Experiment No:1
Write a Python Program to Find the Roots of a Quadratic Equation

Problem Description:
The program takes the coefficients of an equation and finds the roots of the equation.
Problem Solution:
1. Take in the coefficients of the equation and store it in three separate variables.
2. Find the value of the discriminant, d.
3. Use an if statement to check if the value of the discriminant is greater than 0 or lesser than 0.
4. If the value of the discriminant is greater than 0, use the quadratic formula and find the roots rounded upto 2 decimal places.
5. Print the roots of the equation.
6. Exit.
Program/Source Code:

print("Equation: ax^2 + bx + c ")
a=int(input("Enter a: "))
b=int(input("Enter b: "))
c=int(input("Enter c: "))
d=b**2-4*a*c
d1=d**0.5
if(d<0):
 print("The roots are imaginary. ")
else:
 r1=(-b+d1)/2*a
 r2=(-b-d1)/2*a
 print("The first root: ",round(r1,2))
 print("The second root: ",round(r2,2))

Runtime Test Cases:

Case 1:
Equation: ax^2 + bx + c
Enter a: 1
Enter b: -5
Enter c: 6
The first root: 3.0
The second root: 2.0

Case 2:
Equation: ax^2 + bx + c
Enter a: 1
Enter b: 5
Enter c: 10
The roots are imaginary.

Program Explanation:
1. User must enter the coefficients of the equations and store it in three separate variables.
2. The value value of the discriminant, d, is found out which determines the nature of roots of the equation.
3. If the value of the discriminant is lesser than 0, the roots are imaginary.
4. If the value of the discriminant is greater than 0, the roots aren’t imaginary.
5. The value of the roots is found out using the quadratic formula.
6. The roots of the equation are printed.

Experiment No:2
Write a Python Program to Remove Duplicates from a List

Problem Description:
The program takes a lists and removes the duplicate items from the list.
Problem Solution:
1.Take the number of elements in the list and store it in a variable.
2. Accept the values into the list using a for loop and insert them into the list.
3. Use a for loop to traverse through the elements of the list.
4. Use an if statement to check if the element is already there in the list and if it is not there, append it to another list.
5. Print the non-duplicate items of the list.
6. Exit.
Program/Source Code:
a=[]
n= int(input("Enter the number of elements in list:"))
for x in range(0,n):
 element=int(input("Enter element" + str(x+1) + ":"))
 a.append(element)
b = set()
unique = []
for x in a:
 if x not in b:
 unique.append(x)
 b.add(x)
print("Non-duplicate items:")
print(unique)
Runtime Test Cases:

Case 1:
Enter the number of elements in list:5
Enter element1:10
Enter element2:10
Enter element3:20
Enter element4:20
Enter element5:20
Non-duplicate items:
[10, 20]

Case 2:
Enter the number of elements in list:7
Enter element1:10
Enter element2:20
Enter element3:20
Enter element4:30
Enter element5:40
Enter element6:40
Enter element7:50
Non-duplicate items:
[10, 20, 30, 40, 50]

Program Explanation:
1.User must enter the number of elements in the list and store it in a variable.
2. User must enter the values of elements into the list.
3. The append function obtains each element from the user and adds the same to the end of the list as many times as the number of elements taken.
4. The for loop basically traverses through the elements of the list and the if statement checks if the element is a duplicate or not.
5. If the element isn’t a duplicate, it is added into another list.
6. The list containing non-duplicate items is then displayed.

Experiment No:3
Write a Python Program to Split Even and Odd Elements into Two Lists

Problem Description
The program takes a list and puts the even and odd elements in it into two separate lists.
Problem Solution
1.Take in the number of elements and store it in a variable.
2. Take in the elements of the list one by one.
3. Use a for loop to traverse through the elements of the list and an if statement to check if the element is even or odd.
4. If the element is even, append it to a separate list and if it is odd, append it to a different one.
5. Display the elements in both the lists.
6. Exit.
Program/Source Code:
a=[]
n=int(input("Enter number of elements:"))
for i in range(1,n+1):
 b=int(input("Enter element:"))
 a.append(b)
even=[]
odd=[]
for j in a:
 if(j%2==0):
 even.append(j)
 else:
 odd.append(j)
print("The even list",even)
print("The odd list",odd)

Runtime Test Cases:

Case 1:
Enter number of elements:5
Enter element:67
Enter element:43
Enter element:44
Enter element:22
Enter element:455
The even list [44, 22]
The odd list [67, 43, 455]

Case 2:
Enter number of elements:3
Enter element:23
Enter element:44
Enter element:99
The even list [44]
The odd list [23, 99]

Program Explanation:

1. User must enter the number of elements and store it in a variable.
2. User must then enter the elements of the list one by one using a for loop and store it in a list.
3. Another for loop is used to traverse through the elements of the list.
4. The if statement checks if the element is even or odd and appends them to separate lists.
5. Both the lists are printed.

Experiment No:4
Write a Python Program to Solve Matrix-Chain Multiplication using Dynamic Programming with Bottom-Up Approach

Problem Description:
In the matrix-chain multiplication problem, we are given a sequence of matrices A(1), A(2), …, A(n). The aim is to compute the product A(1)…A(n) with the minimum number of scalar multiplications. Thus, we have to find an optimal parenthesization of the matrix product A(1)…A(n) such that the cost of computing the product is minimized.
Problem Solution:
1. Two functions are defined, matrix_product and print_parenthesization.
2. The function matrix_product takes a list p as argument.
3. p[0… n] is a list such that matrix A(i) has dimensions p[i – 1] x p[i].
4. It creates two 2D tables m and s as a list of lists.
5. The function stores the minimum number of scalar multiplications needed to compute the product A(i) x A(i + 1) x … x A(j) in m[i][j].
6. The index of the matrix after which the above product is split in an optimal parenthesization is stored in s[i][j].
7. The function finds the minimum computations needed to evaluate A(start) x … x A(end) and stores it in m[start][end].
8. This is done by finding a k such that m[start][k] + m[k + 1][end] + p[start – 1]*p[k]*p[end] is minimized. The last term is the cost of multiplying the two products formed by splitting the matrix-chain after matrix k.
9. The function first sets m[i][i] = 0 for 1 <= i <= n where n is the number of matrices.
10. The function then computes m[i][i + chain_length – 1] for each value of i using the above formula.
11. The above step is performed for each chain_length in [2, n] starting with chain_length = 2.
12. It then returns m and s.
13. The function print_parenthesization takes as argument a 2D table s as generated above.
14. It also takes two indexes start and end as arguments.
15. It prints the optimal parenthesization of the matrix-chain product A(start) x … x A(end).

Program/Source Code:
def matrix_product(p):
 """Return m and s.

 m[i][j] is the minimum number of scalar multiplications needed to compute the
 product of matrices A(i), A(i + 1), ..., A(j).

 s[i][j] is the index of the matrix after which the product is split in an
 optimal parenthesization of the matrix product.

 p[0... n] is a list such that matrix A(i) has dimensions p[i - 1] x p[i].
 """
 length = len(p) # len(p) = number of matrices + 1

 # m[i][j] is the minimum number of multiplications needed to compute the
 # product of matrices A(i), A(i+1), ..., A(j)
 # s[i][j] is the matrix after which the product is split in the minimum
 # number of multiplications needed
 m = [[-1]*length for _ in range(length)]
 s = [[-1]*length for _ in range(length)]

 for i in range(1, length):
 m[i][i] = 0

 for chain_length in range(2, length):
 for start in range(1, length - chain_length + 1):
 end = start + chain_length - 1
 q = float('inf')
 for k in range(start, end):
 temp = m[start][k] + m[k + 1][end] + p[start - 1]*p[k]*p[end]
 if temp < q:
 q = temp
 s[start][end] = k
 m[start][end] = q

 return m, s

def print_parenthesization(s, start, end):
 """Print the optimal parenthesization of the matrix product A(start) x
 A(start + 1) x ... x A(end).

 s[i][j] is the index of the matrix after which the product is split in an
 optimal parenthesization of the matrix product.”””

 if start == end:
 print('A[{}]'.format(start), end='')
 return

 k = s[start][end]

 print('(', end='')
 print_parenthesization(s, start, k)
 print_parenthesization(s, k + 1, end)
 print(')', end='')

n = int(input('Enter number of matrices: '))
p = []
for i in range(n):
 temp = int(input('Enter number of rows in matrix {}: '.format(i + 1)))
 p.append(temp)
temp = int(input('Enter number of columns in matrix {}: '.format(n)))
p.append(temp)

m, s = matrix_product(p)
print('The number of scalar multiplications needed:', m[1][n])
print('Optimal parenthesization: ', end='')
print_parenthesization(s, 1, n)

Program Explanation:
1. The user is prompted to enter the number of matrices, n.
2. The user is then asked to enter the dimensions of the matrices.
3. matrix_product is called to get the tables m and s.
4. m[1][n] is the minimum cost of computing the matrix product.
5. print_parenthesization is then called to display the optimal way to parenthesize the matrix product.

Runtime Test Cases:
Case 1:
Enter number of matrices: 3
Enter number of rows in matrix 1: 10
Enter number of rows in matrix 2: 100
Enter number of rows in matrix 3: 5
Enter number of columns in matrix 3: 50
The number of scalar multiplications needed: 7500
Optimal parenthesization: ((A[1]A[2])A[3])

Case 2:
Enter number of matrices: 6
Enter number of rows in matrix 1: 10
Enter number of rows in matrix 2: 100
Enter number of rows in matrix 3: 50
Enter number of rows in matrix 4: 200
Enter number of rows in matrix 5: 25
Enter number of rows in matrix 6: 25
Enter number of columns in matrix 6: 50
The number of scalar multiplications needed: 218750
Optimal parenthesization: (((((A[1]A[2])A[3])A[4])A[5])A[6])

Case 3:
Enter number of matrices: 1
Enter number of rows in matrix 1: 4
Enter number of columns in matrix 1: 2
The number of scalar multiplications needed: 0
Optimal parenthesization: A[1]

Experiment No:5
Write a Python Program to Calculate Grade of a Student

Problem Description:
The program takes in the marks of 5 subjects and displays the grade.
Problem Solution:
1.Take in the marks of 5 subjects from the user and store it in different variables.
2. Find the average of the marks.
3. Use an else condition to decide the grade based on the average of the marks.
4. Exit.
Program/Source Code:
sub1=int(input("Enter marks of the first subject: "))
sub2=int(input("Enter marks of the second subject: "))
sub3=int(input("Enter marks of the third subject: "))
sub4=int(input("Enter marks of the fourth subject: "))
sub5=int(input("Enter marks of the fifth subject: "))
avg=(sub1+sub2+sub3+sub4+sub4)/5
if(avg>=90):
 print("Grade: A")
elif(avg>=80&avg<90):
 print("Grade: B")
elif(avg>=70&avg<80):
 print("Grade: C")
elif(avg>=60&avg<70):
 print("Grade: D")
else:
 print("Grade: F")

Runtime Test Cases:

Case 1:
Enter marks of the first subject: 85
Enter marks of the second subject: 95
Enter marks of the third subject: 99
Enter marks of the fourth subject: 93
Enter marks of the fifth subject: 100
Grade: A

Case 2:
Enter marks of the first subject: 81
Enter marks of the second subject: 72
Enter marks of the third subject: 94
Enter marks of the fourth subject: 85
Enter marks of the fifth subject: 80
Grade: B

Program Explanation:
1. User must enter 5 different values and store it in separate variables.
2. Then sum up all the five marks and divide by 5 to find the average of the marks.
3. If the average is greater than 90, “Grade: A” is printed.
4. If the average is in between 80 and 90, “Grade: B” is printed.
5. If the average is in between 70 and 80, “Grade: C” is printed.
6. If the average is in between 60 and 70, “Grade: D” is printed.
7. If the average is anything below 60, “Grade: F” is printed.

Experiment No:6
Working with NumPy -Library

NumPy is a Python package. It stands for 'Numerical Python'. It is a library consisting of multidimensional array objects and a collection of routines for processing of array.
Operations using NumPy
Using NumPy, a developer can perform the following operations −
· Mathematical and logical operations on arrays.
· Fourier transforms and routines for shape manipulation.
· Operations related to linear algebra. NumPy has in-built functions for linear algebra and random number generation.

The most important object defined in NumPy is an N-dimensional array type called ndarray. It describes the collection of items of the same type. Items in the collection can be accessed using a zero-based index.
Every item in an ndarray takes the same size of block in the memory. Each element in ndarray is an object of data-type object (called dtype).

An instance of ndarray class can be constructed by different array creation routines described later in the tutorial. The basic ndarray is created using an array function in NumPy as follows
numpy.array

Program1
import numpy as np
a = np.array([1,2,3])
print a

The output is as follows −
[1, 2, 3]

Program 2
more than one dimensions
import numpy as np
a = np.array([[1, 2], [3, 4]])
print a

The output is as follows −
[[1, 2]
 [3, 4]]

Program 3
minimum dimensions
import numpy as np
a = np.array([1, 2, 3,4,5], ndmin = 2)
print a

The output is as follows −
[[1, 2, 3, 4, 5]]

Program 4
dtype parameter
import numpy as np
a = np.array([1, 2, 3], dtype = complex)
print a
The output is as follows −
[1.+0.j, 2.+0.j, 3.+0.j]
Program 5
using array-scalar type
import numpy as np
dt = np.dtype(np.int32)
print dt
The output is as follows −
int32
Program 6
#int8, int16, int32, int64 can be replaced by equivalent string 'i1', 'i2','i4', etc.
import numpy as np

dt = np.dtype('i4')
print dt
The output is as follows −
int32

Experiment No:7
Working with NumPy -Indexing & Slicing

Program 1
import numpy as np
a = np.arange(10)
s = slice(2,7,2)
print a[s]
Its output is as follows −
[2 4 6]

Program 2
import numpy as np
a = np.arange(10)
b = a[2:7:2]
print b
Here, we will get the same output −
[2 4 6]

Program 3
slice single item
import numpy as np

a = np.arange(10)
b = a[5]
print b
Its output is as follows −
5
Program 4
slice items starting from index
import numpy as np
a = np.arange(10)
print a[2:]
Now, the output would be −
[2 3 4 5 6 7 8 9]

Program 5
slice items between indexes
import numpy as np
a = np.arange(10)
print a[2:5]
Here, the output would be −
[2 3 4]

Program 6
import numpy as np
a = np.array([[1,2,3],[3,4,5],[4,5,6]])
print a

slice items starting from index
print 'Now we will slice the array from the index a[1:]'
print a[1:]
The output is as follows −
[[1 2 3]
 [3 4 5]
 [4 5 6]]

Now we will slice the array from the index a[1:]
[[3 4 5]
 [4 5 6]]

Experiment No:8
Working with NumPy -Statistical Function

numpy.percentile()
Percentile (or a centile) is a measure used in statistics indicating the value below which a given percentage of observations in a group of observations fall. The function numpy.percentile() takes the following arguments.
numpy.percentile(a, q, axis)

Program:
import numpy as np
a = np.array([[30,40,70],[80,20,10],[50,90,60]])

print 'Our array is:'
print a
print '\n'

print 'Applying percentile() function:'
print np.percentile(a,50)
print '\n'

print 'Applying percentile() function along axis 1:'
print np.percentile(a,50, axis = 1)
print '\n'

print 'Applying percentile() function along axis 0:'
print np.percentile(a,50, axis = 0)
It will produce the following output −
Our array is:
[[30 40 70]
 [80 20 10]
 [50 90 60]]

Applying percentile() function:
50.0

Applying percentile() function along axis 1:
[40. 20. 60.]

Applying percentile() function along axis 0:
[50. 40. 60.]

numpy.median()
Median is defined as the value separating the higher half of a data sample from the lower half. The numpy.median() function is used as shown in the following program.
Program:
import numpy as np
a = np.array([[30,65,70],[80,95,10],[50,90,60]])

print 'Our array is:'
print a
print '\n'

print 'Applying median() function:'
print np.median(a)
print '\n'

print 'Applying median() function along axis 0:'
print np.median(a, axis = 0)
print '\n'

print 'Applying median() function along axis 1:'
print np.median(a, axis = 1)
It will produce the following output −
Our array is:
[[30 65 70]
 [80 95 10]
 [50 90 60]]

Applying median() function:
65.0

Applying median() function along axis 0:
[50. 90. 60.]

Applying median() function along axis 1:
[65. 80. 60.]

numpy.mean()
Arithmetic mean is the sum of elements along an axis divided by the number of elements. The numpy.mean() function returns the arithmetic mean of elements in the array. If the axis is mentioned, it is calculated along it.

Program:
import numpy as np
a = np.array([[1,2,3],[3,4,5],[4,5,6]])

print 'Our array is:'
print a
print '\n'

print 'Applying mean() function:'
print np.mean(a)
print '\n'

print 'Applying mean() function along axis 0:'
print np.mean(a, axis = 0)
print '\n'

print 'Applying mean() function along axis 1:'
print np.mean(a, axis = 1)
It will produce the following output −
Our array is:
[[1 2 3]
 [3 4 5]
 [4 5 6]]

Applying mean() function:
3.66666666667

Applying mean() function along axis 0:
[2.66666667 3.66666667 4.66666667]

Applying mean() function along axis 1:
[2. 4. 5.]

numpy.average()
Weighted average is an average resulting from the multiplication of each component by a factor reflecting its importance. The numpy.average() function computes the weighted average of elements in an array according to their respective weight given in another array. The function can have an axis parameter. If the axis is not specified, the array is flattened.
Considering an array [1,2,3,4] and corresponding weights [4,3,2,1], the weighted average is calculated by adding the product of the corresponding elements and dividing the sum by the sum of weights.
Weighted average = (1*4+2*3+3*2+4*1)/(4+3+2+1)

Program:
import numpy as np
a = np.array([1,2,3,4])

print 'Our array is:'
print a
print '\n'

print 'Applying average() function:'
print np.average(a)
print '\n'

this is same as mean when weight is not specified
wts = np.array([4,3,2,1])

print 'Applying average() function again:'
print np.average(a,weights = wts)
print '\n'

Returns the sum of weights, if the returned parameter is set to True.
print 'Sum of weights'
print np.average([1,2,3, 4],weights = [4,3,2,1], returned = True)
It will produce the following output −
Our array is:
[1 2 3 4]

Applying average() function:
2.5

Applying average() function again:
2.0

Sum of weights
(2.0, 10.0)

Experiment No:9
Working with NumPy -Matplotlib

Matplotlib is a plotting library for Python. It is used along with NumPy to provide an environment that is an effective open source alternative for MatLab. It can also be used with graphics toolkits like PyQt and wxPython.
Conventionally, the package is imported into the Python script by adding the following statement −
from matplotlib import pyplot as plt
Here pyplot() is the most important function in matplotlib library, which is used to plot 2D data. The following script plots the equation y = 2x + 5

Program 1
import numpy as np
from matplotlib import pyplot as plt

x = np.arange(1,11)
y = 2 * x + 5
plt.title("Matplotlib demo")
plt.xlabel("x axis caption")
plt.ylabel("y axis caption")
plt.plot(x,y)
plt.show()
The above code should produce the following output –
[image: Matplotlib Demo]

An ndarray object x is created from np.arange() function as the values on the x axis. The corresponding values on the y axis are stored in another ndarray object y. These values are plotted using plot() function of pyplot submodule of matplotlib package.
The graphical representation is displayed by show() function.
Program 2
import numpy as np
from matplotlib import pyplot as plt

x = np.arange(1,11)
y = 2 * x + 5
plt.title("Matplotlib demo")
plt.xlabel("x axis caption")
plt.ylabel("y axis caption")
plt.plot(x,y,"ob")
plt.show()
The above code should produce the following output –

[image: Color Abbreviation]
bar()
The pyplot submodule provides bar() function to generate bar graphs. The following example produces the bar graph of two sets of x and y arrays.

Program 3
from matplotlib import pyplot as plt
x = [5,8,10]
y = [12,16,6]

x2 = [6,9,11]
y2 = [6,15,7]
plt.bar(x, y, align = 'center')
plt.bar(x2, y2, color = 'g', align = 'center')
plt.title('Bar graph')
plt.ylabel('Y axis')
plt.xlabel('X axis')

plt.show()
This code should produce the following output −
[image: Bar Graph]
numpy.histogram()
NumPy has a numpy.histogram() function that is a graphical representation of the frequency distribution of data. Rectangles of equal horizontal size corresponding to class interval called bin and variable height corresponding to frequency.
The numpy.histogram() function takes the input array and bins as two parameters. The successive elements in bin array act as the boundary of each bin.
import numpy as np

a = np.array([22,87,5,43,56,73,55,54,11,20,51,5,79,31,27])
np.histogram(a,bins = [0,20,40,60,80,100])
hist,bins = np.histogram(a,bins = [0,20,40,60,80,100])
print hist
print bins
It will produce the following output −
[3 4 5 2 1]
[0 20 40 60 80 100]
plt()
Matplotlib can convert this numeric representation of histogram into a graph. The plt() function of pyplot submodule takes the array containing the data and bin array as parameters and converts into a histogram.
from matplotlib import pyplot as plt
import numpy as np

a = np.array([22,87,5,43,56,73,55,54,11,20,51,5,79,31,27])
plt.hist(a, bins = [0,20,40,60,80,100])
plt.title("histogram")
plt.show()
It should produce the following output –
[image: Histogram Plot]

Experiment No:10
Write a Python program to compute the eigenvalues and right eigenvectors of a given square array.

Problem Description:
Compute the eigenvalues and right eigenvectors of a given square array using NumPy library.

Problem Solution:
1.Using numpy.linalg.eig() to find eigenvalues and eigenvectors for the given square array.
2. It will return two values first is eigenvalues and second is eigenvectors.

Program/Source Code:

import numpy as np
 m = np.array([[1, 2], [2, 3]])
print("Printing the Original square array:\n", m)

finding eigenvalues and eigenvectors
w, v = np.linalg.eig(m)

printing eigen values
print("Printing the Eigen values of the given square array:\n", w)

printing eigen vectors

Output:

Printing the Original square array:
 [[1 2]
 [2 3]]
Printing the Eigen values of the given square array:
 [-0.23606798 4.23606798]
Printing Right eigenvectors of the given square array:
 [[-0.85065081 -0.52573111]
 [0.52573111 -0.85065081]]

image4.jpeg

image1.jpeg

image2.jpeg

image3.jpeg

