

―merge,‖ acquiring identical means and variances and sharing their data points. These kinds of

degenerate local maxima are serious problems, especially in high dimensions. One solution is to

place priors on the model parameters and to apply the MAP version of EM. Another is to restart

a component with new random parameters if it gets too small or too close to another component.

It also helps to initialize the parameters with reasonable values.

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

Learning Bayesian networks with hidden variables

To learn a Bayesian network with hidden variables, we apply the same insights that worked for

mixtures of Gaussians. Figure 20.10 represents a situation in which there are two bags of candies

that have been mixed together. Candies are described by three features: in addition to the Flavor

and the Wrapper, some candies have a Hole in the middle and some do not.

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

 700

-

197

5

 600

-

198

0

L

500

L

-

198

5

400

 -

199

0

-l
ik

el
ih

o
o
d

-l
ik

el
ih

o
o
d

300

-

199

5

 -

200

0

200

 -

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

100

200

5

L
o
g

L
o
g

-

201

0

0

 -

201

5

-100

 -

202

0

-200

 -

202

5

 0 5 10 15 20 0 20 40 60 80 100 120

Iteration number Iteration number

(a) (b)

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

Figure 20.9 Graphs showing the log-likelihood of the data, L, as a function of the EM iteration.

The horizontal line shows the log-likelihood according to the true model. (a) Graph for the

Gaussian mixture model in Figure 20.8. (b) Graph for the Bayesian network in Figure 20.10(a).

P (Bag=1)

Bag C

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

Bag P(F=cherry | B)

1 F1

2 F2

Flavor Wrapper Holes X

 (a) (b)

Figure 20.10 (a) A mixture model for candy. The proportions of different flavors, wrap-pers, and

numbers of holes depend on the bag, which is not observed. (b) Bayesian network for a Gaussian

mixture. The mean and covariance of the observable variables X depend on the component C.

The distribution of candies in each bag is described by a naive Bayes model: the features are

independent, given the bag, but the conditional probability distribution for each feature depends

on the bag. The parameters are as follows: is the prior probability that a candy comes from Bag

1; F 1 and F 2 are the probabilities that the flavor is cherry, given that the candy comes from Bag 1

and Bag 2 respectively; W 1 and W 2 give the probabilities that the wrapper is red; and H 1 and H 2

give the probabilities that the candy has a hole. Notice that

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

the overall model is a mixture model. (In fact, we can also model the mixture of Gaussians as a

Bayesian network, as shown in Figure 20.10(b).) In the figure, the bag is is a hidden variable

because, once the candies have been mixed together, we no longer know which bag each candy

came from. In such a case, can we recover the descriptions of the two bags by observing candies

from the mixture?

Let us work through an iteration of EM for this problem. First, let's look at the data. We

generated 1000 samples from a model whose true parameters are

= 0:5; F 1 = W 1 = H 1 = 0:8; F 2 = W 2 = H 2 = 0:3 : (20.7)

That is, the candies are equally likely to come from either bag; the first is mostly cherries with

red wrappers and holes; the second is mostly limes with green wrappers and no holes. The counts

for the eight possible kinds of candy are as follows:

 W = red W = green

 H = 1 H = 0 H = 1 H = 0

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

 F = cherry 273 93 104 90

 F = lime 79 100 94 167

We start by initializing the parameters. For numerical simplicity, we will

choose
7

(0) = 0:6;
(0)

 = (0) =
(0)

 = 0:6;
(0)

 = (0) = (0) = 0:4 : (20.8)

F 1 W 1 H 1 F 2 W 2 H 2

First, let us work on the parameter. In the fully observable case, we would estimate this directly

from the observed counts of candies from bags 1 and 2. Because the bag is a hidden

variable, we calculate the expected counts instead. The expected count
^
 is the

N (Bag = 1)

sum, over all candies, of the probability that the candy came from bag 1:

N

(1) ^

= N (Bag = 1)=N = P (Bag = 1j avor j ; wrapper j ; holes j)=N :
X

j = 1

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

These probabilities can be computed by any inference algorithm for Bayesian networks. For a

naive Bayes model such as the one in our example, we can do the inference ―by hand,‖ using

Bayes' rule and applying conditional independence:

 1

N P (avor j jBag = 1)P (wrapper j jBag = 1)P (holes j jBag =

1)P (Bag = 1)

(1) =

:

N j = 1

i P (avor j jBag = i)P (wrapper j jBag = i)P (holes j jBag =

i)P (Bag = i)

 X

P

(Notice that the normalizing constant also depends on the parameters.) Applying this formula to,

say, the 273 red-wrapped cherry candies with holes, we get a contribution of

273 (0) (0) (0) (0)

F 1 W 1 H 1

0:22797 :

100

0

F
(0)

1 W
(0)

1 H
(0)

1 (0) + F
(0)

2 W
(0)

2

H
(0)

2(1(0))

Continuing with the other seven kinds of candy in the table of counts, we obtain
(1)

 = 0:6124.

7
 It is better in practice to choose them randomly, to avoid

local maxima due to symmetry.

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

 R0

P(R

1) R0

P(R

1) R1

P(R2

)

R

2

P(R

3)

R

3

P(R

4)

P(R

0) t 0.7

P(R

0) t 0.7 t 0.7 t 0.7 t 0.7

f

0.3

f 0.3 f 0.3

f 0.3

 f 0.3

0.7

0.7

Rain

Rain1

Rain

Rain

1

Rain

2

Rain

3

 Rain4

 0 0

Umbre

lla1

Umbrell

a1

Umbr

ella2

Umbrell

a3 Umbrella4

R
1

P(U

1) R1

P(U

1) R2

P(U

2) R3

P(U3

) R4

P(U

4)

 t 0.9 t 0.9 t

0.

9 t 0.9 t 0.9

 f 0.2 f 0.2 f

0.

2 f 0.2 f 0.2

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

Figure 20.11 An unrolled dynamic Bayesian network that represents a hidden Markov model

(repeat of Figure 15.14).

Now let us consider the other parameters, such as F 1. In the fully observable case, we would

estimate this directly from the observed counts of cherry and lime candies from bag 1. The

expected count of cherry candies from bag 1 is given by

X

P (Bag = 1jFlavor j = cherry ; wrapper j ; holes j) :

j:Flavor j = cherry

Again, these probabilities can be calculated by any Bayes net algorithm.

process, we obtain the new values of all the parameters:

(1)
 = 0:6124; F

(1)
1 = 0:6684; W

(1)
1 = 0:6483; H

(1)
1 = 0:6558; F

(1)
2 = 0:3887; W

(1)
2 =

0:3817; H
(1)

2 = 0:3827 :

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

Completing this

(20.9)

The log likelihood of the data increases from about 2044 initially to about 2021 after the first

iteration, as shown in Figure 20.9(b). That is, the update improves the likelihood itself by a factor

of about e
23

 10
10

. By the tenth iteration, the learned model is a better fit than the original model (L

= 1982:214). Thereafter, progress becomes very slow. This is not uncommon with EM, and many

practical systems combine EM with a gradient-based algorithm such as Newton–Raphson (see

Chapter 4) for the last phase of learning.

The general lesson from this example is that the parameter updates for Bayesian net-work

learning with hidden variables are directly available from the results of inference on each

example. Moreover, only local posterior probabilities are needed for each parameter.

For the general case in which we are learning the conditional probability parameters for each

variable Xi, given its parents —that is, ijk = P (Xi = xij jPa i = pa ik)—the update is given by the

normalized expected counts as follows:

^ ^

ijk N (Xi = xij ; Pa i = paik)=N (Pa i = paik) :

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

The expected counts are obtained by summing over the examples, computing the probabilities P

(Xi = xij ; Pa i = pa ik) for each by using any Bayes net inference algorithm. For the exact

algorithms—including variable elimination—all these probabilities are obtainable directly as a

by-product of standard inference, with no need for extra computations specific to learning.

Moreover, the information needed for learning is available locally for each parameter.

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

Learning hidden Markov models

Our final application of EM involves learning the transition probabilities in hidden Markov

models (HMMs). Recall from Chapter 15 that a hidden Markov model can be represented by a

dynamic Bayes net with a single discrete state variable, as illustrated in Figure 20.11. Each data

point consists of an observation sequence of finite length, so the problem is to learn the transition

probabilities from a set of observation sequences (or possibly from just one long sequence).

We have already worked out how to learn Bayes nets, but there is one complication: in Bayes

nets, each parameter is distinct; in a hidden Markov model, on the other hand, the individual

transition probabilities from state i to state j at time t, ijt = P (Xt+1 = jjXt = i), are repeated across

time—that is, ijt = ij for all t. To estimate the transition probability from state i to state j, we

simply calculate the expected proportion of times that the system undergoes a transition to state j

when in state i:

X ^

ij N (Xt+1

t

 ^

= j; Xt = i)=N (Xt = i) :

t

X

Again, the expected counts are computed by any HMM inference algorithm. The

forward– backward algorithm shown in Figure 15.4 can be modified very easily

to compute the neces-sary probabilities. One important point is that the probabilities

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

required are those obtained by smoothing rather than filtering; that is, we need to

pay attention to subsequent evidence in estimating the probability that a particular

transition occurred. As we said in Chapter 15, the evidence in a murder case is

usually obtained after the crime (i.e., the transition from state i to state j) occurs.

The general form of the EM algorithm

We have seen several instances of the EM algorithm. Each involves computing

expected values of hidden variables for each example and then recomputing the

parameters, using the expected values as if they were observed values. Let x be all

the observed values in all the examples, let Z denote all the hidden variables for all

the examples, and let be all the parameters for the probability model. Then the EM

algorithm is

(i+1)
 = argmax

X
 P (Z = zjx;

(i)
)L(x; Z = zj) :

z

This equation is the EM algorithm in a nutshell. The E-step is the computation of

the sum-mation, which is the expectation of the log likelihood of the ―completed‖

data with respect to the distribution P (Z = zjx;
(i)

), which is the posterior over the

hidden variables, given the data. The M-step is the maximization of this expected

log likelihood with respect to the parameters. For mixtures of Gaussians, the hidden

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

variables are the Zij s, where Zij is 1 if example j was generated by component i. For

Bayes nets, the hidden variables are the values of the unobserved variables for each

example. For HMMs, the hidden variables are the i ! j transitions. Starting from the

general form, it is possible to derive an EM algorithm for a specific application

once the appropriate hidden variables have been identified.

As soon as we understand the general idea of EM, it becomes easy to derive all

sorts of variants and improvements. For example, in many cases the E-step—the

computation of

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

posteriors over the hidden variables—is intractable, as in large Bayes nets. It turns out that one

can use an approximate E-step and still obtain an effective learning algorithm. With a sampling

algorithm such as MCMC (see Section 14.5), the learning process is very intuitive: each state

(configuration of hidden and observed variables) visited by MCMC is treated ex-actly as if it

were a complete observation. Thus, the parameters can be updated directly after each MCMC

transition. Other forms of approximate inference, such as variational and loopy methods, have

also proven effective for learning very large networks.

Learning Bayes net structures with hidden variables

In Section 20.2, we discussed the problem of learning Bayes net structures with complete data.

When hidden variables are taken into consideration, things get more difficult. In the simplest

case, the hidden variables are listed along with the observed variables; although their values are

not observed, the learning algorithm is told that they exist and must find a place for them in the

network structure. For example, an algorithm might try to learn the structure shown in Figure

20.7(a), given the information that HeartDisease (a three-valued variable) should be included in

the model. If the learning algorithm is not told this information, then there are two choices: either

pretend that the data is really complete—which forces the algorithm to learn the parameter-

intensive model in Figure 20.7(b)—or invent new hidden variables in order to simplify the

model. The latter approach can be implemented by including new modification choices in the

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

structure search: in addition to modifying links, the algorithm can add or delete a hidden variable

or change its arity. Of course, the algorithm will not know that the new variable it has invented is

called HeartDisease; nor will it have meaningful names for the values. Fortunately, newly

invented hidden variables will usually be connected to pre-existing variables, so a human expert

can often inspect the local conditional distributions involving the new variable and ascertain its

meaning.

As in the complete-data case, pure maximum-likelihood structure learning will result in a

completely connected network (moreover, one with no hidden variables), so some form of

complexity penalty is required. We can also apply MCMC to approximate Bayesian learning.

For example, we can learn mixtures of Gaussians with an unknown number of components by

sampling over the number; the approximate posterior distribution for the number of Gaussians is

given by the sampling frequencies of the MCMC process.

So far, the process we have discussed has an outer loop that is a structural search pro-cess and an

inner loop that is a parametric optimization process. For the complete-data case, the inner loop is

very fast—just a matter of extracting conditional frequencies from the data set. When there are

hidden variables, the inner loop may involve many iterations of EM or a gradient-based

algorithm, and each iteration involves the calculation of posteriors in a Bayes net, which is itself

an NP-hard problem. To date, this approach has proved impractical for learning complex models.

One possible improvement is the so-called structural EM algo-rithm, which operates in much

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

the same way as ordinary (parametric) EM except that the algorithm can update the structure as

well as the parameters. Just as ordinary EM uses the current parameters to compute the expected

counts in the E-step and then applies those counts in the M-step to choose new parameters,

structural EM uses the current structure to compute expected counts and then applies those

counts in the M-step to evaluate the likelihood for potential new structures. (This contrasts with

the outer-loop/inner-loop method, which com-putes new expected counts for each potential

structure.) In this way, structural EM may make several structural alterations to the network

without once recomputing the expected counts, and is capable of learning nontrivial Bayes net

structures. Nonetheless, much work remains to be done before we can say that the structure

learning problem is solved.

INSTANCE-BASED LEARNING

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

So far, our discussion of statistical learning has focused primarily on fitting the parameters of a

restricted family of probability models to an unrestricted data set. For example, unsupervised

clustering using mixtures of Gaussians assumes that the data are explained by the sum a fixed

number of Gaussian distributions. We call such methods parametric learning. Para-metric

learning methods are often simple and effective, but assuming a particular restricted family of

models often oversimplifies what's happening in the real world, from where the data come. Now,

it is true when we have very little data, we cannot hope to learn a complex and detailed model,

but it seems silly to keep the hypothesis complexity fixed even when the data set grows very

large!

In contrast to parametric learning, nonparametric learning methods allow the hypoth-esis

complexity to grow with the data. The more data we have, the wigglier the hypothesis can be.

We will look at two very simple families of nonparametric instance-based learning (or

memory-based learning) methods, so called because they construct hypotheses directly from

the training instances themselves.

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

Nearest-neighbor models

 The key idea of nearest-neighbor models is that the properties of

any particular input point x are likely to be similar to those of points in the

neighborhood of x. For example, if we want to do density estimation—that is,

estimate the value of an unknown probability density at x— then we can simply

measure the density with which points are scattered in the neighborhood of x. This

sounds very simple, until we realize that we need to specify exactly what we mean

by ―neighborhood.‖ If the neighborhood is too small, it won't contain any data

points; too large, and it may include all the data points, resulting in a density

estimate that is the same everywhere. One solution is to define the neighborhood to

be just big enough to include k points, where k is large enough to ensure a

meaningful estimate. For fixed k, the size of the neighborhood varies—where data

are sparse, the neighborhood is large, but where data are dense, the neighborhood is

small. Figure 20.12(a) shows an example for data scattered in two dimensions.

Figure 20.13 shows the results of k-nearest-neighbor density estimation from these

data with k = 3, 10, and 40 respectively. For k = 3, the density estimate at any point

is based on only 3 neighboring points and is highly variable. For k = 40, the

estimate provides a good reconstruction of the true density shown in Figure

20.12(b). For k = 40, the neighborhood becomes too large and structure of the data

is altogether lost. In practice, using

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

1

 Density

0.8

18

 16

0.6

 14

12

 10

 8

0.4 6

 4

1

2

0.8

0

0.2

 0.6

 0 0.2 0.4

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

0.4

0.6

0.2

0.8

0

1

0

0 0.2 0.4 0.6 0.8 1

 (a) (b)

Figure 20.12 (a) A 128-point subsample of the data shown in Figure 20.8(a), together with two

query points and their 10-nearest-neighborhoods. (b) A 3-D plot of the mixture of Gaussians

from which the data were generated.

 Density Density Density

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

 1 1 1

 0.8 0.8 0.8

0

0.

2

 0.6

0

0.

2

 0.6

0

0.

2

 0.6

0.

4

 0.4 0.

4

 0.4 0.

4

 0.4

0.6
0.8 0

0.2

0.6
0.8 0

0.2

0.6
0.8 0

0.2

 (a) (b) (c)

Figure 20.13 Density estimation using k-nearest-neighbors, applied to the data in Fig-ure

20.12(a), for k = 3, 10, and 40 respectively.

a value of k somewhere between 5 and 10 gives good results for most low-dimensional data sets.

A good value of k can also be chosen by using cross-validation.

To identify the nearest neighbors of a query point, we need a distance metric, D(x1; x2). The two-

dimensional example in Figure 20.12 uses Euclidean distance. This is inappropriate when each

dimension of the space is measuring something different—for example, height and weight—

because changing the scale of one dimension would change the set of nearest neighbors. One

solution is to standardize the scale for each dimension. To do this, we measure the standard

deviation of each feature over the whole data set and express feature values as multiples of the

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

standard deviation for that feature. (This is a special case of the Mahalanobis distance, which

takes into account the covariance of the features as well.) Finally, for discrete features we can

use the Hamming distance, which defines D(x1; x2) to be the number of features on which x1

and x2 differ.

Density estimates like those shown in Figure 20.13 define joint distributions over the input

space. Unlike a Bayesian network, however, an instance-based representation cannot contain

hidden variables, which means that we cannot perform unsupervised clustering as we did with

the mixture-of-Gaussians model. We can still use the density estimate to predict a target value y

given input feature values x by calculating P (yjx) = P (y; x)=P (x), provided that the training

data include values for the target feature.

It is also possible to use the nearest-neighbor idea for direct supervised learning. Given a test

example with input x, the output y = h(x) is obtained from the y-values of the k nearest neighbors

of x. In the discrete case, we can obtain a single prediction by majority vote. In the continuous

case, we can average the k values or do local linear regression, fitting a hyper plane to the k

points and predicting the value at x according to the hyper plane.

The k-nearest-neighbor learning algorithm is very simple to implement, requires little in the way

of tuning, and often performs quite well. It is a good thing to try first on a new learning problem.

For large data sets, however, we require an efficient mechanism for finding the nearest neighbors

of a query point x—simply calculating the distance to every point would take far too long. A

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

variety of ingenious methods have been proposed to make this step efficient by preprocessing the

training data. Unfortunately, most of these methods do not scale well with the dimension of the

space (i.e., the number of features).

High-dimensional spaces pose an additional problem, namely that nearest neighbors in such

spaces are usually a long way away! Consider a data set of size N in the d-dimensional unit

hypercube, and assume hypercubic neighborhoods of side b and volume b
d
. (The same argument

works with hyper spheres, but the formula for the volume of a hyper sphere is more

complicated.) To contain k points, the average neighborhood must occupy a fraction k=N of the

entire volume, which is 1. Hence, b
d
 = k=N , or b = (k=N)

1=d
. So far, so good. Now let the

number of features d be 100 and let k be 10 and N be 1,000,000. Then we have b 0:89—that is,

the neighborhood has to span almost the entire input space! This suggests that nearest-neighbor

methods cannot be trusted for high-dimensional data. In low dimensions there is no problem;

with d = 2 we have b = 0:003.

Kernel models

 In a kernel model, we view each training instance as generating a little density function—a

kernel function—of its own. The density estimate as a whole is just the normalized sum of all

 the little kernel functions. A training instance at xi will generate a kernel function K(x; xi)

 that assigns a probability to each point x in the space. Thus, the density estimate is

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

1
N

X

P (
x
) = N i=1 K(

x
;

x
i) :

Densit

y Density Density

 1 1 1

 0.8 0.8 0.8

0

0.

2

 0.6

0

0.

2

 0.6

0

0.

2

 0.6

0.

4

 0.4 0.

4

 0.4 0.

4

 0.4

0.60.8 0

0.2

0.60.8 0

0.2

0.60.8 0

0.2

 (a) (b) (c)

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

Figure 20.14 Kernel density estimation for the data in Figure 20.12(a), using Gaussian kernels

with w = 0:02, 0:07, and 0:20 respectively.

The kernel function normally depends only on the distance D(x; xi) from x to the instance xi. The

most popular kernel function is (of course) the Gaussian. For simplicity, we will assume

spherical Gaussians with standard deviation w along each axis, i.e.,

 D(x;x)
2

 1

i2w
2

K(
x
;

x
i) = (w2

p
2)d

e
;

where d is the number of dimensions in x. We still have the problem of choosing a suitable value

for w; as before, making the neighborhood too small gives a very spiky estimate—see Figure

20.14(a). In (b), a medium value of w gives a very good reconstruction. In (c), too large a

SIET | Artificial Intelligence Notes By- Niraj Kumar Tiwari

 [UNIT -4] [ECS-801]

neighborhood results in losing the structure altogether. A good value of w can be chosen by using

cross-validation. Supervised learning with kernels is done by taking a weighted combination of

all the predictions from the training instances. (Compare this with k-nearest-neighbor prediction,

which takes an unweighted combination of the nearest k instances.) The weight of the ith

instance for a query point x is given by the value of the kernel K(x; xi). For a discrete prediction,

we can take a weighted vote; for a continuous prediction, we can take weighted average or a

weighted linear regression. Notice that making predictions with kernels requires looking at every

training instance. It is possible to combine kernels with nearest-neighbor indexing schemes to

make weighted predictions from just the nearby instances.

 NEURAL NETWORKS

A neuron is a cell in the brain whose principal function is the collection, processing, and

dissemination of electrical signals. Figure showed a schematic diagram of a typical neuron. The

brain's information-processing capacity is thought to emerge primarily from networks of such

neurons.

