SHAMBHUNATH INSTITUTE OF ENGINEERING AND TECHNOLOGYSubject : Digital System DesignSubject Code : KEC302B.Tech.3rd SEMESTERFIRST SESSIONAL EXAMINATION, ODD SEMESTER, (2019-2020)Branch :Electronics & Communication Engineering

SECTION - A

Time –1hr 30 min

Q-1) Attempt ALL parts-

- a) Perform the following conversions : (A) $(101000100111)_2 = (?)_{10}$ (B) $(511)_{10} = (?)_8$
- b) State De Morgan's theorem.
- c) How many 3:8 line decoder with enable input are required to construct 6:64 line decoder without using any other logic?
- d) Explain magnitude comparator?
- e) Differentiate between combinational and sequential circuits.

SECTION - B

Q 2) Attempt any <u>TWO</u> parts from this section.

a. Determine the POS expression using K-map.

$$f = x'z' + wyz + w'y'z' + x'y$$

- **b.** Implement a full subtractor using two 4:1 Multiplexer.
- **c.** Design a 4 bit parallel adder circuit by using full adder.
- **d.** Explain the operation of a SR flip-flop.

SECTION - C

3. Attempt any ONE part of the following :

- a) Minimized the expression and Realize the expression using NAND gate only. $F(A,B,C,D,E) = \sum m (1, 3, 4, 5, 11, 12, 14, 16, 20, 21, 30)$
- **b**) Minimize the following function using Quine-McClusky method:

$$F(A,B,C,D) = \sum m(0,3,5,6,7,10,12,13) + d(2,9,15)$$

4. Attempt any ONE part of the following :

- **a)** Implement the following function using a 3 to 8 line decoder $F_1 = \sum (3,5,6,7)$ and $F_2 = \sum (1,2,4,7)$
- **b)** Using 8:1 MUX with A as input line, realize the following function with multiplexer. $F(A,B,C,D) = \sum m (0,1,2,4,6,9,12,14)$

5. Attempt any ONE part of the following :

a) Analyze the logic circuit shown below and determine the output Y.

b) Design an 8-bit adder/subtractor using ALU 74181s in cascade. Show how it works if A=97 and B=29.

(2*5 = 10)

(1*5 = 5)

(1*5 = 5)

Maximum Marks – 30

Roll No.

(5*1 = 05)

Solution Subject : Digital System Design Subject Code : KEC302 B.Tech. 3rd SEMESTER FIRST SESSIONAL EXAMINATION, ODD SEMESTER, (2019-2020) Branch : Electronics & Communication Engineering

Time –1hr 30 min

Q-1) ANSWERS

SECTION - A

(5*1 = 05)

Maximum Marks – 30

- a) **ANS**: conversions : (A) $(101000100111)_2 = (2599)_{10}$ (B) $(511)_{10} = (777)_8$
- b) **ANS :** The complement of the product of two or more variables is equal to the sum of the complements of the variables.

$$A + B = A \cdot B$$
 OR $\overline{A \cdot B} = \overline{A} + \overline{B}$

- c) ANS : <u>NINE</u> 3:8 line decoder with enable input are required to construct 6:64 line decoder without using any other logic.
- d) **ANS :** A magnitude comparator is a combinational circuit that compares two numbers A & B to determine whether: A > B, or A = B, or A < B

e) ANS:

A combinational system (device) is a digital system in which the value of the output at any instant depends only on the value of the input at that same instant (and not on previous values).

A sequential circuit is a circuit with memory. A sequential circuit is said to be synchronous if the internal state of the machine changes at specific instants of of time as governed by a clock.

SECTION - B

(2*5 = 10)

a. ANS : The POS expression using K-map.

Q 2) Attempt any <u>TWO</u> parts from this section.

b. ANS : Full subtractor using two 4:1 Multiplexer.

c. ANS : A 4 bit parallel adder circuit by using full adder.

e. ANS : operation of a SR flip-flop.

From the diagram it is evident that the flip flop has mainly four states. They are S=1, R=0-Q=1, Q'=0 This state is also called the SET state. S=0, R=1-Q=0, Q'=1 This state is known as the RESET state. S=0, R=0-Q & Q' = previous state.

S=1, R=1—Q=0, Q'=0 [Invalid]

This is an invalid state because the values of both Q and Q' are 0. They are supposed to be compliments of each other. Normally, this state must be avoided.

(a) Logic diagram

SR	Q Q'	
10	10	
0 0	10	(after S=1, R=0)
01	01	
00	01	(after S=0, R=1)
11	00	

SECTION - C

3. Attempt any ONE part of the following :

(1*5 = 5)

a) F = B'CD' + A'BCE' + BCDE' + A'C'DE + AB'D'E' + A'B'C'E

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4	<i>v</i> .				A	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0 'E'	D'E	DE	DE'	_	D'E'	DE	DE	DE'
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B.C.	0	1	L R	2 0		16	17 0	19 0	18 <mark>0</mark>
BC 1 0 0 1 2 28 29 31 1 BC 1 0 0 1 0 0 1	B'C	4	5	7 0	6 <mark>0</mark>		20	21	23 <mark>0</mark>	22 0
	вс	12	13 0	15 0	14 1		0 0	29 <mark>0</mark>	31 0	30 1
BC' 0 0 1 0 24 25 27 0/	BC'	8 0	9 0	1	10		24 0	25 0	27 0	0

b) **ANS** : Quine-McClusky method:

	For		Min	term	ID	W	Х	Y	Ζ	For d	lon't	Minterm I		W .	x	Y	Z		
	Min	terms:		0		0	0	0 0 0 0 00		cares	•	2		0	0	1	0		
			3		0	0	1 1				9		1	0	0	1			
				5		0	1	0	1			15		1	1	1	1		
				6		0	1	1	0										
				7		0	1	1	1										
				10		1	0	1	0										
				12		1	1	0	0										
				13		1	1	0	1										
											Groups	Minterm	ID	W	×		r z	1	
	Group	os Minter	m ID	W	х	Υ	Ζ	Me	erge	Mark	G0'	0, 2		0	0		1 0	1	
	GO	0	0	0	0	0	0		E		G1'	2, 3		0	0	1	1 d		
	G1	2	<u>.</u>	0	0	1	0	-	E	_		2, 6		0	d		1 0		
		5		0	1	0	1		6		001	2, 10		d	0	-	1 0	4	
		6		0	1	1	0				G2	5.7	3, 7		1		1 1		
	G2	52 9 10 12		1	0	0	1	000				6,7	6, 7		1		1 d		
				1	0	1	0					5, 13		d	1	9	0 1		
				1	1	0	0			_		12, 1	3	1			bd		
	G3	G3 7		0	1	1	1				G3'	7, 15	5	d			1 1		
	G4	15	5	1	1	1	1		E		u	13, 1	5	1	1	0	1 1		
Grou	ps N	linterm I		/ X	Y	Z	M	erc	ie l	ark	Grou	ps Mint	term	n ID	,	W	Х	Y	Ζ
00		0.2	0	0	Ы	0					G1	" 2 :	3 6	7		0	d	1	d
00		0,2		0	u	0	-	-	Ċ.			2.1	8.3	7		0	d	1	d
GI		2, 3 2, 6		0	1	d					62	" 57	13	1.5	; †	d	1	d	1
				d	1	0		1			02	5 7	5.7.13			d	1	d	1
		2, 10		0	1	0						0,1				-			
G2	1	3,7 0		d	1	1			1										
		5,7	0	1	d	1			1										
		6.7	0	1	1	d			Ŵ										
		5, 13	d	1	0	1			3										
		9, 13	1	d	0	1													
		12, 13	1	1	0	d													
G3		7, 15	d	1	1	1			2										
		13, 15	1	1	d	1			2										

Groups	Minterm ID	W	Х	Y	Ζ	Merge Mark	Minterm ID	$\overline{W} \overline{X} \overline{Z}$	$\overline{W}Y$	$\overline{X}Y\overline{Z}$	XZ	$WX\overline{Y}$	$ W\overline{Y}\rangle$
G0"	0, 2	0	0	d	0		0	1					
G1"	2, 3, 6, 7	0	d	1	d		3		1				
	2, 10	d	0	1	0		5 6		1		1		
G2"	5, 7, 13, 15	d	1	d	1		7		1		1		
	9, 13	1	d	0	1		10			1			
	12, 13	1	1	0	d		12 13				1	1	1

 $F(W, X, Y, Z) = \overline{W}\overline{X}\overline{Z} + \overline{W}Y + \overline{X}Y\overline{Z} + XZ + WX\overline{Y}$

4. Attempt any ONE part of the following :

c) Implement the function using a 3 to 8 line decoder. $F_1(x,y,z) = \sum (3,5,6,7)$ and $F_2(x,y,z) = \sum (1,2,4,7)$

d) Using 8:1 MUX with A as input line, realize the following function with multiplexer. $F(A,B,C,D) = \sum m (0,1,2,4,6,9,12,14)$

5. Attempt any ONE part of the following :

(1*5 = 5)

(1*5 = 5)

- **b)** Solution : For designing an 8-bit adder/subtractor, two 74181 ICs are to be cascaded.
- The least-significant four bits of A & B are applied at the A & B inputs of the LSB 74181 and the most-significant four bits of A & B are applied at the A & B inputs of the MSB 74181.
- The carry-out of the least-significant 74181 is connected to the carry-in of the most-significant 74181.
- The 8-bit output will be available on F outputs.
- The select lines of both the 74181s are connected together.
- Addition if performed with M=0 and S=1011, and
- subtraction is performed with M=0 and S = 0110.
- Connect C_n of least-significant 74181 to 1 for addition and 0 for subtraction. (a) A=97 = 01100001 B=29 = 00011101

Mode	Select	1	east-sig	nifica	nt ALU		Ν	Aost-si	gnifica	int ALU	Output	Remark	
M	s.s.s.s.		Inputs		Outj	outs	Inputs			Outp	outs		
	$s_3 s_2 s_1 s_0$	A_L	B _L	C _{in}	S_L	C_{n+4}	A _H	B _H	C _{in}	S_{H}	C_{n+4}		
0	1001	0001	1101	1	1110	1	0110	0001	1	0111	1	01111110	(126) ₁₀
0	0110	0001	1101	0	0100	1	0110	0001	1	0100	0	01000100	(68)10