If, now, the constant magnitude loci (M circles) and constant phase angle loci (N circles) are transferred to the gain-phase plot, the resultant chart is called Nichol's chart.

If we superimpose the gain-phase plot of an open-loop t.f. on Nichol's chart, we get very easily the closed-loop frequency response. The magnitude is expressed in decibels, while the phase angle is in degrees. Nichol's chart gives the points of intersection of the gain-phase plot of an open-loop t.f., which are symmetrical about the -180° axis. The M and N loci are repeated for every 360° , and there is symmetry at every 180° interval. The M loci are centred about the critical point $(0 \text{ dB}, -180^{\circ})$

Using Nichol's chart, the closed-loop frequency response can be determined graphically from the locus of the open-loop system. When the Nichol's plot of $G(j\omega)$ is sketched on Nichol's chart, the locus of $G(j\omega)$ will cut the M and N contours at various points. The cutting point of the locus of $G(j\omega)$ with the M contour gives the magnitude of closed-loop system corresponding to a frequency same as that of $G(j\omega)$ at that point. The cutting point of locus of $G(j\omega)$ and N contour gives the phase of closed loop corresponding to a frequency same as that of $G(j\omega)$ at that point. The magnitude M and phase angle $\alpha(N=\tan\alpha)$ of closed-loop system are tabulated. The closed-loop frequency response can be plotted on a semi-log graph sheet using the tabulated values. The closed-loop frequency response consists of two plots, namely magnitude versus ω and phase angle versus ω . Figure 12.23 shows Nichol's chart.

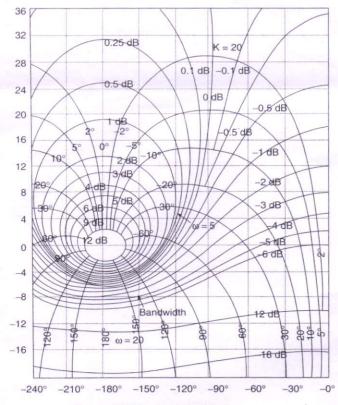


Figure 12.23 Nichol's chart

Nichol's chart is used for determining:

1. The complete closed-loop frequency response.

2. The value of resonant peak M of closed-loop system with given value of $G(j\omega)$.

3. The frequency ω corresponding to M for the closed-loop system.

4. Other frequency and time domain specifications if M and ω are known.

5. The 3-dB bandwidth of the closed-loop system.

6. The value of K for the given value of M.

ADDITIONAL SOLVED PROBLEMS

ASP-1: Sketch the polar plot for the t.f.

$$G(s) = \frac{12}{s^2(s+1)(s+2)}.$$

Solution:

Let the t.f. of the system is given as

$$G(s) = \frac{12}{s^2(1+s)(2+s)}.$$

To get sinusoidal t.f., substitute $s = j\omega$ in G(s)

$$G(j\omega) = \frac{12}{(j\omega)^2 (1+j\omega)(2+j\omega)}$$

$$M = |G(j\omega)| = \frac{12}{\omega^2 \sqrt{1+\omega^2} \sqrt{4+\omega^2}}$$

$$\phi = |G(j\omega) = 180 - \tan^{-1}\omega - \tan^{-1}\omega/2$$

ω	M	φ
0	∞	-180°
∞	0	-270°

Next, let us determine whether $G(j\omega)$ intersects any of the axis of $G(j\omega)$ -plane.

$$G(j\omega) = \frac{-12}{\omega^2 (1+j\omega)(2+j\omega)}$$

$$= \frac{-12(1-j\omega)(2-j\omega)}{\omega^{2}(1+j\omega)(2+j\omega)(1-j\omega)(2-j\omega)}$$

$$= \frac{-12(2-j\omega-j2\omega-\omega^{2})}{\omega^{2}(1+\omega^{2})(4+\omega^{2})}$$

$$= \frac{-12(2-\omega^{2})}{\omega^{2}(1+\omega^{2})(4+\omega^{2})} + \frac{12.j3\omega}{\omega^{2}(1+\omega^{2})(4+\omega^{2})}$$

Let us assign I.P. of $G(j\omega) = 0$.

$$\Rightarrow \frac{36\omega}{\omega^2(1+\omega^2)(4+\omega^2)} = 0 \Rightarrow \omega = \infty$$

Let us assign R.P. of $G(j\omega) = 0$

$$\Rightarrow \frac{12(2-\omega^2)}{\omega^2(1+\omega^2)(4+\omega^2)} = 0 \Rightarrow 2-\omega^2 = 0$$

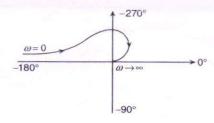
$$\Rightarrow \omega = \sqrt{2}$$

$$G(j\sqrt{2}) = \frac{12}{(j\sqrt{2})^2(1+j\sqrt{2})(2+j\sqrt{2})}$$

$$= \frac{-12}{2(-2+j2\sqrt{2}+j\sqrt{2}+2)}$$

$$= \frac{-6}{j3\sqrt{2}} = j\sqrt{2}$$

The polar plot is as shown in the following figure.



ASP-2: Draw the polar plot for the t.f. $G(s) = \frac{1}{(1+s)^3}$

Solution:

The t.f. of the system is given as

$$G(s) = \frac{1}{(1+s)^3} = \frac{1}{(1+s)(1+s)(1+s)}$$

To get sinusoidal t.f., substitute $s = j\omega$ in G(s).

$$G(j\omega) = \frac{1}{(1+j\omega)(1+j\omega)(1+j\omega)}$$

$$M = |G(j\omega)| = \frac{1}{\sqrt{1+\omega^2}\sqrt{1+\omega^2}\sqrt{1+\omega^2}}$$

$$\phi = |G(j\omega)| = -\tan^{-1}\omega - \tan^{-1}\omega - \tan^{-1}\omega = -3\tan^{-1}\omega$$

ω	M	φ
0	1	0
∞	0	-270°

Next, let us determine whether $G(j\omega)$ intersects any of the axis of $G(j\omega)$ -plane.

$$G(j\omega) = \frac{1}{(1+j\omega)^3}$$

$$= \frac{(1-j\omega)^3}{(1+j\omega)^3(1-j\omega)^3}$$

$$= \frac{1+j\omega^3 - j3\omega - 3\omega^2}{(1+\omega^2)^3}$$

$$= \frac{1-3\omega^2}{(1+\omega^2)^3} + \frac{j\omega(\omega^2 - 3)}{(1+\omega^2)^3}$$

Let us assign I.P. of $G(j\omega) = 0$

$$\Rightarrow \frac{\omega(\omega^2 - 3)}{\left(1 + \omega^2\right)^3} = 0 \Rightarrow \omega(\omega^2 - 3) = 0$$

$$\Rightarrow$$
 $\omega = 0, \ \omega = \sqrt{3}$

$$G(j0) = \frac{1}{1 \times 1 \times 1} = 1$$

$$G(j\sqrt{3}) = \frac{1}{\left(1 + j\sqrt{3}\right)^3} = \frac{1}{1 - j3\sqrt{3} + j3\sqrt{3} - 9} = \frac{-1}{8} = -0.125.$$

Let us assign R.P. of $G(j\omega) = 0$

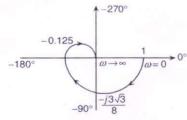
$$\Rightarrow \frac{1-3\omega^{2}}{(1+\omega^{2})3} = 0 \Rightarrow 1-3\omega^{2} = 0$$

$$\Rightarrow \omega = \frac{1}{\sqrt{3}}$$

$$G(j/\sqrt{3}) = \left(\frac{1}{1+j/\sqrt{3}}\right)^{3} = \frac{3\sqrt{3}}{(j+\sqrt{3})^{3}}$$

$$= \frac{3\sqrt{3}}{-j+3\sqrt{3}-3\sqrt{3}+j9} = \frac{3\sqrt{3}}{j8} = \frac{-j3\sqrt{3}}{8} = -j0.649.$$

The polar plot is as shown in the following figure.

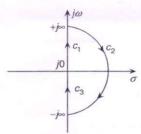


ASP-3: By Nyquist stability criterion, determine the stability of closed-loop system, when open-loop t.f. is given as $G(s)H(s) = \frac{3}{(s+1)(s+2)}$.

Solution:

Given that
$$G(s)H(s) = \frac{3}{(s+1)(s+2)}$$

- 1. Number of poles in the right half of the s-plane, P = 0.
- 2. For stability, N = -P = 0
- 3. As there is no pole at the origin, the Nyquist contour is as shown in the figure, which contains Sections c_1 , c_2 and c_3



4. Mapping of Section c_1 : In Section c_1 , $\omega \rightarrow 0$ to ∞ , that is, the mapping of Section c_1 gives polar plot of $G(j\omega)H(j\omega)$ in (u-v)-plane.

To get the sinusoidal t.f., substitute $s = j\omega$ in G(s)H(s).

$$G(j\omega)H(j\omega) = \frac{3}{(1+j\omega)(2+j\omega)}$$

$$M = |G(j\omega)H(j\omega)| = \frac{3}{\sqrt{1+\omega^2}\sqrt{4+\omega^2}}$$

$$\phi = G(j\omega)H(j\omega) = -\tan^{-1}\omega - \tan^{-1}\omega/2$$

ω	М	φ
0	1.5	0
000	0	-180°

$$G(j\omega)H(j\omega) = \frac{3}{(1+j\omega)(2+j\omega)} \frac{(1-j\omega)(2-j\omega)}{(1-j\omega)(2-j\omega)}$$
$$= \frac{3[2-\omega^2+j(-2\omega-\omega)]}{(1+\omega^2)(4+\omega^2)}$$
$$= \frac{3(2-\omega^2)}{(1+\omega^2)(4+\omega^2)} - j\frac{3\omega\times3}{(1+\omega^2)(4+\omega^2)}.$$

Let us assign I.P. of $G(j\omega)H(j\omega) = 0$

i.e.,
$$\frac{9\omega}{\left(1+\omega^2\right)\left(4+\omega^2\right)} = 0 \Rightarrow \omega = 0$$

$$\therefore G(j\omega)H(j\omega) = \frac{3\times 2}{1\times 4} = 1.5$$

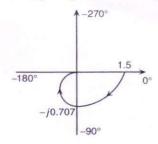
Let us assign R.P. of $G(j\omega)H(j\omega) = 0$

i.e.,
$$\frac{3(2-\omega^2)}{(1+\omega^2)(4+\omega^2)} = 0 \Rightarrow \omega^2 = 2$$

$$\Rightarrow \qquad \omega = \sqrt{2}$$

$$\therefore \qquad G(j\omega)H(j\omega) = -j \times \frac{3\sqrt{2}\times3}{3\times6} = -\frac{j}{\sqrt{2}} = -j0.707.$$

Thus, the mapping of Section c_1 in (u-v)-plane gives the following figure.



5. **Mapping of Section** c_2 : The mapping of Section c_2 from s-plane to (u-v)-plane is obtained by substituting $s = \lim_{R \to \infty} Re^{j\theta}$ in G(s)H(s) and varying θ from $+90^\circ$ to -90° . Since $s \to Re^{j\theta}$ and $R \to \infty$, $1 + sT \approx sT$

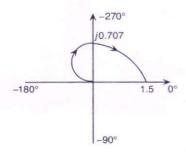
$$G(s)G(s) = \frac{3}{(s+1)(s+2)} = \frac{1.5}{(1+s)(1+0.55)} = \frac{1.5}{s \times 0.55} = \frac{3}{s^2}$$

$$G(s)H(s)|_{s=\lim_{R \to \infty} Re^{j\theta}} = \frac{3}{\lim_{R \to \infty} R^2 e^{j2\theta}} = 0e^{-j2\theta}$$

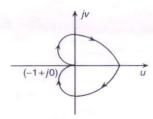
$$= 0[-180^{\circ} \text{ to } 0^{\circ} \text{ to } +180^{\circ}.$$

From the afore-mentioned discussion, we can say that Section c_2 in s-plane is mapped into a circular arc of zero radius (i.e., a point) in the (u-v)-plane and not required to be analysed.

6. **Mapping of Section** c_3 : In Section c_3 , $\omega \to -\infty$ to 0, that is, mapping of Section c_3 gives the inverse polar plot of $G(j\omega)H(j\omega)$, as shown in the following figure.



Complete Nyquist plot: The complete Nyquist plot in G(s)H(s) or (u-v)-plane can be obtained by
combining the mapping of individual sections as shown in the following figure.



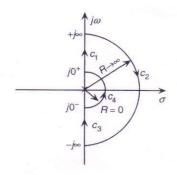
8. The Nyquist plot does not encircle the critical point (-1 + j0) (i.e., N = 0). Since the given t.f. does not contain any poles in the right half of the s-plane, the closed-loop system is stable.

ASP-4: The open-loop t.f. of a system is given as $G(s)H(s) = \frac{1+4s}{s^2(1+s)(1+2s)}$. Determine the stability of closed-loop system by using Nyquist criterion. If the closed-loop system is not stable, then find the number of closed-loop poles lying on the right half of the *s*-plane.

Solution:

Given that $G(s)H(s) = \frac{1+4s}{s^2(1+s)(1+2s)}$.

- 1. Number of poles in the right half of the s-plane, P = 0.
- 2. For stability, N = -P = 0.
- 3. As there are two poles at origin, the Nyquist contour is as shown in the figure, which contains Sections c_1 , c_2 , c_3 and c_4 .



4. **Mapping of Section** c_1 : In Section c_1 , $\omega \rightarrow 0$ to ∞ , that is, the mapping of Section c_1 gives the polar plot of $G(j\omega)H(j\omega)$ in (u-v)-plane.

To get sinusoidal t.f., substitute $s = j\omega$ in G(s)H(s).

$$\begin{split} G(j\omega)H(j\omega) &= \frac{1+j4\omega}{(j\omega)^2(1+j\omega)(1+j2\omega)} \;. \\ M &= \left|G(j\omega)H(j\omega)\right| = \frac{\sqrt{1+16\omega^2}}{\omega^2\sqrt{(1+\omega^2)(1+4\omega^2)}} \end{split}$$

$$\phi = \underline{G}(j\omega)H(j\omega) = -180^{\circ} - \tan^{-1}\omega - \tan^{-1}2\omega + \tan^{-1}4\omega$$

ω	М	ø
0	1.5	-180°
00	0	-270°

$$G(j\omega)H(j\omega) = \frac{1+j4\omega}{-\omega^{2}(1-2\omega^{2}+3j\omega)}$$

$$= \frac{-(1+j4\omega)}{\omega^{2}(1-2\omega^{2}+j3\omega)} \times \frac{\left(1-2\omega^{2}-j3\omega\right)}{\left(1-2\omega^{2}-j3\omega\right)}$$

$$= \frac{-[1+10\omega^{2}+j(\omega-8\omega^{3})]}{\omega^{2}[(1-2\omega^{2})^{2}+9\omega^{2}]}$$

$$= \frac{-(1+10\omega^{2})}{\omega^{2}[(1-2\omega^{2})+9\omega^{2}]} \frac{j(\omega-8\omega^{3})}{\omega^{2}[(1-2\omega^{2})+9\omega^{2}]}$$

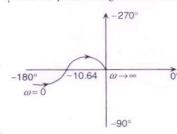
Let us assign I.P. of $G(j\omega)H(j\omega) = 0$

i.e.,
$$\frac{\omega - 8\omega^3}{\omega^2[(1 - 2\omega^2) + 9\omega^2]} = 0$$

$$\omega(1-8\omega^2)=0$$

$$\omega = 0$$
, $\omega = \frac{1}{2\sqrt{2}}$.

Thus, the mapping of Section c_1 in (u-v)-plane is as given in the following figure.



5. **Mapping of Section** c_2 : Mapping of Section c_2 from s-plane to (u-v)-plane is obtained by assigning $s = \lim_{n \to \infty} Re^{j\theta}$ in G(s)H(s) and varying θ from $+\pi/2$ to $-\pi/2$. Since $s \to Re^{j\theta}$ and $R \to \infty$, $1 + T \approx sT$.

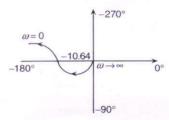
$$G(s)H(s) = \frac{1+4s}{s^2(1+s)(1+2s)} = \frac{4s}{s^2 \times s \times 2s} = \frac{2}{s^3}$$

$$G(s)H(s)\big|_{s=\lim_{R\to\infty}Re^{j\theta}}=\frac{2}{\lim_{R\to\infty}R^3e^{j3\theta}}=0e^{-j3\theta}$$

$$= 0|-270^{\circ}$$
 to 0° to $+270^{\circ}$.

From the afore-mentioned discussion, we can say that Section c_2 in s-plane is mapped into a circular area of zero radius (i.e., a point) in the (u-v)-plane and not required to be analysed.

Mapping of Section c₃: In Section c₃, ω → −∞ to 0, that is, the mapping of Section c₃ gives the inverse polar plot of G(jω)H(jω), as shown in the following figure.



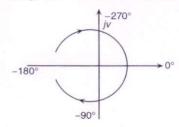
7. **Mapping of Section** c_4 : Mapping of Section c_4 from s-plane to (u-v)-plane can be obtained by substituting $s = \lim_{R \to 0} Re^{j\theta}$ in G(s)H(s) and varying θ from $-\pi/2$ to $+\pi/2$. Since $s = Re^{j\theta}$ and R = 0, 1 + sT = 1.

$$G(s)H(s) = \frac{1+4s}{s^2(1+s)(1+2s)} = \frac{1}{s^2 \times 1 \times 1} = \frac{1}{s^2}.$$

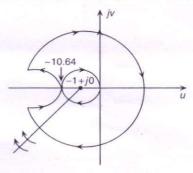
$$G(s)H(s)\Big|_{s=\lim_{R\to 0} Re^{j\theta}} = \frac{1}{\lim_{R\to 0} Re^{j\theta}} = \infty e^{-j2\theta}$$

$$=\infty$$
 $+180^{\circ}$ to 0° to -180° .

From the afore-mentioned discussion, we can say that Section c_4 in the s-plane is mapped into a circle of infinite radius with argument varying from +180° to -180°, as shown in the following figure.



8. **Complete Nyquist plot:** The complete Nyquist plot in G(s)H(s) or (u-v)-plane can be obtained by combining the mapping of individual sections as shown in the following figure.



9. The number of encirclements of (-1+j0) are

N = +2 (clockwise encirclements)

However, for stability, N = 0.

.. The closed-loop system is unstable.

According to the mapping theorem, we have

$$N = Z - P$$

$$2 = Z - 0 \Rightarrow Z = 2$$

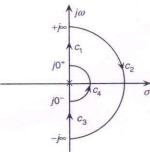
Actually, there are 2 zeros of 1 + G(s)H(s) encircled by Nyquist path, that is, 2 closed-loop poles are there in the right half of the *s*-plane, due to which the closed-loop system is unstable.

ASP-5: Sketch the Nyquist plot of the system whose open-loop t.f. is given as $G(s)H(s) = \frac{5}{s(1+0.5s)}$ and hence determine the gain margin.

Solution:

Given that
$$G(s)H(s) = \frac{5}{s(1+0.5s)}$$
.

- 1. Number of poles in the right half of the s-plane, P = 0.
- 2. For stability, N = -P = 0.
- 3. As there is one pole at origin, the Nyquist contour is chosen as shown in the figure, which contains Sections c_1 , c_2 , c_3 and c_4 .



4. **Mapping of Section** c_1 : In Section c_1 , $\omega \to 0$ to ∞ , that is, the mapping of Section c_1 gives the polar plot of $G(j\omega)H(j\omega)$ in (u-v)-plane.

To get the sinusoidal t.f., substitute $s = j\omega$ in G(s)H(s).

$$G(j\omega)H(j\omega) = \frac{5}{j\omega(1+j0.5\omega)}.$$

$$M = \left| G(j\omega) H(j\omega) \right| = \frac{5}{\omega \sqrt{1 + 0.25\omega^2}}.$$

$$\theta = |G(j\omega)H(j\omega)| = -90 - \tan^{-1} 0.5\omega.$$

ω	M	ø
0	00	-90
00	0	-180

$$G(j\omega)H(j\omega) = \frac{5}{j\omega(1+j0.5\omega)}$$

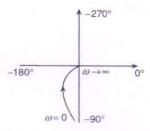
$$= \frac{5}{-0.5\omega^2 + j\omega} = -\frac{5}{(0.5\omega^2 - j\omega)} \frac{(0.5\omega^2 + j\omega)}{(0.5\omega^2 + j\omega)}$$

$$=\frac{-5(0.5\omega^2+j\omega)}{0.25\omega^2+\omega^2}$$

$$=\frac{-5(0.5\omega^2+j\omega)}{1.25\omega^2}=\frac{-2.5}{1.25}-j\frac{5}{1.25\omega}$$

There is no intersection point of the plot with the real or imaginary axis.

Thus, the mapping of Section c_1 in (u-v)-plane gives the following figure.



5. **Mapping of Section** c_2 : The mapping of Section c_2 from the s-plane to (u-v)-plane is obtained by substituting $s = \lim_{R \to \infty} Re^{j\theta}$ in G(s)H(s) and varying θ from $+\pi/2$ to $-\pi/2$. Since $s \to Re^{j\theta}$ and $R \to \infty$, $1 + sT \approx sT$

$$G(s)H(s) = \frac{5}{s(1+0.5s)} = \frac{5}{s \times 0.5s} = \frac{10}{s^2}$$

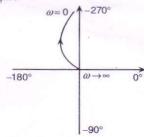
$$G(s)H(s)\Big|_{s = \lim_{R \to \infty} Re^{j\theta}} = \frac{10}{\lim_{R \to \infty} R^2 e^{j2\theta}} = 0e^{-j2\theta}$$

$$= 0[-180^{\circ} \text{ to } 0^{\circ} \text{ to } +180^{\circ}]$$

From the afore-mentioned discussion, we can say that Section c_2 in the s-plane is mapped into a circular of zero radius in the (u-v)-plane and not analysed.

Mapping of Section c₃: In Section c₃, ω → −∞ to 0, that is, mapping of Section c₃ gives the inverse polar plot of

 $G(j\omega)H(j\omega)$ as in the following figure.



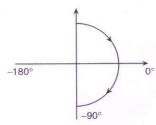
7. **Mapping of Section** c_4 : Mapping of Section c_4 from s-plane to (u-v)-plane can be obtained by substituting $s = \lim_{n \to \infty} Re^{j\theta}$ in G(s)H(s) and varying θ from $-\pi/2$ to $+\pi/2$. Since $s = Re^{j\theta}$ and R = 0, 1 + sT = 1.

$$G(s)H(s) = \frac{5}{s(1+0.5s)} = \frac{5}{s\times 1} = \frac{5}{s}$$

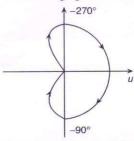
$$G(s)H(s)\Big|_{s=\lim_{R\to\infty}Re^{j\theta}} = \frac{5}{\lim_{R\to\infty}Re^{j2\theta}} = \infty e^{-j\theta}$$

$$= \infty |90^{\circ} \text{ to } 0^{\circ} \text{ to } -90^{\circ}$$

From the afore-mentioned discussion, we can say that Section c_4 in the s-plane is mapped into a circle of infinite radius with argument varying from $+90^{\circ}$ to -90° as shown in the following figure.



8. **Complete Nyquist plot:** The complete Nyquist plot in (*u-v*)-plane can be obtained by combining the mapping of individual section as in the following figure.



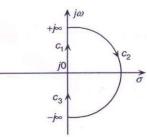
The Nyquist plot does not encircle the critical point (-1+ j0), that is, N = 0. Since the given t.f. does not contain any poles in the right half of the s-plane, the closed-loop system is stable.
 As ω_{pc} = 0 for any increase in gain, ω_{pc} cannot approach ω_{gc}, and hence G.M = +∞dB

ASP-6: For a feedback control system, sketch the Nyquist plot whose open-loop t.f. is given as $G(s)H(s) = \frac{40}{(s+4)(s^2+2s+2)}$. Find the gain margin and stability from Nyquist plot.

Solution:

Given that
$$G(s)H(s) = \frac{40}{(s+4)(s^2+2s+2)}$$
.

- 1. Number of poles in the right half of the s-plane, P = 0.
- 2. For stability N = -P = 0.
- 3. As there is no pole at the origin, the Nyquist contour is chosen as shown in the figure, which contains Sections c_1 , c_2 and c_3 .



Mapping of Section c₁: In Section c₁, ω→0 to ∞, that is, the mapping of Section c₁ gives the polar plot of G(jω)H(jω) in (u-v)-plane.

To get the sinusoidal t.f., substitute $s = j\omega$ in G(s)H(s).

$$G(j\omega)H(j\omega) = \frac{40}{(j\omega+4)(2-\omega^2+j2\omega)}$$

$$M = |G(j\omega)H(j\omega)| = \frac{40}{\sqrt{\omega^2+16}\sqrt{(2-\omega^2)^2+4\omega^2}}$$

$$\theta = |G(j\omega)H(j\omega)| = -\tan^{-1}\omega/4-\tan^{-1}\left[\frac{2\omega}{2-\omega^2}\right]$$

Note: A quadratic factor contributes an angle of $\pm 180^{\circ}$ as $\omega \rightarrow \infty$ and contributes an angle of 0° as $\omega \rightarrow 0$.

ω	М	φ
0	5	0°
∞	0	-270°

$$G(j\omega)H(j\omega) = \frac{40}{(4+j\omega)(2-\omega^2+j2\omega)} \times \frac{(4-j\omega)(2-\omega^2-2j\omega)}{(4-j\omega)(2-\omega^2-2j\omega)}$$

$$= \frac{40(4-j\omega)(2-\omega^2-j2\omega)}{(16+\omega^2)[(2-\omega^2)^2+4\omega^2)]}$$

$$= \frac{40[8-4\omega^2-j8\omega-j2\omega+j\omega^3-2\omega^2]}{(16+\omega^2)(4+\omega^4)}$$

$$= \frac{40(8-6\omega^2)}{(16+\omega^2)(4+\omega^4)} + \frac{j(\omega^3+10\omega)}{(16+\omega^2)(4+\omega^4)}.$$

Let us assign I.P. of $G(j\omega)H(j\omega) = 0$.

i.e.,
$$\frac{\omega^3 - 10\omega}{(16 + \omega^2)(4 + \omega^4 - 3\omega^2)} = 0$$

$$\omega(\omega^2 - 10) = 0$$

$$\omega = 0, \omega = \sqrt{10} \text{, i.e., } \omega_{pc} = \sqrt{10}.$$

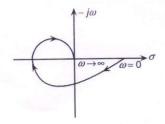
$$G(s)H(s) = \frac{40(8 - 60)}{(16 + 10)(4 + 100)} = -0.769 \text{, i.e., } Q = -0.769.$$

Let us assign R.P. of $G(j\omega)H(j\omega) = 0$.

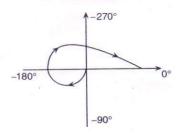
i.e.,
$$\frac{8 - 6\omega^2}{(16 + \omega^2)(4 + \omega^4)} = 0$$
$$8 - 6\omega^2 = 0 \Rightarrow \omega = \sqrt{4/3}.$$

$$G(j\omega)H(j\omega) = \frac{j\sqrt{\frac{4}{3}\left[\frac{4}{3}-10\right]}}{\left[16+\frac{4}{3}\right]\left[4+\frac{16}{9}\right]}.$$
$$= \frac{j1/54\times(-26)\times9}{52\times52} = -j0.1$$

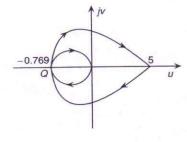
Thus, the mapping of Section c_1 in (u-v)-plane is shown in the following figure.



- 5. **Mapping of Section** c_2 : The mapping of Section c_2 from s-plane to (u-v)-plane gives a point and need not be considered.
- 6. **Mapping of Section** c_3 : In Section c_3 , $\omega \to \infty$ to 0, that is, mapping of Section c_3 gives the inverse polar plot of G(s)H(s), as given in the following figure.



Complete Nyquist plot: The complete Nyquist plot in (u-v)-plane can be obtained by combining the
mapping of individual section as in the following figure.



8. The Nyquist plot does not encircle the critical point (-1 + j0), that is, N = 0. Since the given t.f. does not contain any poles in the right half of the s-plane, the closed-loop system is stable.

$$GM = \frac{1}{|0Q|} = \frac{1}{0.769} = 1.3.$$

$$GM \text{ in } dB = 20 \log \frac{1}{|0Q|}$$

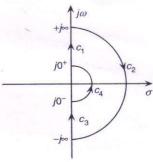
$$= 20 \log \left(\frac{1}{0.769}\right) = 2.27 dB$$

ASP-7: Draw the Nyquist plot for the system whose open-loop t.f. is $G(s)H(s) = \frac{K}{s(s+2)(s+10)}$. Determine the range of K for which the closed-loop system is stable.

Solution:

Given that
$$G(s)H(s) = \frac{K}{s(s+2)(s+10)}$$
.

- 1. Number of poles in the right half of the s-plane, P = 0.
- 2. For stability, N = -P = 0.
- 3. As there is one pole at origin, the Nyquist contour is chosen as shown in the figure, which contains Sections c_1 , c_2 , c_3 and c_4 .



4. **Mapping of Section** c_1 : In Section c_1 , $\omega \to 0$ to ∞ , that is, the mapping of Section c_1 gives the polar plot of $G(j\omega)H(j\omega)$ in (u-v)-plane. To get the sinusoidal t.f., substitute $s = j\omega$ in G(s)H(s)

$$G(j\omega)H(j\omega) = \frac{K}{j\omega(j\omega+2)(j\omega+10)}$$

$$M = |G(j\omega)H(j\omega)| = \frac{K}{\omega\sqrt{\omega^2+4}\sqrt{\omega^2+100}}$$

$$\theta = |G(j\omega)H(j\omega)| = -90 - \tan^{-1}\omega/2 - \tan^{-1}\omega/10$$

ω	M	φ
0	∞	-90°
∞	0	-270°

$$G(s)H(s) = \frac{K}{s \times 2(1+s/2)10(1+s/10)}$$
$$= \frac{0.05K}{s(1+0.5s)(1+0.1s)}$$

$$G(j\omega)H(j\omega) = \frac{0.05K}{j\omega(1+j0.5\omega)(1+j0.1\omega)}$$

$$= \frac{0.05K}{j\omega(1+j0.6\omega-0.05\omega^2)}$$

$$= \frac{0.05K}{-0.6\omega^2+j\omega(1-0.05\omega^2)}$$

$$= \frac{0.05K[-0.6\omega^2-j\omega(1-0.05\omega^2)]}{[-0.6\omega^2+j\omega(1-0.05\omega^2)][-0.6\omega^2-j\omega(1-0.05\omega^2)]}$$

$$-0.05K\times0.6\omega^2 \qquad j0.05K\omega(1-0.05\omega^2)$$

 $\frac{10.36\omega^4 + \omega^2(1 - 0.05\omega^2)^2}{0.36\omega^4 + \omega^2(1 - 0.05\omega^2)^2}$

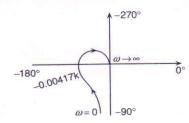
Let us assign I.P. of $G(j\omega)H(j\omega) = 0$.

i.e.,
$$1 - 0.05\omega^2 = 0 \Rightarrow \omega \frac{1}{\sqrt{0.05}} = 4.47$$

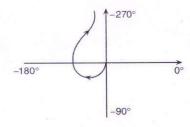
i.e.,
$$\omega_{pc} = 4.47 \text{ rad/s}.$$

$$G(j\omega)H(j\omega) = \frac{-0.05K \times 0.6 \times 4.47^2}{0.36 \times 4.47^2 + 4.47^2 (1 - 0.05 \times 4.47^2)^2} = -0.00417K.$$

Thus, the mapping of Section c_1 in the (u-v)-plane gives the following figure.



- 5. **Mapping of Section** c_2 : Thus, mapping of Section c_2 from the s-plane to (u-v)-plane can be obtained by substituting $s = \lim_{R \to \infty} Re^{i\theta}$ in G(s)H(s), which gives a circular area of zero radius (i.e., a point). Therefore, it need not be considered.
- 6. Mapping of Section c_3 : In Section c_3 , $\omega \to -\infty$ to 0, that is, the mapping of Section c_3 gives the inverse polar of $G(j\omega)H(j\omega)$ as given in the following figure.



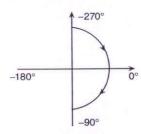
7. **Mapping of Section** c_4 : The mapping of Section c_4 from s-plane to (u-v)-plane can be obtained by substituting $s = \lim_{R \to 0} Re^{j\theta}$ in G(s)H(s) and varying θ from $-\pi/2$ to $+\pi/2$. Since $s = Re^{j\theta}$ and $R \to 0$, $1+sT \approx 1$.

$$G(s)H(s) = \frac{K}{s(s+2)(s+10)}$$

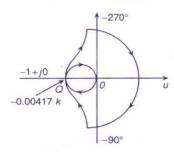
$$= \frac{0.05K}{s(1+0.05s)(1+0.15)} = \frac{0.05K}{s \times 1 \times 1} = \frac{0.05K}{s}$$

$$G(s)H(s)\big|_{s=\lim_{R\to 0}Re^{j\theta}} = \frac{0.05K}{\lim_{R\to 0}Re^{j\theta}} = \infty e^{-j\theta}$$
$$= \infty [+90^{\circ} \text{ to } 0^{\circ} \text{ to } -90^{\circ}.$$

From the afore-mentioned discussion, we can say that Section c_4 in the s-plane is mapped into a circle of infinite radius with argument varying from $+90^{\circ}$ to -90° , as shown in the following figure.



Complete Nyquist plot: The complete Nyquist plot in (u-v)-plane can be obtained by combining the
mapping of individual section as shown in the following figure.



Now, for absolute stability, N = 0, that is, (-1 + j0) point should be located on the left side of point Q.
 i.e., |0Q| < 1

$$|0.0041K| < 1$$

$$K < \frac{1}{0.00417} < 240$$

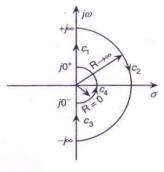
 \therefore The range of value of K for stability is

ASP-8: Sketch the Nyquist plot for a system with $G(s)H(s) = \frac{10(s+3)}{s(s-1)}$ and also determine the closed-loop stability.

Solution:

Given that
$$G(s)H(s) = \frac{10(s+3)}{s(s-1)}$$
.

- 1. Number of poles in the right half of the s-plane, P = 0.
- 2. For stability, N = -P = -1
- 3. As there is one pole at origin, the Nyquist contour is chosen as shown in the figure, which contains Sections c_1, c_2, c_3 and c_4 .



4. **Mapping of Section** c_1 : In Section c_1 , $\omega \to 0$ to ∞ , that is, the mapping of Section c_1 gives the polar plot of $G(j\omega)H(j\omega)$ in (u-v)-plane.

To get sinusoidal t.f., substitute $s = j\omega$ in G(s)H(s).

$$G(j\omega)H(j\omega) = \frac{10(3+j\omega)}{j\omega(j\omega-1)}.$$

$$M = |G(j\omega)H(j\omega)| = \frac{10\sqrt{9+\omega^2}}{\omega\sqrt{1+\omega^2}}$$

$$\phi = |G(j\omega)H(j\omega)| = -90 + \tan^{-1}\left(\frac{\omega}{3}\right) - \tan\left(\frac{-\omega}{1}\right)$$

$$= -90 + \tan^{-1}\left(\frac{\omega}{3}\right) - \left(180^\circ - \tan^{-1}\omega\right)$$

$$= -270^\circ + \tan^{-1}\left(\frac{\omega}{3}\right) + \tan^{-1}\omega$$

ω	М	φ
0	∞	-270°
∞	0	-90°

$$G(j\omega)H(j\omega) = \frac{-10(3+j\omega)}{j\omega(1-j\omega)} = \frac{-\omega(3+j\omega)}{j\omega+\omega^2}$$

$$= \frac{-10(3+j\omega)(\omega^2-j\omega)}{(\omega^2+j\omega)(\omega^2-j\omega)}$$

$$= \frac{-10(3\omega^2-j3\omega+j\omega^3+\omega^2)}{(\omega^4+\omega^2)}$$

$$= \frac{-40\omega^2}{\omega^4+\omega^2} - \frac{10j(\omega^3-3\omega)}{\omega^4+\omega^2}$$

Let us assign I.P. of $G(j\omega)H(j\omega) = 0$.

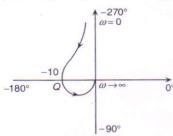
i.e.,
$$\frac{10j(\omega^3 - 3\omega)}{\omega^4 + \omega^2} = 0$$

$$\Rightarrow \qquad \omega^3 - 3\omega = 0$$

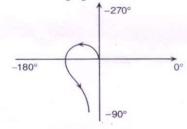
$$\Rightarrow \qquad \omega = 0 \cdot \omega = \sqrt{3} \quad \therefore \text{ i.e. } \omega_{pc} = \sqrt{3}$$

:.
$$G(j\omega)H(j\omega) = \frac{-40 \times 3}{9+3} = -10$$
 :. i.e., $Q = -10$.

Thus, the mapping of Section c_1 in (u-v)-plane gives the following figure.



- 5. **Mapping of Section** e_2 : The mapping of section from s-plane to (u-v)-plane can be obtained by substituting $s = \lim_{R \to \infty} Re^{i\theta}$ in G(s)H(s), which gives a circular area of zero radius (i.e., a point). Therefore, it is not considered.
- 6. **Mapping of Section** c_3 : In Section c_3 , $\omega \to -\infty$ to 0, that is, mapping of Section c_3 gives the inverse polar plot of $G(j\omega)H(j\omega)$ as in the following figure.



7. **Mapping of Section** c_4 : Mapping of Section c_4 from s-plane to (u-v)-plane can be obtained by substituting $s = \lim_{R \to 0} Re^{j\theta}$ in G(s)H(s) and varying θ from $-\pi/2$ to $+\pi/2$. Since $s = Re^{j\theta}$ and $R \to 0$, $1 + sT \approx 1$.

$$G(s)H(s) = \frac{10(s+3)}{s(s-1)} = \frac{10 \times 3\left(1 + \frac{s}{3}\right)}{s \times -1(1-s)} = \frac{10 \times 3 \times 1}{s \times -1} = \frac{30}{s \times (-1)}$$

$$G(s)H(s)\Big|_{s-\lim_{R \to 0} Re^{j\theta}} = \frac{30}{\lim_{R \to 0} Re^{j\theta} \times (-1)}$$

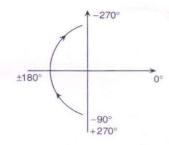
$$= \frac{30}{\lim_{R \to 0} Re^{j(\theta^2 - 180^\circ)}} = \infty e^{j(\theta - 180^\circ)}$$

$$= \infty \angle +270 \text{ to } 0^\circ \text{ to } +90^\circ.$$

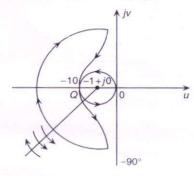
Note:

(−1) introduces −180° phase angle in the phase angle expression.

From the afore-mentioned discussion, we can say that Section c_4 in the s-plane is mapped into a circle of infinite radius with argument varying from $+270^{\circ}$ to $+90^{\circ}$, as shown in the following figure.



8. Complete Nyquist plot: The complete Nyquist plot in (u-v)-plane can be obtained by combining the mapping of individual section as shown in the following figure.



9. The number of encirclements of (-1 + j0) are N=1-2=-1 (anticlockwise).

Since the number of anticlockwise encirclements is equal to the number of open-loop poles on the right half of the s-plane, the closed-loop system is stable.

REVIEW QUESTIONS

- 1. Explain Nyquist stability criterion clearly.
- 2. Discuss the effect of adding poles and zeros to Nyquist plot.
- 3. Define gain margin and phase margin. Explain the significance of these terms to find the closed-loop system stability.
- 4. Discuss the significance of constant M and N circles to find the closed-loop system stability.
- 5. Explain the polar plot with an example.
- 6. Explain how Nyquist contour is selected for stability analysis.
- 7. What are the advantages of Nyquist method?
- 8. How can closed-loop stability be predicted from open-loop t.f.?
- 9. Why Nyquist path does not contain L.H.S of s-plane? Explain.
- 10. Draw and explain polar plots for Type-0, -1 and -2 systems.
- 11. How are gain margin and phase margin calculated from Nyquist plot?
- 12. What are constant M circles? Explain.
- 13. What are constant N circles? Explain.
- 14. Show that the loci of constant phase angles are circles.