
1

Error Error and Flow and Flow ControlControl

CSE 3213, Fall 2010
Instructor: N. Vlajic

Required reading:
Garcia 5.2

2

Error ControlError Control
ApproachesApproaches (2) Error Detection + Automatic Retrans. Req. (ARQ)

• not enough redundant info to enable error correction
case (a) receiver detects no errors

an ACK packet is sent back to sender

case (b) receiver detects errors
no ACK sent back to sender
sender retransmits frame after a ‘time-out’

(1) Forward Error Correction (FEC)

Error Control

error detected !!!

= round-trip time

3Error Control (cont.)

Challenges ofChallenges of
ARQARQ--based based
Error ControlError Control

• send one frame at the time, wait for ACK
easy to implement, but inefficient in terms of channel
usage

• send multiple frames at once
better channel usage, but more complex to implement -
sender must keep (all) sent but unACKed frame(s) in a
buffer, as such frame(s) may have to be retransmitted

frame

ACK

frame

frame

ACK

frame
buffer of
finite size

How many frames should be sent
at any point in time?

How should frames be released from
the sending buffer?

4

Flow Flow ControlControl – set of procedures used to restrict the amount of data that
sender can send while waiting for acknowledgment

• two main strategies
(1) Stop-and-Wait: sender waits until it receives ACK

before sending next frame
(2) Sliding Window: sender can send W frames before

waiting for ACKs

Error and Flow Control

Error + Flow Error + Flow ControlControl
Techniques Techniques

(1) Stop-and-Wait ARQ
(2) Go-Back-N ARQ
(3) Selective Repeat ARQ

Error Detection + ARQ (error detection with retransmissions)
must be combined with methods that intelligently limit

the number of ‘outstanding’ (unACKed) frames.

Fewer unACKed frames ⇒ fewer packets buffered at sender and receiver.

5

(1) Stop(1) Stop--andand--Wait ARQWait ARQ

6Stop-and-Wait ARQ

StopStop--andand--Wait ARQWait ARQ – simplest flow and error control mechanism
• sender sends an information frame to receiver
• sender, then, stops and waits for an ACK
• if no ACK arrives within time-out, sender will

resend the frame, and again stop and wait
timetime--out period > roundtrip timeout period > roundtrip time

• abnormalities (and how to fix them)
lost acknowledgment
delayed acknowledgment

error detected !!!

= round-trip time

7Stop-and-Wait ARQ (cont.)

Lost AcknowledgmentLost Acknowledgment • frame received correctly, but ACK undergoes
errors / loss

after time-out period, sender resends frame
receiver receives the same frame twice

• frames must be numbered so that receiver
can recognize and discard duplicate frames

sequence # are included in packet header

ACK

How will receiver know
that this is NOT
a new packet?!

ACK

ACK

retransmitted
frame

ACK

0

ACK

ACK

Receiver has already
received frame 2 –

it resends an ACK and
discards the duplicate.

1

2

2

without packet numbering with packet numbering

frame 0

frame 1

frame 2

frame 2

frame

frame

frame

frame

8Stop-and-Wait ARQ (cont.)

ACK
receiver sees this as
ACK for 2nd frame-0

and sends frame-1

Delayed AcknowledgmentDelayed Acknowledgment
(Premature Timeout)(Premature Timeout)

• ACKs can be delayed due to problems with
links or network congestion

time-out expires early, sender resends frame
when delayed ACK arrives, sender assumes
that given ACK is for the last frame sent

• ACKsACKs must be numberedmust be numbered to prevent gaps
in delivered packet sequence

0

0

1

receiver sees this as
ACK for frame-1

and sends frame-2

ACK

2
frame-1 not
delivered !!!

ACK 1

0

0

1 ACK 1

cannot send
frame-2

0

0

How large should the packet / ACK sequence be? Only 1-bit long !!!
without ACK numbering with ACK numbering

frame 0

frame 0

frame 0

frame 0

9Stop-and-Wait ARQ (cont.)

http://www.net-seal.net/animations.php?aid=37

10

frame
tf time

A

B

tprop tacktproc tprop

tproc

t0 = total time to transmit 1 frame

frame
tf time

A

B

tprop tacktproc tprop

tproc

t0 = total time to transmit 1 frame

nf bits

nACK bits

Stop-and-Wait ARQ (cont.)

StopStop--andand--WaitWait
EfficiencyEfficiency

• tt00 = basic Stop= basic Stop--andand--Wait delayWait delay – from time when frame
is transmitted into channel until time when ACK arrives
back to receiver, and another frame can be sent

first frame bit
arrives at
receiver

end of frame
is received

first ACK bit
arrives at
receiver

end of ACK
is received

R
n

R
nt2t2ttt2t2t ACKf

procpropACKframeprocprop0 ++⋅+⋅=++⋅+⋅=

• RReffeff = effective transmission (data) rate= effective transmission (data) rate:

0

headerf
eff t

nn
bits info deliver to required time total

ndestinatio to delivered bits info of numberR −
==

11

• ηηSWSW = transmission efficiency= transmission efficiency: ratio of actual and effective
transmission (data) rate - ideally, ηSW ≈ 1

where do we lose channel efficiency, and how can ηSW → 1
be achieved ?!

(1) - loss in efficiency due to (need for) header

(2) - loss in efficiency due to (need for) ACKs

(3) - bandwidth-delay product

max number of bits in transit at any given time

in Stop-and-Wait ARQ delay-bandwidth product is a measure
of lost opportunity in terms of transmitted bits

Stop-and-Wait ARQ (cont.)

f

procprop

f

ACK

f

header

0

headerf

eff
SW

n
)Rt2(t

n
n1

n
n1

R
t
nn

R
R

+
++

−
=

−

==η

f

header

n
n

f

ACK

n
n

)Rt2(t procprop +

should be
as small

as possible

12Stop-and-Wait ARQ (cont.)

Bandwidth-delay product = 2*(tprop + tproc)*R =
= capacity of the transmission pipe from the sender to the receiver and back.

13Stop-and-Wait ARQ (cont.)

frame size in comparison
to bandwidth-delay product

max number of bits in transit –
‘the pipe is full’

tprop + tproc > tframe tprop + tproc < tframe

Stop-and-Wait ARQ becomes inadequate when data is fragmented
into small frames, such that nf / R = tframe is small relative to tprop .

14Stop-and-Wait ARQ (cont.)

Example [impact of delay-bandwidth product]

nf = 1250 bytes = 10000 bits
nACK = nheader = 25 bytes = 200 bits

108

0.01%

105

9%

20000 km
(tprop = 100 ms)

109

0.001%
107

0.1%
106

1%1 Gbps

106

1%
104

49%
103

88%1 Mbps

200000 km
(tprop = 1 sec)

2000 km
(tprop = 10 ms)

200 km
(tprop = 1 ms)Efficiency

Stop-and-Wait does NOT work well for very high speeds or long propagation delays.

0.02
n

n
n

n
f

header

f

ACK ==⇒

f

procprop

f

procprop

f

ACK

f

header

eff
SW

n
)Rt(t2

1.02

0.98

n
)Rt(t2

n
n1

n
n1

R
R

+⋅
+

=
+⋅

++

−
==η

15

• PPff = probability that transmitted frame has errors = probability that transmitted frame has errors and
need to be retransmitted

(1-Pf) – probability of successful transmission

– average # of (re)transmission until first correct arrival

total delay per frame:

Stop-and-Wait ARQ (cont.)

StopStop--andand--WaitWait
Efficiency inEfficiency in
Channel withChannel with
ErrorsErrors

fP1-
1

f
00 P1-

1tretrans.) of #(averaget ⋅=⋅

f

procprop

f

ACK

f

header

f
f

0

headerf

eff_error
SW_error

n
)Rt2(t

n
n1

n
n1

P(1-
R
P(1-

t
nn

R
R

+
++

−
⋅=

−

==))η

0fSW_error P(1- ηη ⋅=)

Pf increases ⇒ ηSW decreases

((∗∗))

and including

16

0
ff

f
00 t

P1-
1

P1-
Pout-timet]E[out-timet error in transmiss of# ≈⋅+=⋅+

Stop-and-Wait ARQ (cont.)
successful

transmission

Probability that i transmission are needed to deliver frame successfully
(i-1 transmission in error and the ith transmission is error free):

P[# of trans. in error = i-1] = (1-Pf) Pf
i-1

Total average
delay per frame:

f

f

2
f

ff
1n

1n
fff

1n

n
ff

1i

1i
ff

1i

1i
ff

1i
error in trans

P1
P

)P(1
1P)P(1PnP)P(1

Pn)P(1P1)-(i)P(1

)PP(11)-(i1]-iP[n1)-(ierror] in onstransmissi of E[#

−
=

=
−

⋅⋅−=⋅⋅⋅−=

=⋅⋅−=⋅⋅−=

=−⋅==⋅=

∑

∑∑

∑∑

∞

=

−

∞

=

∞

=

−

∞

=

−
∞

=

time-out time-out time-out t0

average # of transmissions in error
before a successful transmission

17Stop-and-Wait ARQ (cont.)

PiggybackingPiggybacking • Stop-and-Wait discussed so far was ‘unidirectional’
• in ‘bidirectional’ communications, both parties send &

acknowledge data, i.e. both parties implement flow control
• piggybacking method: outstanding piggybacking method: outstanding ACKsACKs are placed inare placed in

the header of information framesthe header of information frames
• piggybacking can save bandwidth since the overhead from

a data frame and an ACK frame (addresses, CRC, etc) can
be combined into just one frame

S(0)

0

R(0)S(1)

0
1

R(1)S(2)

1

S(0)

R(0)

S(1)

R(1)

S(2)

without piggybacking with piggybacking

18

(2) Go(2) Go--BackBack--N ARQN ARQ

19Go-Back-N ARQ

GoGo--BackBack--N ARQN ARQ – overcomes inefficiency of Stop-and-Wait ARQ –
sender continues sending enough frames to keep
channel busy while waiting for ACKs
• a window of Ws outstanding frames is allowed
• m-bit sequence numbers are used for both - frames

and ACKs, and Ws = 2m-1

A

B

fr
0

Timefr
1

fr
2

fr
3

fr
4

fr
5

fr
6

fr
3

A
C
K
1

out of sequence
frames

Go-Back-4: 4 frames are outstanding; so go back 4

fr
5

fr
6

fr
4

fr
7

fr
8

fr
9

A
C
K
2

A
C
K
3

A
C
K
4

A
C
K
5

A
C
K
6

A
C
K
7

A
C
K
8

A
C
K
9

Rnext 0 1 2 3 3 4 5 6 7 8 9

A

B

fr
0

Timefr
1

fr
2

fr
3

fr
4

fr
5

fr
6

fr
3

A
C
K
1

out of sequence
frames

Go-Back-4: 4 frames are outstanding; so go back 4

fr
5

fr
6

fr
4

fr
7

fr
8

fr
9

A
C
K
2

A
C
K
3

A
C
K
4

A
C
K
5

A
C
K
6

A
C
K
7

A
C
K
8

A
C
K
9

Rnext 0 1 2 3 3 4 5 6 7 8 9

Assume: Ws= 4
1) sender sends frames one by one
2) frame 3 undergoes transmission error – receiver ignores frame 3 and all subsequent frames
3) sender eventually reaches max number of outstanding frames, and takes following action:

go back N=Ws frames and retransmit all frames from 3 onwards

20Go-Back-N ARQ (cont.)

Sender Sender SlidingSliding WindowWindow • all frames are stored in a buffer, outstanding
frames are enclosed in a window

frames to the left of the window are already
ACKed and can be purged

frames to the right of the window cannot be sent
until the window slides over them

whenever a new ACK arrives, the window slides
to include new unsent frames

once the window gets full (max # of outstanding
frames is reached), entire window gets resent

Receiver Receiver SlidingSliding WindowWindow

before ACKs for frames 0 and 1 arrive

after ACKs for frames 0 and 1 arrive
and window slides

• the size of receiver window is always 1
receiver is always looking for a specific frame
to arrive in a specific order

any frame arriving out of order is discarded
and needs to be resent

The complexity of the receiver in Go-Back-N is the same as that of Stop-and-Wait!!!
Only the complexity of the transmitter increases.

21Go-Back-N ARQ (cont.)

Problems with Problems with
GoGo--BackBack--N N
(Go(Go--BackBack--N N
with Timeout)with Timeout)

• Go-Back-N works correctly (retransmission of
damaged frames gets triggered) as long as the
sender has an unlimited supply of packets that
need to be transmitted

but, in case when packets arrive sporadically, there
may not be Ws-1 subsequent transmissions ⇒ window
will not be exhausted, retransmissions will not be
triggered

this problem can be resolved by modifying Go-Back-N
such that:
1) set a timer for each sent frame
2) resend all outstanding frames either when window

gets full or when the timer of first frame expires

1 2 30 4 5 6 7 1 2 305 6 7

Window size

22Go-Back-N ARQ (cont.)

Example [lost frame in Go-Back-N with time-out]

Note:
• ACKsACKs number always defines the number of the next expected frame number always defines the number of the next expected frame !!!
• in Go-Back-N, receiver does not have to acknowledge each frame received –

it can send one cumulative ACK for several frames

23Go-Back-N ARQ (cont.)

Sequence Numbers Sequence Numbers
and Window Sizeand Window Size

• m bits allotted within a header for seq. numbers
⇒ 2m possible sequence numbers

how big should the sender window be!?

W > 2m cannot be accepted – multiple frames with
same seq. # in the window ⇒ ambiguous ACKs

W = 2m can still cause some ambiguity – see below

W = 2W = 2mm –– 1 acceptable 1 acceptable !!!

ACK1

ACK2

ACK3

ACK0

ACK1

ACK1

ACK2

ACK3

ACK3

window size 2m = 4 window size 2m-1 = 3

24

• completely efficient if Ws is large enough to keep channel busy,
and if channel is error free

• in case of error-prone channel, with Pf frame loss probability,
time to deliver a frame is:

- if 1st transmission succeeds – prob. (1-Pf)

- if 1st transmission does NOT succeeds –
prob. Pf

• total average time required to transmit a frame:

• transmission efficiency

Go-Back-N ARQ (cont.)

GoGo--BackBack--NN
EfficiencyEfficiency

frames
f

frame tW
P1

1t ⋅⋅
−

+

framet
average # of

frame/window
(re)transmission

until a successful
transmission

frames
f

f
frames

f
framefframefGBN tW

P1
PtW

P1
1tPt)P(1t ⋅⋅

−
+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

−
+⋅+⋅−=

)P(1
1)P(W1

n
n1

R
t
nn

f
fs

f

header

GBN

headerf

GBN −
−+

−
=

−

=η

time

time

((∗∗∗∗))

25Go-Back-N ARQ (cont.)

0 1 2 3 4 5 6 7 8 9 1011

f

f

P1
Perror] in onstransmissi of E[#
−

=

frameGBN tt =

frameS
f

f
frameGBN tW

P1
Ptt ⋅
−

+=

What is total average time required to transmit a frame, assuming Pf?

successful
transmission

0 1 2 3 4 5 6 7 R R R R R R R R 1110

WS WS

8 9

successful
transmission

tframe

1st attempt successful:

frameSframeGBN tWtt ⋅+=2nd attempt successful:

frameSframeGBN tWerror] in onstransmissi of E[#tt ⋅⋅+=average case:

)P(1
1)P(W1

n
n1

R
t
nn

f
fs

f

header

GBN

headerf

GBN −
−+

−
=

−

=η⇒

tframeACK keeps window ‘sliding’

26Go-Back-N ARQ (cont.)

Example [Stop-and-Wait vs. Go-Back-N]

nf = 1250 bytes = 10000 bits
nACK = nheader = 25 bytes = 200 bits

Compare S&W with GBN efficiency for random bit errors with pb = 0, 10-6, 10-5, 10-4 and
bandwidth-delay product R*2*(tprop+tproc) = 1 Mbps * 100 ms = 100000 bits = 10 frames →
use Wuse Wss = 11= 11.

3.3%8.0%8.8%8.9%S&W
45.4%

pb=10-5

4.9%88.2%98%GBN

pb=10-4pb=10-6pb=0Efficiency

• Go-Back-N provides significant improvement over Stop-and-Wait for large delay-
bandwidth product

• Go-Back-N becomes inefficient as error rate increases

27

(3) Selective Repeat ARQ(3) Selective Repeat ARQ

28Selective Repeat ARQ

Selective Repeat ARQSelective Repeat ARQ • Go-Back-N is NOT suitable for ‘noisy links’ – in
case of a lost/damaged frame a whole window
of frames need to be resent

excessive retransmissions use up the bandwidth
and slow down transmission

• Selective Repeat ARQ overcomes the limitations
of Go-Back-N by adding 2 new features
(1) receiver window > 1 frame, so that out-of-order

but error-free frames can be accepted

(2) retransmission mechanism is modified – only
individual frames are retransmitted

• Selective Repeat ARQ is used in TCP !!!

sender window of size WS receiver window of size WR

Window size

already ACKed
sent, not yet ACKed

usable not yet sent
not usable

Window size

out of order buffered
but already ACKed
expected, not yet received

acceptable
(within window)
not usable

29Selective Repeat ARQ (cont.)

Receiver:
• window advances whenever next

in-order frame arrives
• out-of-order frames are accepted only

if their sequence numbers satisfy

Rnext < Rframe < Rnext + Ws

• a negative ACK (NAK) with sequence
number Rnext is sent whenever an
out-of-sequence frame is observed

Sender:
• window advances whenever an ACK

arrives
• if a timer expires, the corresponding

frame is resent, and the timer is reset
• whenever a NAK arrives, Rnext frame

is resent

Selective Repeat ARQ OperationSelective Repeat ARQ Operation

Rnext

Rnext + WS -1

30Selective Repeat ARQ (cont.)

Window Sizes Window Sizes
(W(WSS and Wand WRR))

• m bits allotted within a header for sequence numbers
⇒ 2m possible sequence numbers

how big should the windows be!?

WS and WR = 2m-1 cannot be accepted due to possible
ambiguity as shown below

W = 2W = 2mm/2 = 2/2 = 2mm--11 acceptable !!!acceptable !!!

ACK1

ACK2

ACK3

ACK1

ACK2

window size 2m-1 = 3 window size 2m-1 = 2

31

Selective RepeatSelective Repeat
EfficiencyEfficiency

Selective Repeat ARQ (cont.)

• completely efficient if Ws is large enough to keep
channel busy, and if channel is error free

of course, sequence number space must be 2X sequence
sequence number space of Go-Back-N

• in case of error-prone channel, total average time
required to transmit a frame:

• transmission efficiency

)P(1R
n

P1
tt

f

f

f

frame
SR −⋅

=
−

=

)P(1
n

n1
R
t
nn

R
Rη f

f

headerSR

headerf

eff
SR −⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

−

== ((∗∗∗∗∗∗))

32

0 1 2 3 4 5 6 7 8 9 1011

f

f

P1
P
−

frameSR tt =

R
n

P1
1t

P1
Ptt f

f
frame

f

f
frameSR ⋅

−
=⋅

−
+=

What is total average time required to transmit a frame, assuming Pf?
successful

transmission

0 1 2 3 4 5 6R 8 9 1011127

on NAK or time-out

successful
transmission

tframe

1st attempt successful:

frameframeSR ttt +=2nd attempt successful:

frameframeSR terror] in onstransmissi of E[#tt ⋅+=average case:

)P(1
n

n1
R
t
nn

f
f

headerSR

headerf

SR −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−

=η⇒

Selective Repeat ARQ (cont.)

NAK 0

33Stop-and-Wait vs. Go-Back-N vs. Selective Repeat

PerformancePerformance
ComparisonComparison

• assume nACK and nheader are negligible relative to nf, and

• efficiencies of three ARQ techniques are

• for 0 < Pf < 1, Selective Repeat provides best performance

• for Pf → 0 Go-Back-N as good as Selective Repeat

size of the “pipe” in
multiples of frames

()fSW P1-
L1

1
⋅

+
=η

)P(1
LP1
1

f
f

GBN −
+

=η

)P(1 fSR −=η

ηSW < ηGBN < ηSR

1−==
+

s
f

procprop WL
n

)Rt2(t WS is for 1 less than the
number of frames currently in transit

34

ARQ Efficiency Comparison

0

0.5

1

1.5

-9 -8 -7 -6 -5 -4 -3 -2 -1

- LOG(p)

Ef
fic

ie
nc

y

Selective
Repeat

Go Back N 10

Stop and Wait
100

Go Back N 100

Stop and Wait
10

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

p

Delay-Bandwidth product = 10, 100

