
Unit-II
C -Sharp Language (C#)

2.1 Introduction
Microsoft Corporation, developed a new computer programming language C# pronounced as ‗C-
Sharp‘. C# is a simple, modern, object oriented, and type safe programming language derived
from C and C++. C# is a purely object-oriented language like as Java. It has been designed to
support the key features of .NET framework.
Like Java, C# is a descendant language of C++ which is descendant of C language.

C

Object Orientation

C++

Component
Orientation

 Component

Java Orientation VB

Elegance

C#
 Productivity

C# modernize C++ by enhancing some of its features and adding a few new features. C# borrows

Java‘s features such as grouping of classes, interface and implementation together in one file so

the programmers can easily edit the codes. C# also handles objects using reference, the same way

as Java.
C# uses VB‘s approach to form designing, namely, dragging controls from a tool box,

dropping them onto forms, and writing events handlers for them.
Comparing C# to C++ and Java
C# versus Java
C# and Java are both new-generation languages descended from a line including C and C++.
Each includes advanced features, like garbage collection, which remove some of the low level
maintenance tasks from the programmer. In a lot of areas they are syntactically similar.
Both C# and Java compile initially to an intermediate language: C# to Microsoft Intermediate

Language (MSIL), and Java to Java bytecode. In each case the intermediate language can be run -

10

by interpretation or just-in-time compilation - on an appropriate 'virtual machine'. In C#,

however, more support is given for the further compilation of the intermediate language code

into native code.
C# contains more primitive data types than Java, and also allows more extension to the value

types. For example, C# supports 'enumerations', type -safe value types which are limited to a

defined set of constant variables, and 'structs', which are user-defined value types.
Unlike Java, C# has the useful feature that we can overload various operators.
Like Java, C# gives up on multiple class inheritance in favour of a single inheritance model
extended by the multiple inheritance of interfaces. However, polymorphism is handled in a
more complicated fashion, with derived class methods either 'overriding' or 'hiding' super class
methods C# also uses 'delegates' - type-safe method pointers. These are used to implement
event-handling. In Java, multi -dimensional arrays are implemented solely with single-
dimensional arrays (where arrays can be members of other arrays. In addition to jagged arrays,
however, C# also implements genuine rectangular arrays.
C# versus C++
Although it has some elements derived from Visual Basic and Java, C++ is C#'s closest relative. In

an important change from C++, C# code does not require header files. All code is written inline. As

touched on above, the .NET runtime in which C# runs performs memory management, taking care of

tasks like garbage collection. Because of this, the use of pointers in C# is much less important than in

C++. Pointers can be used in C#, where the code is marked as 'unsafe', but they are only really useful

in situations where performance gains are at an absolute premium.
Speaking generally, the 'plumbing' of C# types is different from that of C++ types, with all C#
types being ultimately derived from the 'object' type. There are also specific differences in the
way that certain common types can be used. For instance, C# arrays are bounds checked unlike
in C++, and it is therefore not possible to write past the end of a C# array.
C# statements are quite similar to C++ statements. To note just one example of a difference:
the 'switch' statements has been changed so that 'fall-through' behavior is disallowed.
As mentioned above, C# gives up on the idea of multiple class inheritance. Other differences
relating to the use of classes are: there is support for class 'properties' of the kind found in
Visual Basic, and class methods are called using the . operator rather than the :: operator.
Features of C#
1. Simplicity
All the Syntax of java is like C++. There is no preprocessor, and much larger library. C# code

does not require header files. All code is written inline.

2. Consistent behavior
C# introduced an unified type system which eliminates the problem of varying ranges of integer

types. All types are treated as objects and developers can extend the type system simply and easily.

3. Modern programming language
C# supports number of modern features, such as:

 Automatic Garbage Collection
 Error Handling features

 Modern debugging features

 Robust Security features

4. Pure Object- Oriented programming language
In C#, every thing is an object. There are no more global functions, variable and constants.
It supports all three object oriented features:

 Encapsulation

11

 Inheritance
 Polymorphism

5. Type Safety
Type safety promotes robust programming. Some examples of type safety are:

 All objects and arrays are initialized by zero dynamically
 An error message will be produced , on use of any uninitialized variable

 Automatic checking of array out of bound and etc.
6. Feature of Versioning
Making new versions of software module work with the existing applications is known

as versioning. Its achieve by the keywords new and override.

7. Compatible with other language
C# enforces the .NET common language specifications (CLS) and therefore allows inter-

operation with other .NET language.

8. Inter-operability
C# provides support for using COM objects, no matter what language was used to author them.

C# also supports a special feature that enables a program to call out any native API.
A Simple C# Program
Let's begin in the traditional way, by looking at the code of a Hello World program (note that

the tabulation and line numbers are included just for the sake of readability).
1. Using System;

2. public class HelloWorld

3. {

4. public static void Main()

5. {

6. // This is a single line comment

7. /* This is a

8. multiple

9. line comment */

10. Console.WriteLine("Hello World! ");

11. }

12. }

 The first thing to note about C# is that it is case-sensitive. You will therefore get compiler

errors if, for instance, you write 'console' rather than 'Console'.
 The second thing to note is that every statement finishes with a semicolon (;) or else takes

a code block within curly braces.
Explanation of Program

Line 1 : using System;
we are using the System namespace (namespaces are also covered in chapter 7). The point of
this declaration is mostly to save ourselves time typing. Because the 'Console' object used in
line 10 of the code actually belongs to the 'System' namespace, its fully qualified name is
'System.Console'. However, because in line 1 we declare that the code is using the System
namespace, we can then leave off the 'System.' part of its name within the code.
Line 2: public class HelloWorld

12

As C# is an object-oriented language, C# programs must be placed in classes (classes are

discussed in chapter 5 but if you are new to object orientation we suggest that you first read some

introductory material). This line declares the class to be named 'HelloWorld'.
Line 4: public static void Main()
When compiled and run, the program above will automatically run the 'Main' method declared

and begun in this line. Note again C#'s case-sensitivity - the method is 'Main' rather than 'main'.
Line 3,11 and 5,12 :
These lines are uses the ‗{‗ for starting braces and ‗}‘ for closing braces of
block. Lines 6-9 : Comments
(‗//‘ uses for single line and ‗/* -- - - */‘ uses for multiple line comments)
These lines of the program are ignored by the compiler, being comments entered by
the programmer for his own benefit.
Line 6 shows a single line comment, in which everything on the line after the two forward
slashes is ignored by the compiler.
Lines 7-9 demonstrate a multi-line comment, in which everything between the opening /*

and closing */ is ignored, even when it spans multiple lines.
Line 10:
The statement on this line calls the 'WriteLine' method of the Console class in the System
namespace. It should be obvious how this works in the given example - it just prints out the
given string to the 'Console' (on PC machines this will be a DOS prompt).
Instruction for Saving the Program
In order to run the program, it must first be saved in a file. Unlike in Java, the name of the class
and the name of the file in which it is saved do not need to match up, although it does make
things easier if you use this convention. In addition, you are free to choose any extension for the
file, but it is usual to use the extension '.cs'.
Writing program in Computer
There are two ways of program writing in

computer Using Text Editor
Using Visual Studio.NET

2.2 Data Types. Identifiers, Variables, Constants and Literals
Identifiers & Variables
Identifiers refer to the names of variables, functions arrays, classes, etc. created by programmer.
They are fundamental requirement of any language. Each language has its own rules for naming
these identifiers.
To name the variables of your program, you must follow strict rules. In fact, everything else in
your program must have a name.
There are some rules you must follow when naming your objects. On this site, here are the rules
we will follow:

 The name must start with a letter or an underscore
 After the first letter or underscore, the name can have letters, digits, and/or underscores
 The name must not have any special characters other than the underscore
 The name cannot have a space

C# is case-sensitive. This means that the names Case, case, and CASE are completely

different. For example, the main function is always written Main.
C# Keywords
C# uses a series of words, called keywords, for its internal use. This means that you must avoid

naming your objects using one of these keywords. They are:

13

abstract const extern int out short typeof

as continue false interface override sizeof uint

base decimal finally internal params stackalloc ulong

bool default fixed is private static unchecked

break delegate float lock protected string unsafe

byte do for long public struct ushort

case double foreach namespace readonly switch using

catch else goto new ref this virtual

char enum if null return throw void

checked event implicit object sbyte true volatile

class explicit in operator sealed try while

Data types
C# is a type-safe language. Variables are declared as being of a particular type, and each
variable is constrained to hold only values of its declared type.
Variables can hold either value types or reference types, or they can be pointers. Here's a
quick recap of the difference between value types and reference types.
- where a variable v contains a value type, it directly contains an object with some value. No
other variable v' can directly contain the object contained by v (although v' might contain an
object with the same value).
- where a variable v contains a reference type, what it directly contains is something which refers to

an object. Another variable v' can contain a reference to the same object referred to by v.
Value Types

C# defines the following value types:

 Primitives int i;

 Enum enum state { off, on }

 Struct struct Point{ int x, y; }
It is possible in C# to define your own value types by declaring enumerations or structs. These
user-defined types are mostly treated in exactly the same way as C#'s predefined value types,
although compilers are optimized for the latter. The following table lists, and gives information
about, the predefined value types. Because in C# all of the apparently fundamental value types
are in fact built up from the (actually fundamental) object type, the list also indicates which
System types in the .Net framework correspond to these pre-defined types.

C# .Net Framework Signed? Bytes Possible Values

Type (System) type Occupied

sbyte System.Sbyte Yes 1 -128 to 127

short System.Int16 Yes 2 -32768 to 32767

int System.Int32 Yes 4 -2147483648 to 2147483647

long System.Int64 Yes 8 -9223372036854775808 to

 9223372036854775807

byte System.Byte No 1 0 to 255

ushort System.Uint16 No 2 0 to 65535

uint System.UInt32 No 4 0 to 4294967295

 14

ulong System.Uint64 No 8 0 to 18446744073709551615

float System.Single Yes 4 Approximately ±1.5 x 10
-45

 to ±3.4

 x 10
38

 with 7 significant figures

double System.Double Yes 8 Approximately ±5.0 x 10
-324

 to ±1.7

 x 10
308

 with 15 or 16 significant

 figures

decimal System.Decimal Yes 12 Approximately ±1.0 x 10
-28

 to ±7.9

 x 10
28

 with 28 or 29 significant

 figures

char System.Char N/A 2 Any Unicode character (16 bit)

bool System.Boolean N/A 1 / 2 true or false

In the following lines of code, two variables are declared and set with integer values.

int x = 10;

int y = x;

y = 20; // after this statement x holds value 10 and y holds value 20

Reference Types
The pre-defined reference types are object and string, where object - is the ultimate base class
of all other types. New reference types can be defined using 'class', 'interface', and 'delegate'
declarations. There fore the reference types are :
Predefined Reference Types

 Object
 String

User Defined Reference Types
 Classes
 Interfaces

 Delegates

 Arrays
Reference types actually hold the value of a memory address occupied by the object they
reference. Consider the following piece of code, in which two variables are given a reference to
the same object (for the sake of the example, this object is taken to contain the numeric property
'myValue').

object x = new
object(); x.myValue =
10; object y = x ;
y.myValue = 20; // after this statement both

x.myValue // and y.myValue equal 20
This code illustrates how changing a property of an object using a particular reference to it is

reflected in all other references to it. Note, however, that although strings are reference types,

they work rather more like value types. When one string is set to the value of another, eg

string s1 = "hello";

string s2 = s1;

15

Then s2 does at this point reference the same string object as s1. However, when the value of s1

is changed, for instance with

s1 = "goodbye";

what happens is that a new string object is created for s1 to point to. Hence, following this piece

of code, s1 equals "goodbye", whereas s2 still equals "hello".

The reason for this behaviour is that string objects are 'immutable'. That is, the properties of
these objects can't themselves change. So in order to change what a string variable references, a

new string object must be created.
Boxing
C# allows you convert any value type to a corresponding reference type, and to convert the

resultant 'boxed' type back again. The following piece of code demonstrates boxing. When the
second line executes, an object is initiated as the value of 'box', and the value held by i is
copied across to this object. It is interesting to note that the runtime type of box is returned as
the boxed value type; the 'is' operator thus returns the type of box below as 'int'.

int i = 123;

object box = i;

if (box is int)
{Console.Write("Box contains an int");} // this line is printed

When boxing occurs, the contents of value type are copied from stack into memory allocated

into the managed heap. The new reference type created contains a copy of the value type, and

can be used by other types that expect an object reference. The value contained in the value type

and the created reference types are not associated in any way (except that they contain the same

values). If we change the original value type, the refernce type is not affected.

The following code explicitly unboxes a reference type into a value type:

object o;
int i = (int) o;

When unboxing occurs, memory is copied from the managed heap to the stack.

2.3 Array and Strings
Arrays
An array is a group or collection of similar values. An array contains a number of variables, which

are accessed through computed indices. The various value contained in an array are also called the

elements of array. All elements of an array have to be of same type, and this type is called the

element type of the array. The element of an array can be of any type including an array type.
An array has a rank that determines the number of indices associated wth each array elements.
The rank of an array is also referred as the dimension of the array. An array may be :

 Single Dimensional
 Multi Dimensional

16

An array with a rank of one is called single-dimensional array, and an array with a rank

greater than one is called a multi dimensional array.
Each dimension of array has an associated length, which is an integer number greater than or
equal to zero. For a dimension of length n, indices can range from 0 to n-1. in C#, array types are

categorized under the reference types alongside with classes and interfaces.
Single Dimensional Array
Single -dimensional arrays have a single dimension (ie, are of rank 1). The process of creation
of arrays is basically divided into three steps:

1. Declaration of Array
2. Memory Allocation for Array

3. Initialization of Array

Declaration of Array
To declare an array in C# place a pair of square brackets after the variable type. The syntax
is given below :

type[] arrayname;

For Example:

int[] a; float[]

marks;

double[] x;

int[] m,n;

You must note that we do not enter the size of the arrays in the declaration.
Memory Allocation for Array
After declaring an array, we need to allocate space and defining the size. Declaring arrays
merely says what kind of values the array will hold. It does not create them. Arrays in C# are
objects, and you use the new keyword to create them. When you create an array, yu must tell the
compiler how many components will be stored in it. Here is given the syntax:

arrayname = new type[size];

For Example:

a = new int[5];
marks = new float[6];

x = new double[10];

m = int[100];
n = int [50];

It is also possible to combine the two steps, declaration and memory allocation of array, into one

as shown below:

17

int[] num = new int [5];

Initialization of Array
This step involves placing data into the array. Arrays are automatically assigned the default
values associated with their type. For example, if we have an array of numerical type, each
element is set to number 0. But explicit values can be assigned as and when desired.
Individual elements of an array are referenced by the array name and a number that represents
their position in the array. He number you use to identify them are called subscripts or indexes
into the array.
Subscripts are consecutive integers beginning with 0. thus the array ―num‖ above has
components num[0], num[1], num[2], num[3], and num[4].
The initialization process is done using the array subscripts as shown:

arrayname[subscript] = value;

For Example:

num[0] = 5;

num[1] = 15;

num[2] = 52;

num[3] = 45;

num[4] = 57;

We can also initialize arrays automatically in the same way as the ordinary variables when they

are declared, as shown below:

type[] arrayname = { list of values };

the list of variables separated by commas and defined on both ends by curly braces. You must note

that no size is given in this syntax. The compiler space for all the elements specified in the list.

For Example:

int[] num = {5,15,52,45,57};

You can combine all the steps, namely declaration, memory allocation and initialization of

arrays like as:
int[] num = new int [5] {5,15,52,45,57};

You can also assign an array object to another. For Example

int[] a = { 10, 20,

30}; int[] b;
b=a;

The above example is valid in C#. Both the array will have same values.

18

Example

using system;

class Number
{

public static void Main()
{

int [] num = {10, 20, 30, 40,
50}; int n = num.Length;
// Length is predefined attribute to access the size of
array Console.Write(― Elements of array are :‖);
for(int i=0; i<n; i++)
{

Console.WriteLine(num[i]);
}

int sum =0;
for(int i=0; i<n; i++)
{

sum = sum + num[i]);
}
Console.WriteLine(― The sum of elements :‖+sum);

}

OUTPUT:
Elements of array

are: 10 20 30 40 50

The sum of elements :150

Multi Dimensional Array
C# supports two types of multidimensional arrays:

 Rectangular Array
 Jagged Array

Rectangular Arrays
A rectangular array is a single array with more than one dimension, with the dimensions' sizes

fixed in the array's declaration. The following code creates a 2 by 3 multi-dimensional array:
int[,] squareArray = new int[2,3];

As with single-dimensional arrays, rectangular arrays can be filled at the time they are

declared. For instance, the code
int[,] squareArray = {{1, 2, 3}, {4, 5, 6}};

creates a 2 by 3 array with the given values. It is, of course, important that the given values do

fill out exactly a rectangular array.
The System.Array class includes a number of methods for determining the size and bounds of

arrays. These include the methods GetUpperBound(int i) and GetLowerBound(int i), which

19

return, respectively, the upper and lower subscripts of dimension i of the array (note that i is

zero based, so the first array is actually array 0).
For instance, since the length of the second dimension of squareArray is 3, the

expression squareArray.GetLowerBound(1)
returns 0, and the expression

squareArray.GetUpperBound(1)

returns 2.
System.Array also includes the method GetLength(int i), which returns the number of
elements in the ith dimension (again, zero based).
The following piece of code loops through squareArray and writes out the value of its elements.

for(int i = 0; i < squareArray.GetLength(0); i++)

for (int j = 0; j < squareArray.GetLength(1); j++)

Console.WriteLine(squareArray[i,j]);

A foreach loop can also be used to access each of the elements of an array in turn, but using this

construction one doesn't have the same control over the order in which the elements are accessed.

Jagged Arrays
Using jagged arrays, one can create multidimensional arrays with irregular dimensions. This
flexibility derives from the fact that multidimensional arrays are implemented as arrays of
arrays. The following piece of code demonstrates how one might declare an array made up of a
group of 4 and a group of 6 elements:

int[][] jag = new int[2][];

jag[0] = new int [4];

jag[1] = new int [6];
The code reveals that each of jag[0] and jag[1] holds a reference to a single-dimensional int

array. To illustrate how one accesses the integer elements: the term jag[0][1] provides access to

the second element of the first group.
To initialise a jagged array whilst assigning values to its elements, one can use code like

the following:
int[][] jag = new int[][] {new int[] {1, 2, 3, 4}, new int[] {5, 6, 7, 8, 9, 10}};

Be careful using methods like GetLowerBound, GetUpperBound, GetLength, etc. with jagged

arrays. Since jagged arrays are constructed out of single-dimensional arrays, they shouldn't be

treated as having multiple dimensions in the same way that rectangular arrays do.
To loop through all the elements of a jagged array one can use code like the following:

for (int i = 0; i < jag.GetLength(0); i++)
for (int j = 0; j < jag[i].GetLength(0);

j++) Console.WriteLine(jag[i][j]);

or
for (int i = 0; i < jag.Length; i++)

for (int j = 0; j < jag[i].Length; j++)

Console.WriteLine(jag[i][j]);

20

Strings
A string is an empty space, a character, a word, or a group of words that you want the compiler
to consider "as is", that is, not to pay too much attention to what the string is made of, unless you
explicitly ask it to. This means that, in the strict sense, you can put in a string anything you want.
Primarily, the value of a string starts with a double quote and ends with a double-quote. An
example of a string is "Welcome to the World of C# Programming!". You can include such a
string in the Console.Write() method to display it on the console. Here is an example:
Example using

System; class

BookClub
{
static void Main()
{

Console.WriteLine("Welcome to the World of C# Programming!");
}

}
OUTPUT:
Welcome to the World of C# Programming!

Types of String
There are two types of string in C#:

1) Immutable strings
2) Mutable strings

The immutable strings are can‘t be modify and mutable strings are modifiable.C# also supports a

feature of regular expression that can be used for complex strings manipulations and pattern
matching.

Strings

Immutable Strings Regular Mutable Strings
 Expression

String class

Handling of Strings
We can create immutable strings using string or String objects in

a some techniques to handling the immutable strings:
Assigning String

string s1;
s1 = ―Welcome‖;

or

string s1 = ―Welcome‖;

StringBuilder

classs

number of ways. There are

21

Copying String
string s2 = s1;

or
string s2 = string.Copy(s1);

Concatenating Strings

string s3 = s1 + s2;
or

string s3 = string.Concat(s1,s2);
Reading from Console

string s1 = Console.ReadLine();
Converting Number to String

int num = 100;
string s1= num.ToString();

Inserting String
string s1 = Wel;
string s2 = s1.insert(3,‖come‖);

// s2 = Welcome
string s3 = s1.insert(3,‖don‖);

// s3 = Weldon;
Comparing Strings

int n = string. Compare(s1,s2);

This statement will perform case-sensitive comparison and returns integer values for

different conditions. Such as:

 If s1 is equal to s2 it will return zero.
 If s1 is greater than s2 it will return positive integer (1).

 If s1 is less than s2 it will return negative integer(-
1). Or you can use following statement:

bool a = s2.Equals(s1); bool

b = string.Equal(s1,s2);
Above statements will return a Boolean value true (if equal) or false(if not equal).

Or you can also use the ―==‖ operator for comparing the strings. Like as:

if (s1 == s2)
Console.Write(― both are equal‖);

In this statement, it will return a Boolean value true (if equal) or false(if not equal).

Mutable String
Mutable strings are those strings, which can be modify dynamically. This type of strings

are created using StringBuilder class. For Example:

StringBuilder s1 = new StringBuilder(―Welcome‖);
StringBuilder s2 = new StringBuilder();

22

The string str1 is created with an initial size of seven characters and str2 is created as an empty

string. They can grow dynamically as more character added to them. Mutual string are referred

as a dynamic strings.
The StringBuilder class supports many methods that are useful for manipulating dynamic
strings. Some of the most common methods are listed below:

Method Operation
Append() Append a string
AppendFormat() Append string using specific format
EnsureCapacity() Ensure sufficient size
Insert() Insert a string at a specified position
Remove() Remove specified character
Replace() Removes previous string with new one

StringBuilder also provides some attributes to access some properties of strings, such as:
 Attributes Puspose
 Capacity To retrieve or set the number of characters
 the object can hold

 Length To retrieve or set the length
 MaxCapacity To retrieve maximum capacity of the object
 [] To get or set a character at a specified
 position

Example
using System.Text; //For using StringBuilder

using System;

class StrMethod
{

public static void Main()
{

StringBuilder s = new StringBuilder(―C‖);

Console.WriteLine(― Stored String is :‖+ s);

Console.WriteLine(―Length of string is :‖+s.Length);

s.Append(―Sharp ‖);
// appending the string s

Console.WriteLine(― After Append String is :‖+ s);
Console.WriteLine(―Length of string is :‖+s.Length);

s.Insert(7,‖Language‖);
// inserting the string at last in s

Console.WriteLine(―After Insertion String is:‖+ s);
Console.WriteLine(―Length of string is :‖+s.Length);

int n = s.Length;

s[n] = ―!‖;

23

Console.WriteLine(― At Last String is :‖+ s);
}

}
OUTPUT:

Stored String is : C
Length of String is : 1

After Append string is : CSharp
After Insertion String is : CSharp Language
At Last String is : CSharp Language!

2.4 Object and Classes
As we noted previously, one can create new reference types by defining classes. Classes provide
'templates' from which these direct instances are generated. Where we appeal to the relation
between a class and its corresponding reference type instances we shall say that a class specifies
the type (also that the class specifies the constitutive elements of the type).
Any type is made up of elements, which we term type members. There are two main kinds of
type members that a class can specify. Firstly, a class can specify other types - both value and
reference. This idea, that types can contain other types, is known within the literature on object
orientation as 'containment', or else 'aggregation'. Where a type contains another reference type,
we shall call it the containing type of the latter.
The second, main kind of type members that a class can specify are methods, functions

designed for reading and manipulating the value and reference types an instance contains.

Objects in C# are created from types, just like a variable. This type of an object is known as

class. we can use class definition to instantiate objects, which means to create a real named

instance of a class.
Declaration of Classes
Class is an user-defined data type. To create a class, you start with the class keyword followed

by a name and its body delimited by curly brackets. . The following is an example of a very
simple class declaration

class classname
{

// class-body
}

24

