- What are nanomaterials? Name some methods by which noncrystalline materials are produced.
- Explain in brief Grifith's Theory of Brittle Fracture. (e)
- Explain the mechanism of fatigue.

Printed Pages-4

EME301

(Following Paper ID and Roll No. to be filled in your Answer Book)											
PAPER ID: 0428	Roll No.										
										_	

B.Tech.

(SEM. III) THEORY EXAMINATION 2011-12 MATERIALS SCIENCE IN ENGINEERING

Time: 3 Hours

Total Marks: 100

Note:—Attempt all questions.

- Attempt any four of the following: $(4 \times 5 = 20)$
 - What is the importance of material in Engineering?
 - How are atoms bonded in metallic materials? On the basis of these bondings explain the properties of metals.
 - (c) What are Bravais Lattices and why are they limited to 14 in number?
 - (d) Find the interplaner spacing of (211) plane for BCC iron having a lattice parameter of 2.866 Å. If a monochromatic radiation of wavelength of 1.542 Å is used, what will be the diffraction angle during X-ray diffraction?
 - (e) Draw the (1,1, T) plane on a BCT (body centered tetragonal) unit cell. Also show its interaction with (1,1,0) plane.

- (f) Explain how dislocation move during plastic deformation and during creep.
- 2. Attempt any four of the following: (4×5=20)
 - (a) Explain how impact testing of a material is carried out.
 What information is obtained by impact testing?
 - (b) Explain the phenomenon of creep. Name some alloys that are creep resistant.
 - (c) An alloy having 0.3% C and rest iron is observed under the microscope. Draw approximately the micrograph will look like. Also label the various phases present.
 - (d) Draw the phase diagram of two metals A and B having complete solid and liquid solubility. The meting point of A is 600°C and that of B is 800°C.
 - (e) Explain Gibbs Phase Rule. How is it used?
 - (f) Write down the peritectic and peritectoid reaction. Draw a hypothetical phase diagram of two metals and show a peritectic reaction on that phase diagram. (Draw complete phase diagram)
- 3. Attempt any two of the following: $(2\times10=20)$
 - (a) What are the different types of carbon steels commonly available? What are the effects of alloying elements on the properties of steel?

- (b) Explain some of the methods used for case hardening of steel. Also name some application where case hardened steels are used.
- (c) Write the composition, properties and uses of different typesof brasses and bronzes.
- 4. Attempt any two of the following: $(2\times10=20)$
 - (a) Explain the domain theory of magnetism. Also explain what is ferromagnetism, antiferromagnetism and ferrimagnetism.
 - (b) Differentiate between conductors, semi-conductors and insulators based on the energy band concept. How does the conductivity of semi-conductors increases by doping?
 - (c) What is superconductivity and super conducting transition temperature? Explain what is 'Messier Effect' shown by super-conducting material. What are its possible uses?
- 5. Attempt any four of the following: $(4\times5=20)$
 - (a) What are some methods by which processing of ceramic materials is carried out? What are the applications of ceramic materials?
 - (b) What are the different types of polymerization reactions?

 How do they affect the properties of polymers?
 - (c) What are composite materials? Classify the different types of composite materials.

3