1 a) Define digital signal processing..

DSP is defined as changing or analysing information which discrete sequences of numbers.

b) Explain the basic elements required for realization of digital system.

Adder, scale changer, delay element

c) What is the fundamental time period of the signal $x(t)=sin15\pi t$.

T= 2/15 sec

d) Draw a transformation matrix of size 4x4 and explain the properties of twiddle factor

$$W = \begin{bmatrix} \omega^0 & \omega^0 & \omega^0 & \omega^0 \\ \omega^0 & \omega^1 & \omega^2 & \omega^3 \\ \omega^0 & \omega^2 & \omega^4 & \omega^6 \\ \omega^0 & \omega^3 & \omega^6 & \omega^9 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{bmatrix}$$

where $\omega = e^{-\frac{2\pi i}{4}} = -i$, or twiddle facor

$\mathbf{e})$ Differentiate between IIR and FIR filters.

FIR	IIR					
 It is having linear phase No of necessary multiplications are 	 It is having no linear phase. Less no. of multiplications are 					
more.	required.					
3. It is a stable filter.	3. Stability depend upon the system.					
 Probability of overflow error is very less. 	4. More probability of overflow error in case of direct form.					
Sensitivity to filter coefficient quantization is low.	 High sensitivity to filter co-efficient quantization. 					
 FIR cannel simulate prototype analog filter. 	It can simulate prototype analog filter.					
이는 아이들에 가장 전쟁을 하는 것이 아이들에게 가지 않는 것이 아이들에 집에서 가지 않는 것이 없다.						

2a) Obtain the cascade and parallel structure for the system function H(z) given below

H(Z) =
$$\frac{(1-z^{-1})^3}{(1-0.5 z^{-1})(1-0.25 z^{-1})}$$

2c) Compute the Circular convolution of two discrete time sequences

 $x_1(n) = \{1, 2, 1, 2\}$ and $x_2(n) = \{3, 2, 1, 4\}$.

$$y(n) = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 2 & 1 & 2 & 1 \\ 1 & 2 & 1 & 2 \\ 2 & 1 & 2 & 1 \\ 2 & 1 & 2 & 1 \\ 2 & 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 1 \\ 4 \\ \end{bmatrix} = \begin{bmatrix} 3+4+1+8 \\ 6+2+2+4 \\ 6+2+2+4 \\ 6+2+2+4 \\ \end{bmatrix} = \begin{bmatrix} 16 \\ 14 \\ 16 \\ 14 \end{bmatrix}$$

Aircular convolution = $\begin{cases} 16, 14, 16, 14 \\ 9 \\ 14 \end{bmatrix}$

2d) Find the Discrete-Fourier Transform (DFT) of the sequence x(n) = (1, 1, 0, 0)

and find the IDFT of x (k) = (1, 0, 1, 0)

$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi nk/N} \quad y(0) = \frac{1}{4} [Y(0) + Y(1) + Y(2) + Y(3)] = \frac{1}{4} (1 + 0 + 1 + 0) = \frac{1}{2}$$

therefore, we have

Here, given that N = 4, therefore, we have

$$y(1) = \frac{1}{4} [1 + 0 + e^{j\pi} + 0] = (1 - 1)/4 = 0.0$$

Now,

or

$$X(k) = \sum_{n=0}^{3} x(n)e^{-j2\pi nk/4} \qquad y(1) = \frac{1}{4}[1+0+e^{j^{2}\pi}+0] = (1-1)/4$$

$$X(0) = x(0) + x(1) + x(2) + x(3) \qquad y(2) = \frac{1}{4}[1+0+e^{j2\pi}+0] = \frac{1}{2}$$

$$X(0) = 1+1+0+0 = 2.0$$

$$X(1) = x(0) + x(1)e^{-j\pi} = 1-1 = 0.0$$

$$Y(3) = \frac{1}{4}[1+0+e^{j3\pi}+0] = 0.0$$

$$X(3) = x(1)e^{-j3\pi/2} = 1+j$$

or

$$y(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j2\pi k/N}$$

Here, since N = 4, therefore, we have

$$y(n) = \frac{1}{N} \sum_{k=0}^{3} Y(k) e^{j2\pi nk/4}$$

2d) Obtain the ladder structure for the system function H (z) given below.

H (Z) =
$$\frac{2+8z^{-1}+6z^{-2}}{1+8z^{-1}+12Z^{-2}}$$

The parameters for the ladder structure will be

21

$$\alpha_0 = \frac{1}{2}, \qquad \beta_1 = 3, \qquad \alpha_1 = \frac{8}{7}$$

 $\beta_2 = \frac{49}{5}, \qquad \alpha_2 = \frac{5}{14}$

Also, we have $H(z) = \frac{1}{2} + \frac{1}{3z^{-1} + \frac{1}{\frac{8}{7} + \frac{1}{(49/5)z^{-1} + \frac{1}{5/14}}}}$

The resultant ladder structure v

,

3a) Determine the circular convolution of following sequences and compare result with linear convolution: X(n) = (1.2.3.4) and H(n) = (1, 2, 1)

					Section-C Masurer-3-a	_							
>	c(n	.) =	- (<u>ن</u> ا	2,2,4)		н (n) =	(,	x, ŋ			
Linular	K	19VV0	Juiti	on.	•		<u>ب</u> ۱	2 2	3	ч o	0	с D	
	1	. 2	3	ч			0	0	0	0	D	0	
×	1	2_	1	o			ט ט	0 0	0	3 0	o D	0	
-	o	O	0	0			Ц	9	0	L	2	3	
	2	3	ч	L			0	0	2	ч	6	8	
	4	8	2 2	3			0	1	2	3	ч	0	/
-	12	12	B	8		-	4	1	4	- 8	12	11	
	¥(3)	y60)	ď	n y	(2)		y(s)	y(0)	9(1)	y(2)	y(2)	y(4)	
y =	۶	12,	8,	8,	12}	y	2	ł	L	ч е	. 1	2 ١١	чү
Linear	Convolution						$\frac{1}{2}(1, 2, 1)$						
	x	(n)	n 1	(' Y	, 2, 3, 1)			1	۲ = ۲	5			

3b) Compute 8- Point DFT of the sequence using radix-2 decimation-in frequency algorithm:

X (n) ={1/2, 1/2, 1/2, 1/2, 0, 0, 0, 0}

Please refer to class notes

4a) Determine 8- point DFT of the sequence x(n) = (1, 2, 3, 4)

Solution of First sessional Exam Vth Sem EC (Digital Signal Processing)

4b) How IIR filter Designing can be done by the use of following methods. Discuss each methods

- (i) Impulse Invariance Method.
- (ii) Bilinear Transformation Method

Please refer to class notes

5a) Given x (n) = 2^n and N=8 find X (K) using Decimation In Time (DIT) FFT algorithm

Solution of First sessional Exam Vth Sem EC (Digital Signal Processing)

5b) Convert following analog filters into digital filters. H(s) (s+0.1)/((s+0.1)²+9) using bilinear transformation. The digital filter should have a resonant frequency of w_r = $\pi/4$

the second s

Now, making use of bilinear transformation, we have $H(z) = H_a(s) \Big|_{s=\frac{2}{T} \frac{(z-1)}{(z+1)}}$

Thus, we write

$$H(z) = \frac{\frac{2}{T}\frac{(z-1)}{(z+1)} + 0.1}{\left[\frac{2}{T}\frac{(z-1)}{(z+1)} + 0.1\right]^2 + 9}$$

Simplifying, we get

$$H(z) = \frac{(2/T)(z-1)(z+1) + 0.1(z+1)^2}{[(2/T)(z-1) + 0.1(z+1)]^2 + 9(z+1)^2}$$

Putting T = 0.276 s, we have

$$H(z) = \frac{1 + 0.027z^{-1} - 0.973z^{-2}}{8.572 - 11.84z^{-1} + 8.177z^{-2}}$$
Ans.