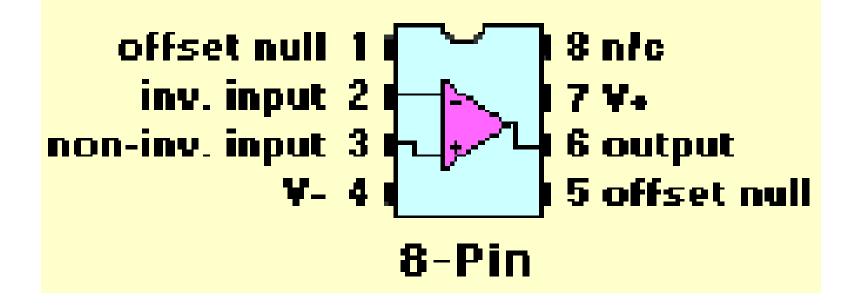


UNIT III – IC 741 OP-AMP

By: Ajay Kumar Gautam Asst. Prof. ECED, DBITW, Dehradun

SYLLABUS

- The 741 OPAMP Circuit: Bias circuit, short circuit protection, the input stage, the second stage, the output stage, the Device parameters
- DC Analysis of 741: Reference bias current, input stage bias, input bias and offset current, input offset voltage, input common range, second stage bias, output stage bias
- Small Signal Analysis of 741: The input stage, second stage, the output stage
- Gain, Frequency Response and Slew rate of 741: Small signal gain, frequency response, a simplified model, slew rate, relationship between F_t and SR


BASICS OF IC 741

MANUFACTURERS OF IC 741

• It is possible to identify the manufacturer by looking at the number printed on the OP-AMP IC. Fairchild first produced it and sold it as "µA741" where "µA" represent the initials for Fairchild and 741 as OP-AMP.

• Fairchild	μA741
• National semiconductor	LM741
o Motorola	MC1741
• RCA	CA3741
o Texas instrument	SN52741
• Signetics	N5741

PIN CONFIGURATION

OP-AMP IC 741 - DESCRIPTION

- This IC is an 8 pin IC in the dual in line (DIP) package.
- This is the one of the oldest and one of the most popular Op-amp IC.
- It is a high performance monolithic operational amplifier.
- It has wide range of applications such as integrator, differentiator, summing amplifier etc.

DEFINITION OF 741-PIN FUNCTIONS

- *Pin 1 (Offset Null):* Offset voltage is nulled by application of a voltage of opposite polarity to the offset.
- *Pin 2 (Inverted Input):* All input signals at this pin will be inverted at output pin 6.
- *Pin 3 (Non-Inverted Input):* All input signals at this pin will be processed normally without inversion.
- *Pin 4 (-V):* The V- pin (also referred to as V_{cc}) is the negative supply voltage terminal.
- Pin 5 (Offset Null): Same pin 1.

- *Pin 6 (Output):* Output signal's polarity will be the opposite of the input's when this signal is applied to the op-amp's inverting input.
- *Pin 7 (+V):* The V+ pin (also referred to as V_{cc}) is the positive supply voltage terminal of the 741 Op-Amp IC.
- *Pin 8 (N/C):* The 'N/C' stands for 'Not Connected'. There is no other explanation. There is nothing connected to this pin, it is just there to make it a standard 8-pin package

ABSOLUTE MAXIMUM RATINGS

• Supply voltage : ±18V

Internal power dissipation

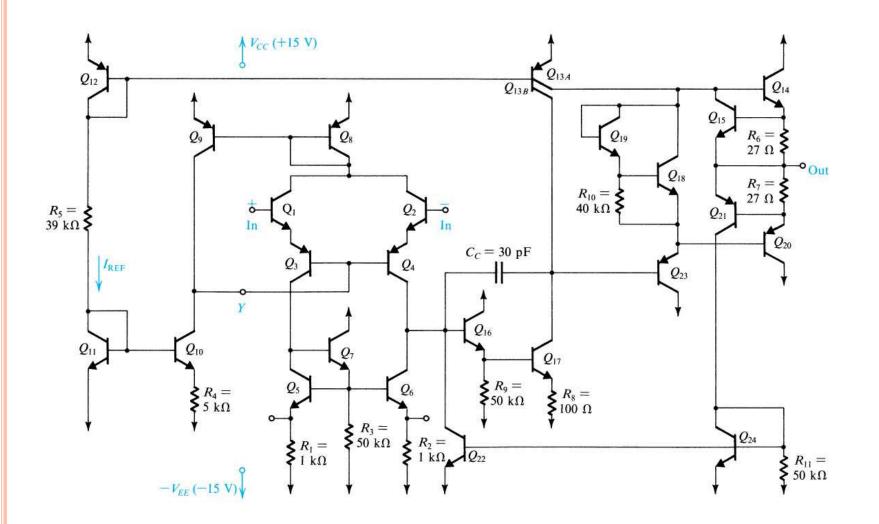
Metal package :500 mW
DIP :510 mW
Flat pack :570 mW

• Storage temperature range

- Metal package :-65°C to +150°C
- DIP $:-55^{\circ}C \text{ to }+125^{\circ}C$

Operating temp range

- Military :- 55°C to +125°C
- Commercial :0°C to +70°C


IMPORTANT CHARACTERISTICS OF IC 741

Sr. No.	Characteristics	Value for IC 741	Ideal Value
1.	Input Resistance	$2~\mathrm{M}\Omega$	œ
2.	Output Resistance	$75~\Omega$	0
3.	Voltage Gain	$2 \mathrm{x} 10^5$	∞
4.	B.W.	$1 \mathrm{~MHz}$	∞
5.	Slew Rate	$0.5 \mathrm{V/\mu s}$	∞

THE 741 OP-AMP CIRCUIT

11

Bias Circuit, Short Circuit Protection, The Input Stage, The Second Stage, The Output Stage, The Device Parameters

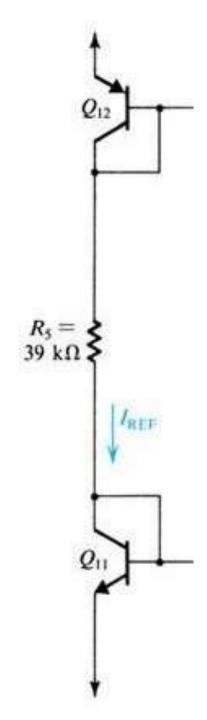
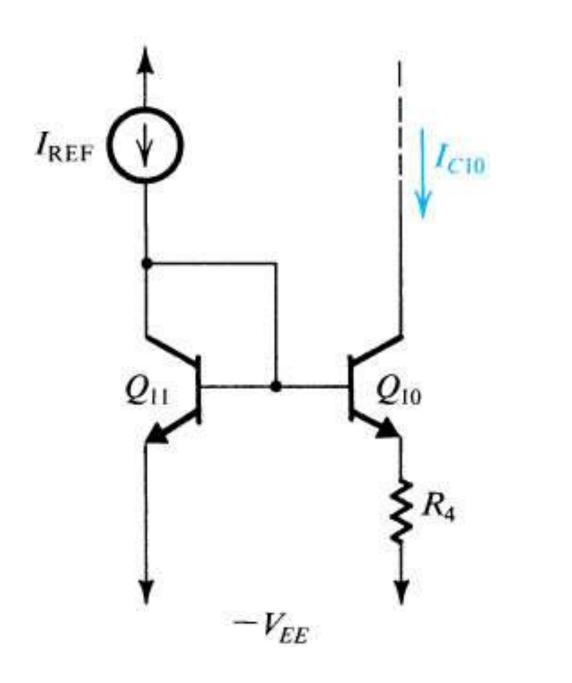
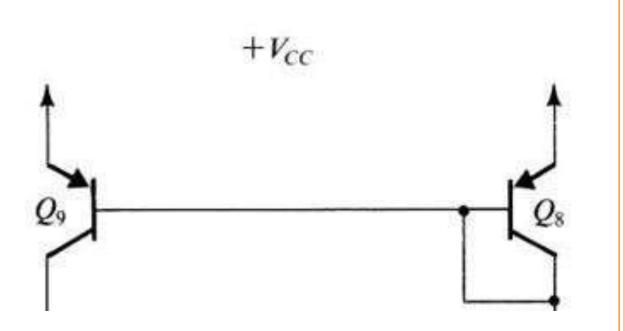


Figure 1: The 741 op-amp circuit. Q_{11} , Q_{12} , and R_5 generate a reference bias current, I_{REF} . Q_{10} , Q_9 , and Q_8 bias the input stage, which is composed of Q_1 to Q_7 . The second gain stage is composed of Q_{16} and Q_{17} with Q_{13B} acting as active load. The class AB output stage is formed by Q_{14} and Q_{20} with biasing devices Q_{13A} , Q_{18} , and Q_{19} , and an input buffer Q_{23} . Transistors Q_{15} , Q_{21} , Q_{24} , and Q_{22} serve to protect the amplifier against output short circuits and are normally cut off.


- Initially IC 741 was manufactured by "Fairchild Corporation".
- It consists of 24 transistors, 11 resistors and 1 capacitor.
- \bullet IC 741 requires two power supplies, +V $_{\rm CC}$ and $V_{\rm EE}.$
- Normally $+V_{CC} = +15$ V and $-V_{EE} = -15$ V.
- The IC 741 is capable of operating at much lower power supply voltages (upto $\pm\,5$ V)

Wednesday, April 25, 2012


BIAS CIRCUIT

The reference bias current of the 741 circuit, I_{REF} , is generated in the branch at the extreme left of **Fig. 1**, Q_{11} and Q_{12} and the resistance R_5 .

Widlar current source is formed by Q_{11} and Q_{10} and the resistance R_4 . The bias current for the first stage is generated in the collector of Q_{10} .

There is another current mirror formed by Q_8 and Q_9 which is responsible for the biasing in the first stage.

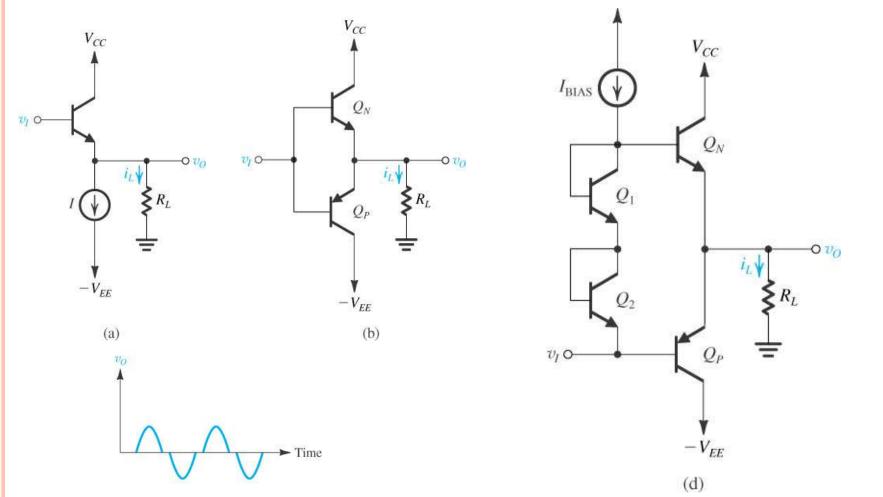
- Q_{13} is double-collector lateral *pnp* transistor.
- The transistors Q_{12} and Q_{13} form a two-output current mirror.
- Collector of Q_{13A} provides the bias current for the output stage of the op amp.
- The purpose of Q_{18} and Q_{19} is to establish the two V_{BE} drops between the bases of the output transistors Q_{14} and Q_{20} .

SHORT-CIRCUIT PROTECTION CIRCUITRY

- The 741 circuit includes large number of transistors that are normally off and conduct only when large output current is required.
- The large current can be achieved at the output terminals if the output terminal is short-circuited to one of the two supplies.
- This circuit protects the IC if an excess load current is drawn from it.
- The short-circuit protection network consists of $R_6, R_7, Q_{15}, Q_{21}, Q_{24}, R_{11}$ and Q_{22} .

THE INPUT STAGE

- Input stage consists of transistors through Q_1 to Q_7 .
- ${\color{black}\circ}$ The biasing is performed by transistors $Q_8,\,Q_9$ and $Q_{10}.$
- Transistors Q_5 , Q_6 and Q_7 and resistors R_1 , R_2 and R_3 form the load circuit of the input stage.
- Every OP-AMP circuit uses a level shifter.
- The function of level shifter is to shift the dc level of the signal so that the signal at the OP-AMP output can swing positive and negative.
- In 741, level shifting is done in the first stage using the lateral pnp transistors Q_3 and Q_4 .


THE SECOND STAGE

- The second stage or intermediate stage is composed of Q_{16} , Q_{17} , Q_{13B} , and two resistors R_8 and R_9 .
- Transistor Q_{16} acts as an emitter follower.
- So it provides high input resistance to the second stage.
- This minimizes the loading on the input stage and avoids the loss of gain.
- Transistor Q_{17} acts as an common-emitter amplifier with a 100 Ω resistance in its emitter.

- Its load is composed of the high output resistance of the *pnp* current source Q_{13B} in parallel with the input resistance with the output stage.
- The output of the second stage is taken at the collector of Q_{17} .
- Capacitor $C_{\rm C}$ is connected in the feedback path of the second stage to provide frequency compensation.
- Capacitor $C_{\rm C}$ is small in value.
- The chip are for Capacitor $C_{\rm C}$ is about 13 times that of a standard *npn* transistor.

THE OUTPUT STAGE

- 741 uses class AB output stage.
- The purpose of the output stage is to provide the amplifier with low output resistance.
- Emitter follower circuit is the class A output stage.
- The drawback of the class A output stage is large power dissipated in the transistor.
- This power dissipation can be reduced by arranging the transistor to turn on only when an input signal is applied.

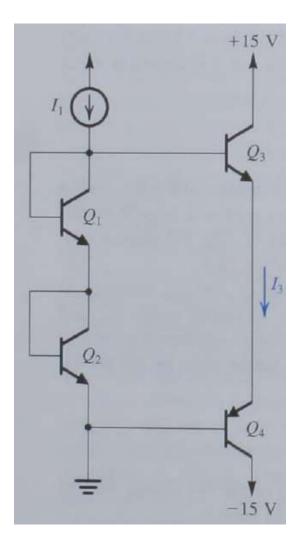
Figure 2 (a) The emitter follower is a class A output stage. **(b)** Class B output stage **(c)** The output of a class B output stage fed with an input sinusoid. Observe the crossover distortion. **(d)** Class AB output stage.

(c)

Wednesday, April 25, 2012 Analog Integrated Circuits, Unit - III, IC 741

- So in order to reduce the power dissipation two transistors are required.
- An npn to source the output current and a pnp transistor to sink the output current.
- This kind of arrangement is called class B output stage.
- Both the transistors will be cutoff when $v_{I} = 0$.
- When $v_{\rm I}$ goes positive $Q_{\rm N}$ conducts while $Q_{\rm P}$ remains off.
- When $v_{\rm I}$ goes negative transistors reverse roles.
- Class B output stage is efficient in power dissipation, but the output signal is distorted.

- Output signal is distorted when $|v_I|$ is less then about 0.5, neither of the transistors will conduct.
- This is called crossover distortion.
- Crossover distortion can be reduced by biasing the output stage transistors at low current.
- In this case, the output stage transistors will remain conducting when $v_{\rm I}$ is small.


THE DEVICE PARAMETERS

- For the standard *npn* and *pnp* transistors, the following parameters will be used:
 - npn: $I_s = 10^{-14} A$, $\beta = 200$, $V_A = 125 V$
 - pnp: $I_s = 10^{-14} A$, $\beta = 50$, $V_A = 50 V$
- In 741 circuit the nonstandard devices are Q_{13} , Q_{14} and Q_{20} .
- For transistor Q_{13} ,
 - $I_{SA} = 0.25 \times 10^{-14} \text{ A}$ $I_{SB} = 0.75 \times 10^{-14} \text{ A}$,
- Transistors Q_{14} and Q_{20} have an area three *time* that of a standard device.

EXERCISE

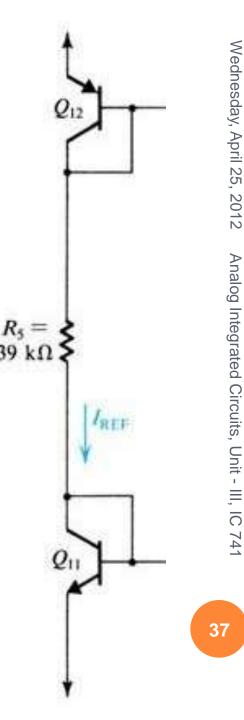
• For the circuit shown Fig, neglect base currents and use the exponential $i_c - v_{BE}$ relationship to show that

$$I_{3} = I_{1} \sqrt{\frac{I_{S3}I_{S4}}{I_{S1}I_{S2}}}$$

DC ANALYSIS OF 741

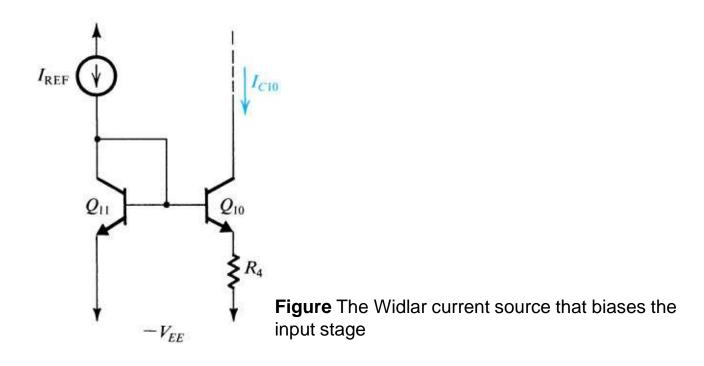
34

Reference bias current, input stage bias, input bias and offset current, input offset voltage, input common range, second stage bias, output stage bias


- For the dc analysis of an op-amp circuit, the Input terminals are grounded.
- This should result in zero dc voltage at the output.
- However, because the op amp has very large gain, the output voltage is close to either $+V_{\rm CC}$ or $-V_{\rm EE}$.
- To overcome this problem In the dc analysis, it will be assumed that the op amp is connected in a negative feedback loop that stabilizes the output dc voltage to zero volts.

REFERENCE BIAS CURRENT

• The reference Bias current I_{REF} can be obtained as:


$$I_{REF} = \frac{V_{CC} - V_{EB12} - V_{BE11} - (-V_{EE})}{R_5}$$

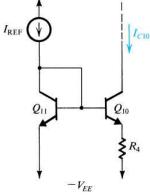
• For $V_{\rm CC} = V_{\rm EE} = 15 V$ and $V_{\rm BE12} = V_{\rm EB12} = 0.7 V$, we have $I_{\rm REF} = 0.73$ mA.

INPUT-STAGE BIAS

• Transistor Q_{11} is biased by I_{REF} , and the voltage developed across it is used to bias Q_{10} which has a series emitter resistance R_4 .

• From the circuit, and assuming β_{10} to be large, we have,

$$V_{BE11} - V_{BE10} = I_{C10}R_4$$


• Now assume that, $I_{S11}=I_{S10}$ we get,

$$V_T \ln \frac{I_{REF}}{I_{C10}} = I_{C10} R_4$$

• At room temperature $V_{\rm T} = 25$ mV. • For our case $I_{\rm C10} = 19$ µA.

EXERCISE

• Design the Widlar current source to generate a current $I_{C10} = 10\mu A$ given that $I_{\text{REF}} = 1$ mA. If at a collector current of 1mA, $V_{\text{BE}} = 0.7$ V, find V_{BE11} & $V_{\text{BE10.}}$

• Now we can determine dc current in each of the input-stage transistors.

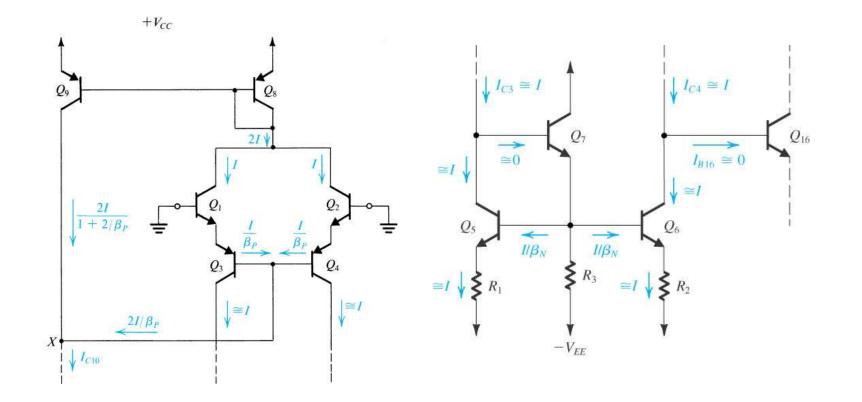


Figure: The dc analysis of the 741 input stage.

• From the **Fig** shown on previous slide, from symmetry we see that,

•
$$I_{\rm C1} = I_{\rm C2} = I$$

• If β_p is high, then for transistors $Q_3 \& Q_4$,

•
$$I_{\rm E3} = I_{\rm E4} = I$$

• And base currents of $Q_3 \& Q_4$ are equal, i.e.,

•
$$I_{\rm B3} = I_{\rm B4} = I/\beta_{\rm p}$$
.

- Now consider current mirror formed by Q₈ & Q₉, at node X, if β_p is very larger than 1,
 I_{C10} = 2I
- For the 741 circuit, $I_{C10} = 19 \ \mu$ A. So, we can determine that,

•
$$I_{\rm C1} = I_{\rm C3} = I_{\rm C3} = I_{\rm C4} = 9.5 \ \mu {\rm A}$$

Wednesday, April 25, 2012 Analog Integrated Circuits, Unit - III, IC 74

- Now consider the remainder circuit of the 741 input stage,
- This part of the circuit is fed by $I_{C3} = I_{C4} = I$
- Transistors Q₅ & Q₆ are identical so, I_{C3} = I_{C4} = I
 The bias current of the Q₇ is given by,

$$I_{C7} = I_{E7} \simeq \frac{2I}{\beta_N} + \frac{V_{BE6} + IR_2}{R_3}$$

• The vale of V_{BE6} can be determined as,

$$V_{BE6} = V_T \ln \frac{I}{I_s}$$

ο Now substituting $I_S = 10^{-14}$ A, I = 9.5 µA, gives, $V_{BE6} = 517$ mV & $I_{C7} = 10.5$ µA.

INPUT BIAS AND OFFSET CURRENTS

- The **input bias current** of an op amp is defined as $I_{B} = \frac{I_{B1} + I_{B2}}{2}$
- For the 741 we obtain $I_B = \frac{I}{\beta_N} = 47.5 \, nA$
- Because of possible mismatches in the β values of Q_1 and Q_2 the input base currents will not be equal.
- In this case, **input offset current** is defined as,

$$I_{B} = \left| I_{B1} - I_{B2} \right|$$

INPUT OFFSET VOLTAGE

- Input offset voltage is the differential voltage that exists between two input terminals of an opamp, without any external inputs applied.
- In other words, it is the amount of the input voltage that should be applied between two input terminals in order to force the output voltage to zero.
- In the 741 circuit, Input offset voltage is due to mismatch between Q_1 and Q_2 , between Q_3 and Q_4 , between Q_5 and Q_6 and between R_1 and R_2 .

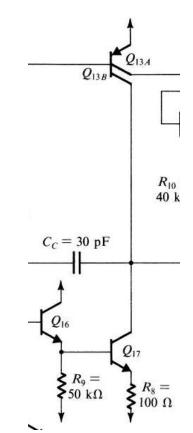
INPUT COMMON MODE RANGE

• The input common-mode range is the range of Input common-mode voltages over which the input stage remains in the linear active mode.

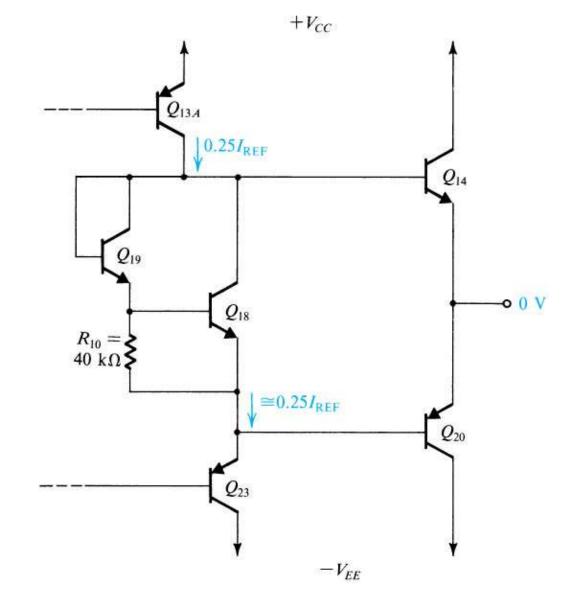
• For 741 circuit the input common-mode range is determined at the upper end by saturation of Q_1 and Q_2 and at the lower end by saturation of Q_3 and Q_4 .

SECOND STAGE BIAS

- If we neglect the base current of Q_{23} , then we see that the collector current of Q_{17} is approximately equal to the current supplied by current source Q_{13B} .
- Because Q_{13B} , has a scale current 0.75 times that of Q_{12} .
- Its collector current will be $I_{C13B} \approx 0.75 I_{REF}$, where we have assumed that $\beta_P >> 1$.
- Thus $I_{C13B} = 550 \mu A \& I_{C17} \approx 550 \mu A$.


• Base-emitter voltage of Q_{17} is

$$V_{BE17} = V_T \ln \frac{I_{C17}}{I_S} = 618mV$$


• The collector current of Q_{16} is given as,

$$I_{C16} \simeq I_{E16} = I_{B17} + \frac{I_{E17}R_8 + V_{BE17}}{R_9}$$

• Which gives, $I_{C16} = 16.2\mu A$

OUTPUT-STAGE BIAS

- Current source Q_{13A} delivers a current of $0.25I_{REF}$ (because I_S of Q_{13A} is 0.25 times the I_S of Q_{12}).
- Neglecting base currents of Q_{14} & Q_{20} ,

•
$$I_{C23} \approx I_{E23} \approx 0.25 I_{REF} = 180 \ \mu \text{A}.$$

- If we assume that V_{BE18} is approximately 0.6 V. we can determine the current in R_{10} as 15 μ A.
- The emitter current of Q_{18} is therefore
 - $I_{E18} \approx I_{C18} = 180 15 = 165 \ \mu\text{A} \& V_{BE18} = 588 \ \text{mV}.$
- \circ The base current $I_{B18}=165/200=0.8~\mu\mathrm{A}.$ So
 - $I_{C19} \approx I_{E19} = 15.8 \ \mu \text{A}$
- V_{BE19} is determined as

$$V_{BE19} = V_T \ln \frac{I_{C19}}{I_S} = 530 mV$$

• As, we know that the purpose of the transistors Q_{18} - Q_{19} network is to provide two V_{BE} drops between the bases of the output transistors Q_{14} & Q_{20} .

• This voltage drop V_{BB} is given by,

•
$$V_{BB} = V_{BE18} + V_{BE19} = 588 + 530 = 1.118$$
V
Where

$$V_{BB} = V_T \ln \frac{I_{C14}}{I_{S14}} + V_T \ln \frac{I_{C20}}{I_{S20}}$$

- Now putting values of V_{BB} , and $I_{S14} = I_{S20} = 3 \times 10^{-14}$ A, we get, $I_{C14} = I_{C20} = 154 \mu$ A.
- This is the small current at which class AB output stage is biased.

SUMMARY

21	9.5	Q_8	19	Q_{13B}	550	Q19	15.8
Q_2	9.5	Q_9	19	Q_{14}	154	Q_{20}	154
Q_3	9.5	Q_{10}	19	Q_{15}	0	Q_{21}	0
Q4	9.5	Q_{11}	730	Q_{16}	16.2	Q_{22}	0
Q_5	9.5	Q_{12}	730	Q_{17}	550	Q_{23}	180
Q_{6}	9.5	$Q_{13.4}$	180	Q_{18}	165	Q24	0
Q_1	10.5					~	

SMALL SIGNAL ANALYSIS OF 741

The input stage, second stage, the output stage

THE INPUT STAGE

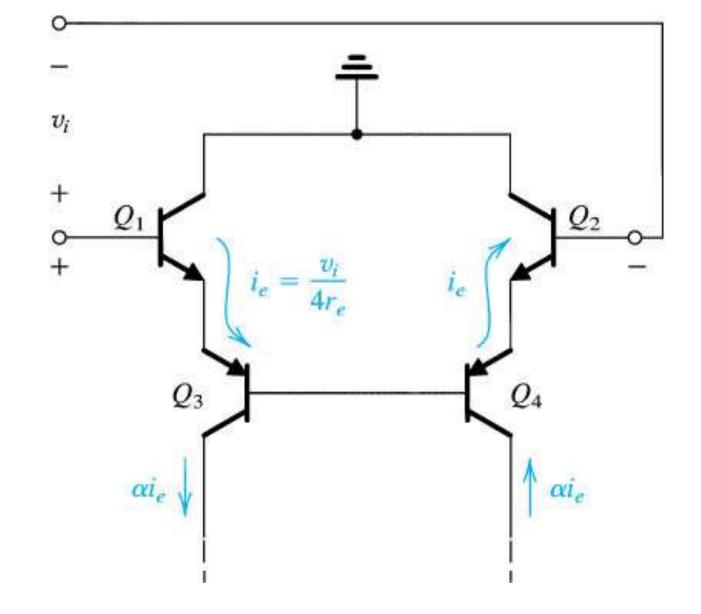
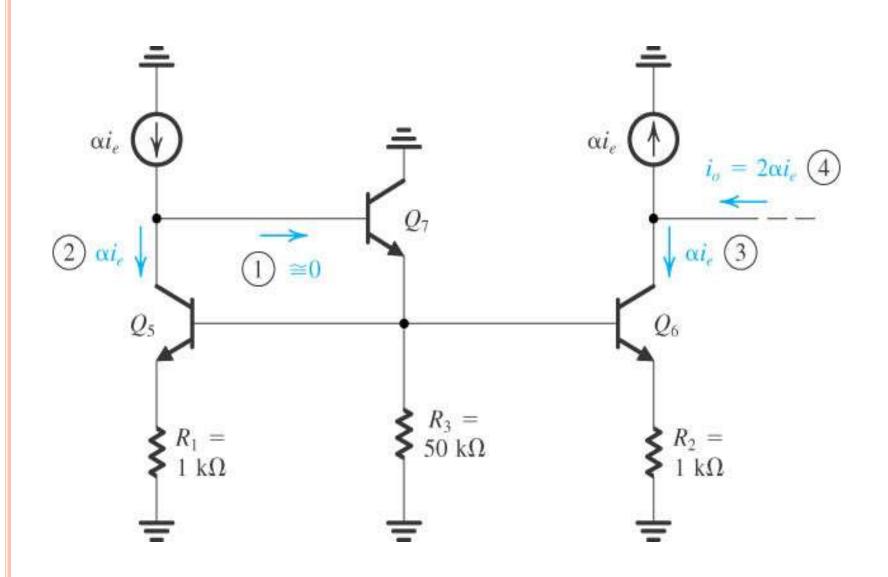


Figure Small-signal analysis of the 741 input stage.

- The differential signal v_I applied between the input terminals.
- The four transistors shown in figure are connected in series.
- Emitter signal currents flow as indicated in Fig.


 $i_e = \frac{v_I}{4r}$

• Where r_e is emitter resistance of the four transistors shown in figure. Where,

$$r_e = \frac{V_T}{I} = \frac{25 \, mV}{9.5 \, \mu A} = 2.63 \, k\Omega$$

• Input differential resistance is given by,

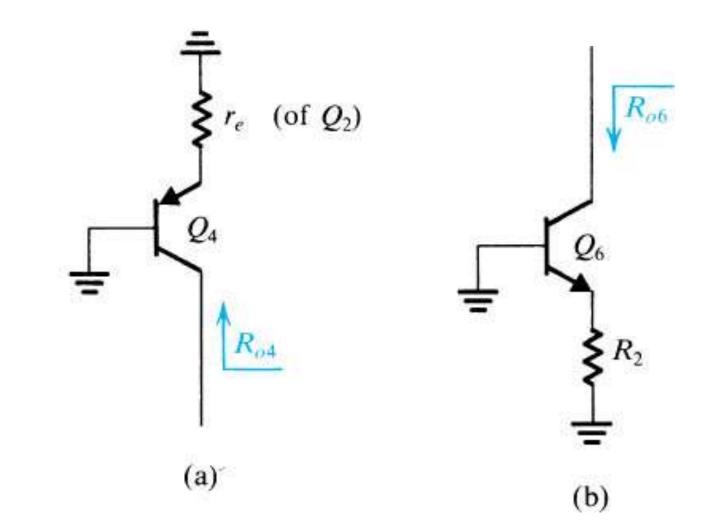
$$R_{id} = 4(\beta_N + 1)r_e = 2.11M\Omega$$

Figure The load circuit of the input stage fed by the two complementary current signals generated by Q_1 through Q_4 in Fig. shown on previous slide Circled numbers indicate the order of the analysis steps.

• Assuming the base current of Q_7 to be equal to zero, so the collector current of Q_5 will be,

$$I_{C5} = \alpha i_e$$

• Transistors Q_5 and Q_6 are identical and have identical emitter resistances, therefore,


$$I_{C6} = I_{C5} = \alpha i_e$$

- So the load circuit behaves like a current mirror.
- Consider output node of the input stage, the output current is given by,

$$i_0 = \alpha i_e + I_{C6} = \alpha i_e + \alpha i_e = 2\alpha i_e$$

• Transconductance of the input stage is given by,

$$G_{m1} = \frac{i_0}{v_I} = \frac{2\alpha i_e}{4i_e r_e} = \frac{\alpha}{2r_e} = \frac{1}{2(2.63\,k\Omega)} = 1.9x10^{-4}\,A/V$$

Figure Simplified circuits for finding the two components of the output resistance R_{o1} of the first stage.

- Output resistance (R_{01}) of the input stage is the resistance seen looking back onto the collector of transistor Q_6 .
- From the figure shown on slide 64, we can say that, R_{01} is equal to the parallel combination of the output resistance of the current source ai_e and the output resistance of Q_6 .
- Assume that the base of Q_4 is virtual ground.

• The
$$R_{04}$$
 is given by, $R_{04} = r_o [1 + g_m (r_e || r_\pi)]$

So, for Q₄, r_e=2.63 kΩ, r_o=V_A/I, V_A= 50V, I = 9.5 μA, r_π = (β+1)r_e>>r_e, so neglecting it[.]
So, R₀₄ = 10.5 MΩ.

- The R_{04} is given by, $R_{06} = r_0 [1 + g_m (R_2 || r_\pi)]$
 - So, for Q_4 , $r_e = 2.63 \text{ k}\Omega$, $r_o = V_A/I$, $V_A = 50\text{V}$, $I = 9.5 \text{ }\mu\text{A}$, $r_{\pi} = (\beta+1)r_e >> r_e$, so neglect it.
 - So, $R_{06} = 18.2 \text{ M}\Omega$.
- Hence, the output resistance of the input stage is given by, $R_{01} = 6.7 \text{ M}\Omega$.

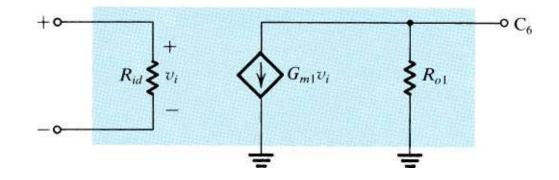


Figure Small-signal equivalent circuit for the input stage of the 741 op amp.

SECOND STAGE

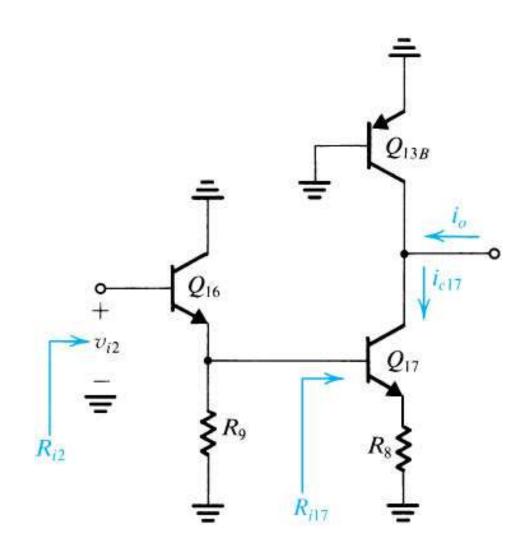


Figure The 741 second stage prepared for small-signal analysis

• This is used to determine the values of the parameters of the equivalent circuit.

• Input Resistance: The resistance R_{i2} is given by

$$R_{i2} = (\beta_{16} + 1)[r_{e16} + R_9 || (\beta_{17} + 1)(r_{e17} + R_8)]$$

• So, $R_{i2} = 4M\Omega$.

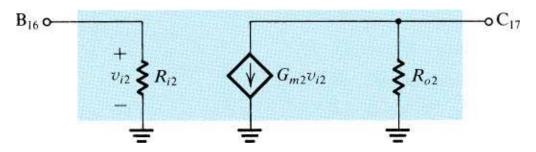


Figure Small-signal equivalent circuit model of the second stage.

• **Transconductance:** from the small-signal equivalent circuit model of the second stage, we can observe that,

$$G_{m2} = \frac{i_{c17}}{v_{i2}}$$

$$i_{c17} = \frac{\alpha v_{b17}}{r_{e17} + R_8}$$
$$v_{b17} = v_{i2} \frac{(R_9 \parallel Ri_{17})}{(R_9 \parallel Ri_{17}) + r_{e17}} \cong v_{i2}$$

• So, $G_{m2} = 6.5 \text{ mA/V}$

• Output Resistance: output resistance of the second stage is given by,

$$R_{02} = (R_{013B} \parallel R_{017})$$

• Where, $R_{013B} = r_{e13}$, for 741 $r_{e13} = 90.9$ kΩ.

Where, R₀₁₇ = r₀[1+g_mR₈] = 787 kΩ.
Therefore, R₀₂ = 81kΩ.

OUTPUT STAGE

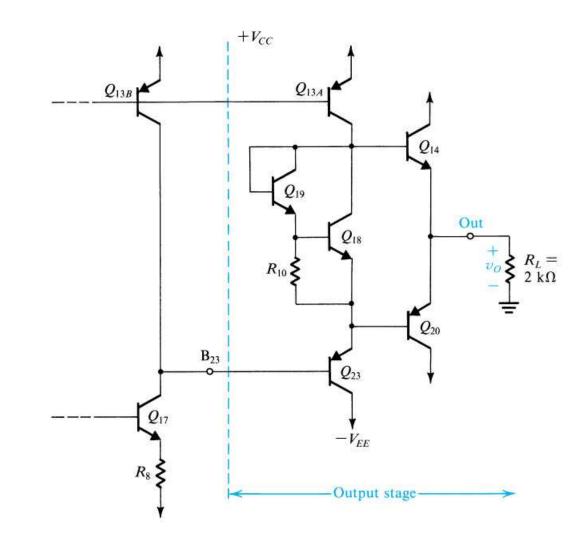


Figure The 741 output stage.

GAIN, FREQUENCY RESPONSE AND SLEW RATE OF 741

Small signal gain, frequency response, a simplified model, slew rate, relationship between F_t and SR

SMALL SIGNAL GAIN

• The overall small-signal gain can be found from the cascade of the equivalent circuits.

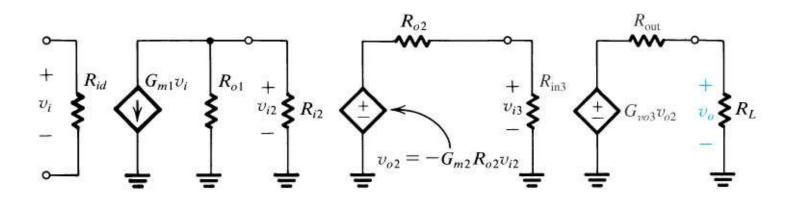


Figure Cascading the small-signal equivalent circuits of the individual stages for the evaluation of the overall voltage gain.

Load resistance R_L = 2 kΩ.
The overall gain can be expressed as,

^V_o/_{v_i} = <sup>V_{i2}/_{v_{i2}} <sup>V_{o2}/_{v_{o2}} ^{V_o}/_{v_{o2}} = -G_{m1}(R_{o1} || R_{i2})(-G_{m2}R_{o2})G_{vo3} ^{R_L}/<sub>R_L + R_{out}

So, A_o = -476.1X(-526.5)X0.97=243,147V/V

</sup></sup></sub>

FREQUENCY RESPONSE

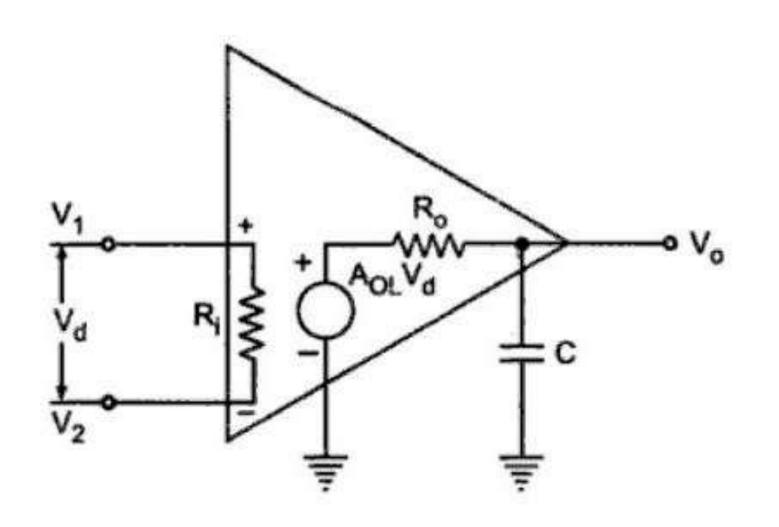
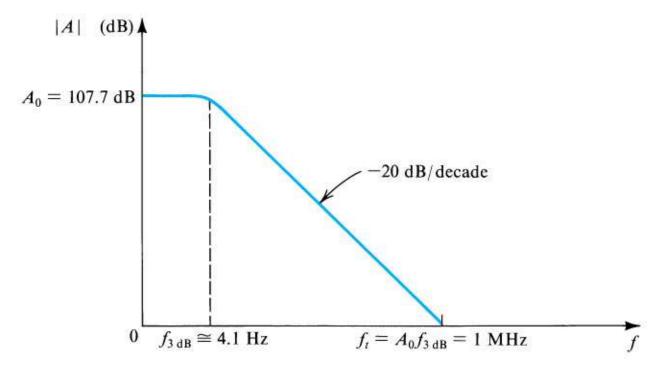
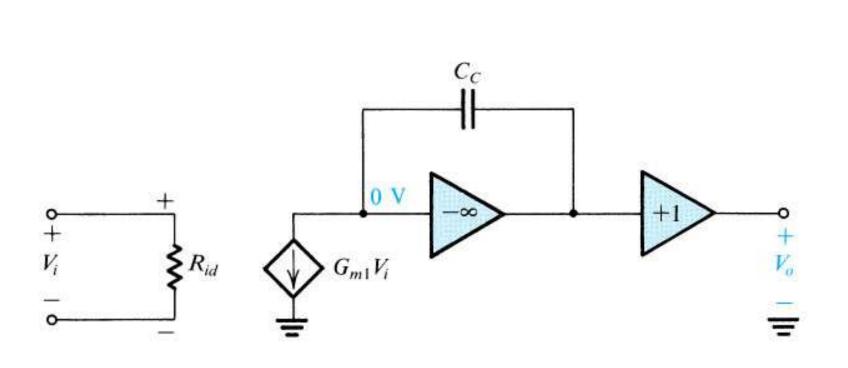




Figure High frequency model of OP-AMP

- Frequency response of the op-amp is the plot of its open loop gain versus frequency.
- The open loop gain changes with frequency.
- To plot the frequency response we need to refer high frequency model of OP-AMP.
- After a certain frequency the rolloff decreases after certain frequency.
- The capacitor is due to BJT used in the 741.
- The BJTs has parasitic capacitances so the capacitances is too small.
- So in order to reduces the effect of this parasitic capacitances the compensated capacitor is used in 741.

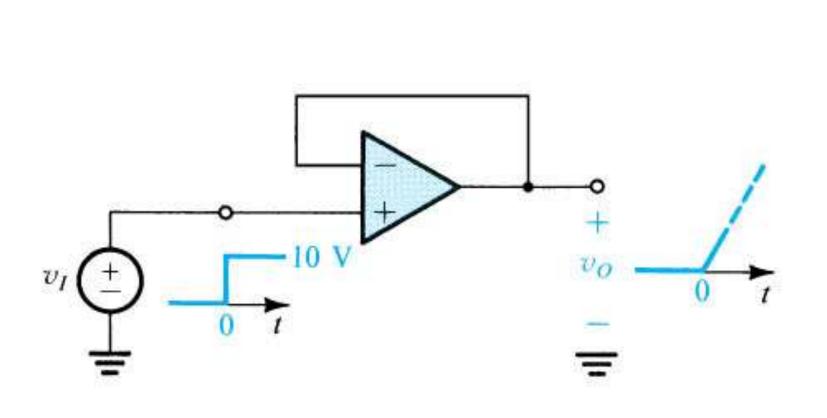
A SIMPLIFIED MODEL

Wednesday, April 25, 2012 Analog Integrated Circuits, Unit - III, IC 741

- In simplified model of 741, the high-gain second stage, with its feedback capacitance C_C is modeled by an ideal integrator.
- In this model, the gain of the second stage is assumed to be very large.
- That's why the output resistance of the input stage and the input resistance of the second stage have been omitted.
- The output stage is assumed to be an ideal unity gain follower.

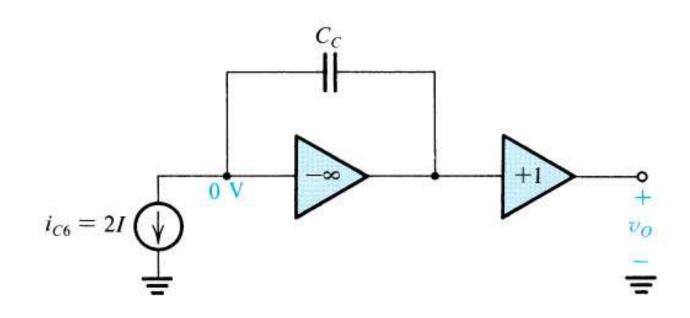
$$A(s) = \frac{V_o(s)}{V_i(s)} = \frac{G_{m1}}{sC_C}$$

$$A(j\omega) = \frac{G_{m1}}{j\omega C_c}$$


The magnitude of the gain becomes unity at ω=ω_t
 Where, ω_t = G_{m1}/C_C

• So,
$$f_t = \frac{\omega_t}{2\pi} \approx 1 M H z$$

- Where, f_t is called unity gain frequency.
- At $f >> f_{3dB}$, the gain falls off with a slope of 20dB/decade, just like an integrator.



Wednesday, April 25, 2012 Analog Integrated Circuits, Unit - III, IC 741

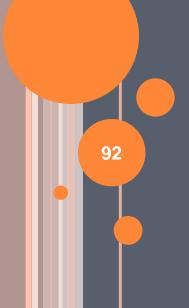
- Consider the unity-gain follower shown on previous slide.
- 10 volt step is applied at the input.
- The entire value of the step signal will appear as a differential signal between the two input terminals.

• From the circuit shown on previous slide, we see that, output voltage ramp with a slope of $2I/C_{C}$.

$$v_0(t) = \frac{2I}{C_c}t$$

• So the slew rate is given by: $SR = \frac{2I}{C_c}$ • For 741 SR = 0.63 V/µs.

RELATIONSHIP BETWEEN F_T AND SR


 ${\color{black} \bullet}$ Relationship between f_t and SR can be found by:

$$\omega_{t} = \frac{G_{m1}}{C_{C}} \qquad SR = \frac{2I}{C_{C}}$$

• As we know that $G_{m1} = \frac{\alpha}{2r_{e}} = \frac{1}{2r_{e}} \& r_{e} = \frac{V_{T}}{I}$
So, $G_{m1} = \frac{I}{2V_{T}}$
So, $\omega_{t} = \frac{I}{2C_{C}V_{T}}$

And we get, $\omega_t = \frac{SR}{4V_T}$

Finally we get,
$$f_t = \frac{SR}{8\pi V_T}$$

ALL THE BEST FOR INTERNAL EXAMS

